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Abstract—The rising connection of vehicles with the road
infrastructure enables the creation of data-driven applications
to offer drivers customized services. At the same time, these
opportunities require innovative solutions to protect the drivers’
privacy in a complex environment like an Intelligent Transporta-
tion System (ITS). This need is even more relevant when data
are used to retrieve personal behaviors or attitudes.

In our work, we propose a privacy-preserving solution, called
Private Driver DNA, which designs a possible architecture, al-
lowing drivers of an ITS to receive customized services. The
proposed solution is based on the concept of Driver DNA as
characterization of driver’s driving style. To assure privacy,
we perform the operations directly on sanitized data, using
the Order Revealing Encryption (ORE) method. Besides, the
proposed solution is integrated with ITS architecture defined in
the European project E-Corridor.

The result is an effective privacy-preserving architecture for
ITS to offer customized products, which can be used to address
drivers’ behaviors, for example, to environmental-friendly atti-
tudes or a more safe driving style.

We test Private Driver DNA using a synthetic dataset generated
with the vehicle simulator CARLA. We compare ORE with
another encryption method like Homomorphic Encryption (HE)
and some other privacy-preserving schemas. Besides, we quantify
privacy gain and data loss utility after the data sanitization
process.

Index Terms—ITS, Privacy, Driver DNA, Order Revealing
Encryption, Homomorphic Encryption.

I. INTRODUCTION

N recent years, Intelligent Transport Systems (ITS) are
Iexperiencing increasing digitalization with the Internet of
Things (IoT) and the application of new technologies like
next 5G New Radio (5G NR). Consequently, the growth of
connected devices and the expanding networks are increasing
the demand for cyber protection and privacy [1]. In the last
years, both aerial and ground transport system communications
have received greater attention and have been largely studied.
For example, the new 5G NR with its lightweight and en-
ergy saving could be applied in Mobile Ad-hoc Networking
(MANET), in Vehicle Ad-hoc Networking (VANET), and
also in Flying Ad-hoc Networking (FANET) [2], showing the
strong correlation among the different transport networks.

In this work, we focus on ground vehicles within an ITS
and we follow the ITS definition contained in the directive of
the European Union 2010/40/EU, where ITS are “advanced
applications, which [...] aim to provide innovative services
relating to different modes of transport and traffic management

and enable various users to be better informed and make safer,
more coordinated and ‘smarter’ use of transport networks”
[3]. Following this definition, we design a privacy-preserving
solution to provide innovative personalized services, based
on a rewarding process, as it is described in the European
project E-Corridor. In particular, E-Corridor aims to de-
velop a technological framework to unleash the power of
information sharing, coupled with edge-based collaborative
analytics for cyber protection [4]. The framework allows
prosumers (producers/consumers) to express their consent to
share data with the infrastructure and receive customized
prices, based on their driving style, which can be described
as a personal driver’s usual method of driving, defined using
several vehicle’s parameters in a long-term driving [5]. In our
study, the driving style is defined with a metric, called Driver
DNA. As defined in [6] and described in §III, Driver DNA
is composed of four parameters (breaking, turning, speeding,
revolutions per minute), that can be retrieved from the in-
vehicle network: each parameter, combined with the others,
can represent a particular driving attitude. For instance, the
parameter speeding, which is calculated using also the weather
conditions, can be used to determine the safeness of a driving
style in a specific road segment.

Our infrastructure can identify a user’s driving style and
compare it with the other drivers in a privacy-preserving
environment. The U.S. National Institute of Standards and
Technologies (NIST) [7] states that the “privacy is the right
of a party to maintain control over and confidentiality of
information about itself” [8]. Hence, the privacy of a user’s
driving style needs to be guaranteed with a full control over
data. In our E-Corridor infrastructure, the control is defined in
the Data Sharing Agreement (DSA) that a driver signs with the
infrastructure, so a person can exercise the rights over personal
data.

In this paper, we leverage the ITS architecture employed
in the E-Corridor project and propose a privacy-preserving
solution, called Private Driver DNA. It aims to define an
effective process that carmakers and infrastructure authorities
can implement in a real road environment. The main question
to which our paper tries to answer is: in a ground ITS
infrastructure, how could we provide customized privacy-
preserving services to drivers? Our solution enables answering
the rising demand for driver personalized services, providing
a complete architecture for driving style aware services. In
particular, the privacy-preserving solutions are guaranteed by



the execution of operations directly on sanitized data, using
the Order Revealing Encryption (ORE) method.

To evaluate the feasibility, we test Private Driver DNA on
synthetic data generated with the open-source autonomous
driving simulator CARLA [9]. We compare the ORE method
with Homomorphic Encryption (HE), as another possible
encryption method and we compare our schema with other
current schemas for VANETSs. Finally, we quantify the pri-
vacy gain and the data loss utility of the proposed privacy-
preserving solutions.

A. Motivations and Contributions

In an ITS, the demand of custom-fit services is quickly
increasing, and, today, users can choose several solutions to
receive personalized services. For instance, Connected Cars
[10] is a mobile app that enables the communication between
workshops and car owners to provide customized services,
based on users’ data. DriveQuant [11] is another mobile app
that analysis the driving style and helps drivers to adopt safer
driving behaviors and reduce fuel consumption. Another vehi-
cle data-centered application is Zenroad [12], which is a free
tracking and safe-driving app to collect location, driving style,
driving behaviors, and driving patterns to monitor and analyze
the vehicle status. However, this kind of solutions can suffer
several security and privacy attacks. For instance, in 2017,
Kaspersky’s Mikhail Kuzin and Victor Chebyshev [13] tested
several apps that receive data from the vehicle and they showed
that an attacker can gain access to the app and that it is possible
to get the GPS coordinates, trace the route, steal vehicle’s
data or performing malicious actions like unlocking the doors.
In this scenario data privacy has become one of the main
topics in automotive researches like [14], [15], [16], [17], [6].
Besides, the increasing connection of vehicles with the road
infrastructure has required a deep study on the availability of
privacy-preserving services. Moreover, our paper is motivated
by the E-Corridor project that aims to provide a privacy-aware
ITS framework to achieve confidential, distributed and edge-
enabled private services in a multi-modal transport systems.
With all these motivations, we aim to show the feasibility of
a full privacy-preserving process to offer drivers customized
services within an ITS.

To the best of our knowledge within the automotive, our
work represents the first privacy-preserving solutions that
allows drivers to receive services based on their driving style
in a full ITS environment like the E-Corridor project provides.
The Private Driver DNA, applied in a rewarding system and
based on their driving style, can preserve user’s data privacy
because data are encrypted before sending them out of the
vehicle, and the computations, thanks to the ORE method, are
performed over encrypted data. As a practical contribution,
with the rewarding process, our solution may address drivers’
behaviors, for example, to environmental-friendly attitudes or
a more safe driving style, with benefits for all drivers and the
community.

Our solution inherits from [6] the metric to define the driv-
ing style starting from only four parameters, the Driver DNA,
but we supersede this work, using the metric in a privacy-
preserving process with encryption methods for computations,

and providing a feasible service solution. In our work, we
decide to combine an ITS infrastructure inherited from the E-
Corridor project and an encryption method to provide a com-
plete privacy-preserving ITS infrastructure, where prosumers
can share their data without privacy loss. As a contribution test,
we make a comparison between ORE and HE method to define
the best suitable solution for our infrastructure. We test the
proposed privacy-preserving solution with CARLA simulator.
Then, we compute the privacy gain, which is quantified as “the
degree of uncertainly that the original data can be inferred
from the sanitized one”, using the Shannon entropy [18].
Finally, as a subsequent step, we evaluate the data loss utility,
defined as “the amount of information that we lost with privacy
mechanism” [19].

B. Structure of the paper

§ 1I discusses the related work and § III reports about the
cornerstones of our privacy-preserving infrastructure. §IV is
divided into four parts where §IV-A describes the attacker
model, §IV-B defines the environment where the attacker
can operate, §IV-C describes the possible threats for our
infrastructure and, finally, §IV-D provides a risk analysis with
the countermeasures. In §V, we describe our infrastructure, the
interactions among the different components and the Driver
Secure Identifier (DSI) code. In §VI, we test our solution on
a simulated vehicle dataset, generated with software CARLA.
Firstly, we apply ORE (§VI-C), while, secondly, we apply
HE (§VI-D) to evaluate the most suitable encryption method
for our infrastructure. §VII-A and §VII-B compute how many
pieces of information have been disclosed and if data, after ap-
plying the protection methods, can still be useful for analytics.
§VII is a comparison between ORE and HE methods, showing
that ORE could be the best solution for our infrastructure.
§IX compares ORE with different schemas for VANETSs to
define the advantages and limitations of ORE. §X draws the
conclusion and possible future research lines.

II. RELATED WORK

We can identify two main categories of related work:
the privacy-preserving schemas for ITS and the metrics to
evaluate the driving styles for providing personalized services.
In the following subsections, we describe each category with
the references to the works that have been considered and
compared with our study.

A. Privacy-preserving schemas for ITS

In the last years, several studies have been performed on
secure authentication for air and ground ITS. In particular,
three surveys , [20], [21], and [22] focus on privacy-preserving
authentication for ITS and provide possible classifications. To
order the related work, we adopt the first survey classification
schema, where Jan et al. identify different privacy-preserving
method categories. We choose this schema because, in addi-
tion, to the categorization, it provides also a reproducible com-
parison schema where we can add our work to be compared
with the other existing schemas as reported in §IX.



1) Pseudonym Based Authentication: in this category
pseudonyms are used as privacy-preserving solutions for
VANETs. For example, Li et al. [23] defines vehicle
pseudonyms using differential privacy methods. However, con-
cerning this category, our solution does not use a pseudonym to
identify a vehicle, but it uses multiple data to identify not only
the vehicle but also the driver, providing more information than
a simple pseudonym.

2) Blockchain-Based Authentication: another significant
and rising schema category is the Blockchain-Based Authenti-
cation, where blockchain technology is used to authenticate the
nodes and for the operations of the network. For example, in
[24] and [25] the authors propose frameworks for secure and
safe integration of Unmanned Aircraft Systems (UAS) into
complex networks, using blockchain and simulating realistic
wireless communication scenarios. Blockchain is also pro-
posed as a possible solution for communications in VANETS,
where Feng et al. [26] describes an efficient and scalable
blockchain-assisted privacy-preserving authentication system
for VANETs. In [27], the authors propose another frame-
work to provide authentication automatically in VANETS, but
preserving privacy. Besides, as our work, this last schema
does not require any online registration center (except for
system initialization and vehicle registration). All previously
cited solutions use blockchain technologies and decentralized
systems, while our schema is a hybrid decentralized method,
which follows the pilots needs of the E-Corridor project. In
this way, the architecture can have a central server, but also
a multi-node structure to authenticate, store and analyze data.
Moreover, our solution is designed to reduce the number of
involved actors to be effective and authenticate the nodes. On
the contrary, an approach with blockchain may have required
more effort on that aspect.

3) Group Signature Based Authentication: the Group Sig-
nature Based Authentication category provides schema with
multiple participants to authenticate and/or analyze data. Ren
et al. [28] define a crowdsourcing scheme based on rein-
forcement learning to assure data quality and privacy. Li et
al. [29] propose a secure and privacy-preserving navigation
schema, using vehicular crowdsourcing based on fog-based
VANETs to fulfill the security and privacy requirements of
authentication. Concerning this category, our schema does
not need a group signature to authenticate or recruit enough
participants to perform data-based sensing tasks, but it is based
on a few nodes with a more efficient solution for our context
because it can work also with only a vehicle and a near RSU.

4) Cryptography Mechanisms: this category contains the
schemas which use only cryptographic solutions to assure
privacy. Kong et al. [30] studied HE as a privacy-preserving
mechanism. The authors design a complete verifiable querying
scheme in vehicular fog data dissemination, applying the HE
Pallier cryptosystem with a Trusted Authority (TA), which
generates the keys for data encryption. In our solution, we do
not rely on a TA and, after the tests, we decide to use an ORE
schema to directly encrypt data into the vehicle. Qinglong et
al. [31] propose a complete privacy-preserving schema with
a TA to register vehicles on the network, without using any
pseudonym. In our HE test, to avoid the presence of a TA like

in [30], keys are generated directly into the vehicle, using one
of the most mature and well-defined HE schemes like CKKS,
which supports approximate computations of real numbers
[32]. Even if in our work we study two different cryptographic
mechanisms, ORE and HE, to find the most efficient for
our context, our schema provides an hybrid solution for the
authentication like with the driver secure identifier which
means that our scheme can fit better in the following category.

5) Identity Based Authentication: our work can be clas-
sified in the Identity Based Authentication category, where
the identifier is derived from driver and vehicle information.
Zhang et al. [33] use a privacy-preserving authentication
framework that combines 5G and edge computing technol-
ogy. This work mainly focuses on authentication protocol,
while our work focuses more on the definition of a privacy-
preserving framework, using ad hoc protocols and enabling
users to receive customized services. Wei et al. [34] propose
a privacy-preserving protocol for VANETS, using outsourcing
computing and identity-based signature. The authors use also
an homomorphic mapping to achieve the security, while in our
work we prefer not using homomorphic solutions which can
bring high computational costs.

B. Driving style metrics

Concerning the driving style evaluation, Jurecki et al. [35]
define the driving profile starting from two vehicle parameters
like frontal and lateral acceleration. Our driving profile is
based on a well-defined metric like the Driver DNA with
four parameters and it is defined into a complete ITS architec-
ture, while Jurecki’s work defines only the metric definition.
Lefevre et al. [36] study the driving style to predict the future
driver inputs and provide personalized driving assistance,
while, in our work, we do not use forecast systems and we
provide customized services.

Several types of research describe how to find a driver iden-
tifier, starting from several personal or vehicle data like in [37],
[38] or [39], but the identifier is not enclosed in infrastructure
for customized services, as we design in our schema. Differ-
ent researches define only privacy-preserving communication
protocols for vehicular ad hoc networks (VANETS) like in
[40] and [41]. This scenario confirms that the study of data
privacy to receive personalized services in ITS is a rising topic,
but, often, research focuses only on a single component or
scenario. In particular, to the best of our knowledge, only a few
studies [36] define a complete privacy-preserving architecture
for customized services like our infrastructure.

III. BACKGROUND
A. Driver DNA

As a driving style-aware solution, we apply Driver DNA
[6], which defines a driver driving style profile. Generically
speaking, the DNA (Deoxyribonucleic Acid) is used as the
chemical name for the molecule that carries genetic instruc-
tions in all living things [42]. It is composed of two strands
that wind around one another and that are built with only four
bases (adenine, cytosine, guanine, and thymine). In [6], the
authors borrow the idea of this 4-bases structure to create a



DNA composed of four parameters retrieved from the vehicle.
A vehicle with its thousands of sensors generates gigabytes of
data per hour [43], so, during the driving of the vehicle, the
prosumer generates the necessary data to calculate the DNA.
In particular, Driver DNA as defined in [44] is composed of
four parameters that can be retrieved from the Controller Area
Network (CAN) of the vehicle and each parameter represents
a particular driving attitude. As defined in [6], the first pa-
rameter is “breaking”, which can be used to quantify driver
aggressiveness and comfort driving. The second parameter is
turning, measured from the variation of the lateral acceleration.
This parameter quantifies the aggressiveness in turning and the
use of the steering wheel [6]. The third parameter is speeding,
which defines the safety of a driving style, combined also with
the weather conditions. The fourth parameter is revolutions
per minute (RPM), measured with an integer or float number,
defining the fuel consumption [6].

In our solution for each of the four parameters, all x; values,
retrieved in a specific time or distance window j, are then
averaged together to obtain a unique score m; that can define
a driver attitude. Then, as suggested in [6], the unique score
m; should be compared with other drivers’ values to have a
comparison baseline. For these reasons, as we define in our
infrastructure, it should be created a database containing all the
m; values of drivers, divided, as suggested in [44], in quantiles
qi,-.-» 46, assigning a score k € {1,2,3,4,5} to each m; such
that gy <m; < qi4; (With g, as smallest limit in the distribution
and a score of 1 if mj = g1). With this process, we obtain an
instant integer score k for each specific time window or road,
that can represent the driver’s attitude with respect to other
drivers.

B. Order Revealing Encryption

As a privacy-preserving solution, in addition to the en-
cryption methods for the secure communication channels,
we decided to apply the Order Revealing Encryption (ORE)
schema, which allows us to define to which quantile the value
k, retrieved from driver DNA, belongs.

In our case, for a specific time or distance window j, we
only need to perform comparisons between the mean value of
each DNA parameter m; and the quantile limits to find the
specific driver rank k. For these comparison operations, we
decided to apply ORE following the Chenette schema [45].

An ORE method is an encryption schema, where there
is a function to directly compare ciphertexts [45]. An ORE
schema, as defined in [45], is a tuple of algorithms [[=
(ORE.Setup, ORE.Encrypt, ORE.Compare) defined over a
well-ordered domain D with the following properties:

1) ORE.Setup (11)— sk. On input a security parameter A,
the setup algorithm ORE.Setup outputs a secret key “sk”
for the encryption algorithm.

2) ORE.Encrypt (sk, m) — ct. With input secret key ‘“sk”
and a plaintext message m € D, the encrypt algorithm
ORE.Encrypt outputs a ciphertext c. In particular, let
b;...b, the binary representation of m and let sk = k.
For each i € [n], the encryption algorithm computes:

ui = F(k, (i,b1bs...bi1 |07 1) + bi (modM) (1)

It outputs the tuple (u;, uz, ..., u,).

3) ORE.Compare (cq,c3) — b. On input two ciphertexts
c1, ¢2, the compare algorithm ORE.Compare outputs a
bit b € 0, 1 as the result of order. Firstly, the compare
algorithm parses:

cr = (ur,ua, ..., uy)
cy = (u},u;,...,u}l)

2

where uj, ..., up, Uy, ...,u}, € Zy. Let i be the smallest
index where u; # ul' If no such index exists, output O.
If such index exists, output 1 if u; = u;+1 (mod M), and
0 otherwise [45].

IV. SECURITY ASSESSMENT

In this section, we introduce and evaluate the considered ITS
infrastructure from the security aspects defining the constraints
for our analysis. In particular, we present the attacker, the
environment where the attacker operates, the threat model and,
finally, we perform a risk analysis.

A. Attacker Model

In our scenario, we assume an honest but curious attacker
(HBC) to retrieve data and information. The HBC is frequently
used in the analysis of privacy properties and, starting from
the definition in [46], a HBC can be defined as a “legitimate
participant in a communication protocol who will not deviate
from the defined protocol but will attempt to learn all possible
information from legitimately received messages”. Following
this definition, a HBC can be considered passive because the
attacker can not take any action other than trying to learn
private information by the observation of protocol execution
or using already granted privileges.

B. Attacker Environment

Our architecture, reported in Fig. 1, can be divided into two
main environments: the in-vehicle environment, represented by
the prosumer-vehicle (PV) and the out-of-vehicle environment,
represented by the edge node (EN), service provider (SP), and
E-Corridor storage (ES).

In our scenario, we assume the driver and the vehicle as
trusted entities. The involved in-vehicle components are the
driver E-Corridor app, the vehicle infotainment system, the
electronic control units (ECUs), the vehicle trusted platform
units (TPMs), and the related communication channels. We
suppose a possible real situation, where these components
are not compromised, because there was the application of
common security rules like the usage of firewalls, TMP, or safe
firmware that can guarantee the not-compromised property.
ECUs, and also the other components, can suffer physical
and local attacks like the injection of malicious frames, but
the study of these possible complex attacks is out of the
scope of this research and we suppose a not-compromised in-
vehicle environment. The second out-of-vehicle environment is
composed of every element outside the vehicle. We consider
this environment untrusted and unsafe. In Section IV-C, we



present the threats that an attacker can perform to compromise
the privacy-preserving property.

Besides, in our infrastructure, we will use a third-party
application like the app of the mobile Driving Licence (mDL)
to retrieve some personal data. This app has been considered
like a TA, in fact, the app contains a document worldwide
issued by a governmental authority. For these reasons, in
our risk analysis for the app mDL we did not propose any
countermeasure for the attacks, because we suppose to be
a secure environment, where the TA has taken adequate
countermeasures.

C. Threats Analysis

In the out-of-vehicle environment, we can identify the
following threats for each element of our infrastructure:
« Impersonation:

— Service Provider (SP). The attacker behaves as Ser-
vice Provider who aims to steal users’ information to
profile them for commercial purposes. The attacker
has the right to access the database.

— Edge Node (EN): The attacker, impersonated, for
example, by an unfaithful technician, has the right
to access the device and eavesdrop on the messages.

— E-Corridor Storage (ES): The attacker, imperson-
ated, for example, by an unfaithful technician, has
the right to access the storage and read data.

« Man-in-the Middle:

— Communications channels among PV, EN, ES, SP:
Man-in-the-Middle (MITM) attack. The attacker in-
tercepts communications between two or more ac-
tors.

D. Risk Analysis

The previously defined threats can have different occurrence
probabilities. In particular, we consider a possible situation in
which a SP who tries to retrieve users’ data for commercial
purposes. To avoid this risk, the SP receives only the DSI
without any personal information, so the SP can perform only
general statistics, combining the users’ data, without being
able to associate the DSI with a single real user. Another
threat is represented by the MITM attack. To mitigate the
risk, messages exchanged within the infrastructure will use
symmetric or public-key encryption.

In this analysis, we also consider threats with a minor
occurrence probability. In particular, considering an HBC
attacker, the only threat, which can affect the EN or the ES, can
be someone who has the access privileges like an unfaithful
technician. To mitigate this risk, the DSI is represented by a
hash digest, without any personal information. Thus, even if
an attacker reads it, she will not discover anything more than
an alphanumeric code. Besides, as further privacy protection
mechanism, the Driver DNA data received by the EN, are
encrypted and the decryption is not feasible in the EN because
there are no stored passwords. In the ES, Driver DNA data are
stored in an encryption format and the E-Corridor passwords
are securely stored as hash digests and following the common
storing rules for passwords.

V. PRIVATE DRIVER DNA

The core activity of our privacy-preserving architecture is
the computation of a Private Driver DNA as an enhanced
version of Driver DNA with privacy to receive customized
services. The environment is represented in Fig. 1 where are
defined the four main actors of our architecture: the prosumer
with the vehicle (PV), the edge node (EN), the service provider
(SP), and the E-Corridor storage (ES).

The PV belongs to the ground layer and generates Driver
DNA data. PV is identifiable by E-Corridor infrastructure with
its own encrypted Driver Secure Identifier (DSI), a specific
deterministic code for identification, retrieved by driver and
vehicle data (§V-B). The EN belongs to the Road Side Unit
(RSU) layer and is a generic RSU, which can communicate
with the other actors and contain computation elements as
described in §V-A. The SP belongs to the ground layer and
could be a filling station, a motorway exit, a restaurant, a
market, or any service provider registered in the E-Corridor
infrastructure. The ES belongs to a cloud layer and it contains
all the Driver DNA data history related to a specific DSI. Data
in this storage should be stored in an encrypted form. The
encryption process has to be performed before the storage by
the driver’s vehicle with a key that only the driver knows. In
this way, the only actor that can decrypt the stored values is
the driver with its secret key.

RSU layer with
Edge Nodes (EN)

Storage (ES)
layer
V\\ 4—}((])). Service Provider (SP)
)))
= 7 [

7 [
&\

Fig. 1. Privacy-preserving mixed distributed architecture for Driver DNA
sharing to receive customized services.

In this architecture, we can provide customized services,
based on the vehicle’s data, while preserving the driver’s
privacy. In Fig. 2, we show the prosumer/vehicle’s activities
and processes to generate data for Private Driver DNA and to
receive a service. The start of our workflow is the driving of
a vehicle with the consequent data generation. In Fig. 2, we
can identify three main processes. The first is the collection
process, where the four vehicle data to compute Driver DNA
(breaking, turning, RPM, and speed) are collected and saved
in a vehicle’s buffer memory. During this process, data are
temporary stored in a buffer memory until data size reach a
certain limit, which may depend on storage limitations og the
device used to collect the data, e.g., the Head Unit. When
this limit is reached, the data are sent out of the vehicle and
the second process, namely storage, starts. In this phase, the
data are encrypted with ORE and sent to the EN, which will
send data to the ES. Then, the vehicle’s buffer memory is
emptied to receive new data. The third process starts when



the driver asks for a service. In Fig. 2, the second decision
diamond, for design reasons, is represented after the storage
process. This service process sends a request to the EN,
which will trigger the process described in Fig. 3. From a
prosumer/vehicle perspective, the vehicle receives from EN its
historical encrypted data, decrypts the data, uploads the most
recent data stored into the memory buffer, and sends back to
EN the encrypted data. Using information received from ES,
EN computes the best result for the driver’s request and send
it to the vehicle. The end of the flowchart is the customized
service as requested by the driver.

Activity ‘ Process

During the driving, the driver
generates vehicle’s data
|

Input: 4-parameters vehi-
cle’s data for Driver DNA

Count in the buffer mem-
ory how many input val-
ues have been generated

I

Collection

Threshold
exceeded?

Yes

‘ Encrypt data with ORE

I

‘ Send data to EN

‘ Storage

Clear buffer mem-
ory of the vehicle

Driver ask
service?

Yes

Input: Driver’s request

]

‘ Send request to EN

l Service
Receive and up-
date data from EN

‘ Send updated data to EN

|

Input: Receive requested
information from EN
I

Cutomized service

Fig. 2. Process workflow of vehicle’s activities and processes to receive a
service. To notice that the input “Driver’s request” could arrive at any moment
of the process, but, for designing reasons, has been inserted after the unload
of the vehicle’s buffer memory.

An example of the complete privacy-preserving process is
represented in Fig. 3. The UML sequence diagram shows
a prosumer which requires to E-Corridor infrastructure a
customized prices of fuel among the different nearest filling
stations. In this case, the SP is identifiable with the filling
station and the following process should be applied for each
station involved. The used Driver DNA parameter is RPM.

The process interactions (Fig. 3) are the following:

1. Ask service
with DSI

2. Ask parameter database value

3. Send required data

L]
4. Send encrypted
data received
from ES
5-6. Compute and
send encrypted
updated data
7. Ask service and
quantile range limit
8. Send encrypted
quantile range limit
9. Value comparisons with ORE

<0

10.Send in which quantile
the driver is

11. Send customized
service information

12. Send customized
service information
| Service miormation

13. Send updated data

Fig. 3. UML sequence diagram of a request of customized price from a
prosumer, driving the vehicle, to a service provider like a charging station.
The reported colors are aligned with the colors of Fig. 1

1) PV asks EN a customized price of fuel, sending EN also
the DSI.

2) EN asks ES the RPM database of the specific driver,
sending ES also the related DSIL.

3) ES sends EN the encrypted requested driver’s data.

4) EN sends the PV the encrypted data received from ES.

5) PV decrypts the data using the driver secret key and
performs, for example, an incremental mean, to update
the received data with the most recent RPM value.

6) PV sends EN the encrypted data related to RPM. The
encryption method should be previously defined by E-
Corridor infrastructure.

7) EN asks SP the quantile range limit related to RPM of
the other drivers.

8) SP sends the quantile limit range sanitized with the
same encryption standard as driver RPM data, previously
defined by E-Corridor infrastructure.

9) Using ORE, EN computes the comparison between the
RPM average received from PV and the quantile limits
received from SP.

10) EN sends SP the integer score k as defined in §III, giving
SP the information to which quartile the driver’s RPM
value belongs.

11) SP sends EN the plaintext of the customized price using
a secure communication channel.

12) EN sends PV the plaintext of the customized price using
a secure communication channel.

13) EN sends ES the sanitized updated data received from
PV and used for the comparison.

As stated before, this process could be performed for each of
the filling stations in the area covered by the RSU. In this way,



the prosumer can receive different customized fuel prices and
decide which price is more convenient. The difference among
the service provider prices could be derived from different
quantile limits, which could be based on the different SP
policies or different policies of rewarding customers.

Regarding privacy, in our case, using the ORE encryption,
we assume just to receive from the vehicle a mean ; in a spe-
cific time window or for a defined road distance j, computed
by the vehicle and associated with a secure driver identifier
(DSI) number as defined in §V-B. The only constraint of this
process, to apply the ORE method, is that PV and SP use the
same sanitization method, which should be previously defined
by E-Corridor infrastructure.

A. ITS E-Corridor

As stated in [4], the E-Corridor framework architecture
consists of a set of services that can be used in the multi-modal
transport scenarios to reach the project targets. In our process,
we use the mixed distributed model architecture [4]. In Fig. 1
we report our infrastructure, where data are shared and services
are requested by the prosumer. In the E-Corridor defined
architecture there are five different subsystems, namely In-
formation Sharing Infrastructure (ISI), Information Analytics
Infrastructure (IAI), Data Sharing Agreement (DSA) Lifecycle
Infrastructure (DLI), Common Security Infrastructure (CSI),
and Advanced Security Infrastructure (ASI). Each subsystem
performs a particular task, like data sharing, data analysis,
sharing rules definitions, or defining security services [47]. In
particular, each subsystem is defined as:

1) ISI subsystem is “the process of sharing information
in a secure way ensuring data isolation and applying
privacy-preserving methods on dataset produced sani-
tized data” [48] in accordance with a DSA.

2) IAI subsystem can “receives processed information from
ISI and extracts intelligence through data mining and
information analysis technique” [48].

3) DLI manages all life of a DSA, to define rules about
information exchange among the different actors of the
infrastructure.

4) CSI provides security services like handling crypto-
graphic keys generation and secure storage.

5) ASI manages privileges of network resources and actors
to access prosumer information in the infrastructure.

All these subsystems can be found in each actor of the
model and, in particular, our architecture is based on ISI,
where data are shared among different edges, and on IAI,
where data are processed and analyzed. All these operations
have to be performed in compliance with each DSA accepted
by the prosumers and using different security and privacy-
preserving techniques. In particular, the DSA is the document
that informs users about the usage of their data and the users’
rights. In our architecture, data are not associated with users’
personal information but only with the privacy-preserving code
DSI, which is the only element to identify the user in the
architecture. Besides, data sent out of the vehicle are encrypted
and can be used for statistical purposes only in this encrypted
form and only associated with DSI. To perform statistics

on encrypted data, HE techniques, which can preserve also
privacy [30], can be applied, but as we show in §VIII, the
results we obtain in our model were less efficient than applying
the ORE method.

In our solution, starting from the left side of Fig. 1, we can
find the prosumer with the vehicle, that contains all the five
described subsystems, in fact, it has to execute sharing and
analytic operations. The central actor of our infrastructure is
the edge node that can contain and perform the five subsystems
described before. The service provider and the E-Corridor
storage do not have a local IAI, in fact, they do not perform
any analytics on the data, but they only store and share data
with the ISI subsystem.

B. Driver Secure Identifier

To design a complete privacy-preserving architecture, it is
necessary to describe how a driver and the related vehicle
are identified in the network. Hence, we associate the driver
and the vehicle in our infrastructure in a deterministic way,
enabling the network to identify the driver unequivocally on
every possible vehicle she is driving without any possible
data leakage. We create a Driver Secure Identifier (DSI), a
unique deterministic number that identifies a specific driver
in a specific vehicle and assures three different properties:
integrity, authenticity, and confidentiality of personal data. We
follow the NIST definition of these properties [7]. Besides, we
add some additional requirements that we consider to design
our DSI:

1) A driver can drive different vehicles.

2) A vehicle can be driven by different drivers (e.g. car
sharing).

3) The network (e.g. a service provider) has to be able to
distinguish from the DSI the driver and the vehicle that
are on the network, so the DSI has to report information
on the driver, but also on the vehicle.

4) No use of biometric information of the driver like a
fingerprint, iris, face, palm vein, or voice recognition,
to show the possibility to create a unique DSI without
these sensible data.

5) We suppose that the vehicle environment, composed by
a smartphone of the user, infotainment system and the
vehicle is not compromised.

After the constraints definition, we design the strategy to
create the DSI. To assure adequate protection during the DSI
creation, we implement a two-factor authentication process
(2FA) [49]. In particular, we use the ownership factor, some-
thing the user has, such as cards, smartphones, or other tokens,
and the knowledge factor, something the user knows, such as
a password or generically a secret [49].

In our work, as an ownership factor, we decide to use the
information that can be retrieved from the Mobile Driving
Licence (mDL), which is the digital representation on a device
like a smartphone of the information contained in a physical
driver’s license. In the next years, the mDL could become a
standard to drive a vehicle, because it provides information
about the driver’s license and, in this way, it enables VANETS
to verify the right of the driver to drive, for example verifying



the age. Besides, mDL is already tested in several USA states
[50] and, to define a unique standard, the ISO/IEC FDIS
18013-5 is under development, being part also of the UN
Sustainable Development Goals for 2030 [51].

Thus, we can suppose that a driver can pair with the
vehicle the mDL contained in a specific wallet or app in
her smartphone. In this way, several data flows from the
smartphone to the vehicle and, to create the DSI, we suppose
that the infotainment system or in general the vehicle can
retrieve the driving license number and the date of birth (DoB)
of the driver: the two pieces of information are used to verify
the authenticity of the license and the age of the driver. With
these details, we retrieve the ownership factor (smartphone and
user information with mDL). These two pieces of information
should be acceptable from the vehicle only if retrieved from
mDL otherwise are not acceptable for DSI generation.

The second factor, the knowledge, can be retrieved from
the E-Corridor Password (ePSW) that the user has to insert in
the E-Corridor app saved in the infotainment system before
starting the drive. The ePSW has to be saved during the first
registration of the user on the app E-Corridor as any other app.
The ePSW should respect the ideal actual requirements for a
safe password like that it must be at least 11 characters long
and it must contain at least one upper case, one lower case,
one number and one special keyboard character like states in
[52]. It could be also used a pattern lock design password to
speed up driver password typing, but this solution should be
deeper studied with a specific focus on password security. In
this paper, we consider that it is sufficient to know that an
adequate password, created following for example [52], can
be our random and knowledge factor for DSI.

After having retrieved the mDL number, driver DoB, and
ePSW, we need a deterministic algorithm that can assure
integrity, authenticity and is almost impossible to be reversible
for confidentiality property. We choose a keyed hash algorithm
like Hash-based Message Authentication Code (HMAC) with
SHA-512 like defined in [53]. In our specific case, the hashed
part is composed by the concatenation of mDL and DoB
numbers, composing several variable lengths depending on the
length of mDL number. In the worst case for security, we can
assume that the shortest mDL has seven numeric digits in some
of US states [54], while the length of DoB should be fixed
eight variable digits in the format dd/mm/yyyy. So, for exam-
ple, the shortest number in the USA to hash could have fifteen
digits. We apply as hash algorithm SHA512, which generates
a 64-bites digest [55][56] and it provides strong resistance to
collision and preimage attacks and is assumed to remain secure
in the dawning era of quantum computers [57]. Then, as in
the definition of HMAGC, it is necessary to introduce a random
secret like the ePSW that makes our DSI almost unique and
with randomness making it safe against a brute-force attack
[53]. In our case, the ePSW with its composition as defined
before has a low probability to be discovered and SHAS512 can
have the characteristics to be a “minimally reasonable hash
functions". Hence, a hash function like HMAC with SHA-512
allows us to have a deterministic identifier that, at our best
knowledge, is irreversible protecting the personal information
used to generate it.

As described in Fig. 4, to identify the vehicle we apply
the same algorithm HMAC with SHAS512, but in this case,
the requested necessary information can be retrieved directly
from the vehicle. We decided to use the Vehicle Identification
Number (VIN), a unique 17 digits code defined in its format
by ISO 3779:2009 [58] and used by the automotive industry
to identify unequivocally and worldwide each vehicle. Starting
from 1981, VIN has a common format that explains several
characteristics of the vehicle, but in our research, the main
characteristics is that is unique worldwide, so we can use it
as our input in HMAC, while as secret we can use a random
password generated in a safe way and environment by the
Trusted Platform Module (TPM) of the vehicle. Since the
password can be stored directly in the vehicle and that the user
does not need to know it, the TPM can generate and store a
complex, random and long password, more than ePSW that it
can assure the safety of the digest from brute-force attacks. For
these reasons, we applied HMAC with SHA-512 with VIN as
input and the TPM generated password as secret, generating
a unique digest of 64 bytes.

mDL number

Dob from mDL Driver Identifier

E-Corridor
PSW (Secret)

VIN 17 char
TPM Vehicle }

PSW (Secret)

Vehicle
Identifier

Fig. 4. DSI composition with the application of HMAC SHAS512 on driver
and vehicle information and then concatenate the obtained hash digests.

Applying the described procedures (Fig. 4), we generate
two digests of 64 bytes each: the first identifying the driver,
while the second identifying the vehicle. The concatenation
of the two digests generates the DSI. Thus, the E-Corridor
infrastructure can identify each user with an unequivocally
and deterministic code, identifying in the first 128 characters
the driver and in the next 128 characters the vehicle. In the
case of car sharing, the first 128 characters will change but
the next 128 will be the same.

We can state that this DSI generation process is privacy-
preserving, because it allows users to know clearly which
personal information is used to generate the code and it
protects the confidentiality of the data. Besides, with this
process, we have generated a unique identifier that allows users
to receive services from the E-Corridor infrastructure.

VI. EXPERIMENTAL EVALUATION

In this section, we show the feasibility of the privacy-
preserving Driver DNA analytic within the E-Corridor infras-
tructure. In particular, we illustrate how drivers will be able
to obtain customized services by not disclosing out sensitive
data. To this purpose, we show the feasibility of the privacy-
preserving Driver DNA analytic using the ORE method as
privacy encryption. Then, we compare the ORE method with



the HE to maintain drivers’ privacy when establishing the
Driver DNA. Both, HE and ORE directly work on encrypted
data, so we compare the two solutions to find the most suitable
for our architecture.

A. Involved hardware

All the operations and computations were performed with
a notebook with a processor Intel(R) Core (TM) i5-1035Gl1
CPU 1.00 GHz with turbo max frequency 3.60 GHz and 8 GB
installed RAM. The considered operations and computations
span from the dataset generation, to the implementation of the
Driver DNA analytic using both ORE and HE.

B. Dataset generation

To evaluate the reference architecture in Fig. 1, we simulate
a road environment composed by drivers that in cars ask for
a service such as the price of fuel. We select this service
since refueling represents on the most frequent and common
situations for a driver and it allows us to use one of the of the
four DNA parameters: the engine RPM. We consider a vehicle
in a simulated town environment and we retrieve Driver DNA
data in real-time to create a dataset to perform analytics when
required.

Compared with also other simulator, such as AirSim [59],
PGDrive [60] and SUMMIT [61], for our experiments we
chose CARLA (CAR Learning to Act), an open-source simula-
tor for autonomous driving research, since it is vehicle parame-
ters centered and highly customizable for every element of the
road infrastructure with different available environments and
vehicles. CARLA is grounded to simulate on Unreal Engine
[62], a complete suite of creation tools to simulate real-time
application, and uses the OpenDRIVE standard to define roads
and urban settings [63]. CARLA simulates realistic weather
conditions and advanced urban scenarios using different types
of vehicles, equipped with customizable sensors, like cameras,
LIDAR, radar, GNSS, and inertial measurement units. Besides,
it is possible to retrieve some vehicle parameters like speed,
steering, throttle, and brake usage.

After the definition of the test conditions as shown in Table
I, we start our simulation using the CARLA autopilot function
that drives the car in the urban environment, respecting traffic
rules and without a specific destination. In the autopilot mode,
CARLA offers the possibility to personalize some aspects of
the vehicle and the driving style. In our scenario, we do not
modify any default parameter, because we are only interested
in the engine RPM value to test random driving styles. The
cars are driven in the town without any particular default
journey or target. It is simulated only a specific time slot
driving in a traffic environment with other cars, pedestrians,
speed limits, traffic lights, and crossroads.

In our simulations, we focus on the engine RPM values to
calculate the driver DNA to provide customized fuel price.
Firstly, we define the environment in which we performed the
simulation. We use the CARLA default environment Town05, a
squared-grid town with cross junctions, a bridge, and multiple
lanes per direction. We consider this town as a closed circuit,
where cars moved, like in a single road segment. In this

environment, we generate randomly with CARLA several
vehicles and walkers to simulate a real drive in the traffic
with non-player characters. As weather conditions, we choose
a sunny day without any particular climate event since, in
our test, we need only to retrieve the engine RPM values.
Thus, we do not consider the weather a significant variable. As
vehicles, we test five fuel-powered cars from near car market
segments like a mini car (B) or compact car (C), chosen from
the available CARLA default vehicles. For our experiments,
the only constraint on the vehicle is to choose fuel-powered
vehicles and not electric ones, because the engine RPM values
are less significant for an Electric Vehicle (EV), since EV can
generate about the same amount of torque at the minimum
engine RPM value as at the maximum engine RPM value.

To avoid any bias deriving from autopilot, for every vehicle,
we simulate three time slots of twenty minutes driving each.
This choice allows us to retrieve on average 1215 values/hour
with an engine RPM value every 2.9 seconds. With CARLA,
we create three different datasets for each of the five cars,
containing the engine RPM values retrieved in the twenty min-
utes of driving. The next goal is to calculate Driver DNA, by
means of the average operation to identify to which quantile,
with respect to Service Provider database, the value belongs.
As stated before, the different simulations are performed to
identify possible biases, caused by autopilot, but we do not
report any particular deviations.

TABLE 1
EXPERIMENT CONDITIONS

CARLA [9]
Python / C++

Driving simulator:

API language:

Driver: CARLA Autopilot
Driving environment: Urban

Weather conditions: Sunny

Vehicle A: Audi A2

Vehicle B: Citroen C3
Vehicle C: Mini Cooper
Vehicle D: Nissan Micra
Vehicle F: Seat Leon
Vehicles power supply: | fuel

Non-player characters: | Yes (vehicles and walkers)

3 slots of 20 minutes each

Engine RPM

Simulation duration:

Retrieved value:

C. Driver DNA using ORE

The mean of the engine RPM values has to be sanitized
before sending to the edge node. We use the hash function
SHA-512 [55] that generates a 64-bites digest. If the original
plaintext is large, it is almost unfeasible to recover the original
message from the digest and it provides strong resistance to
collision and preimage attacks. In our example, to avoid any
possible malicious attack from a rainbow table, which is a
precomputed table containing all possible outputs of crypto-
graphic hash functions, we decide to add a secret random large
number to engine RPM mean and to quantile limits. This secret



number has to be defined and shared before in the E-Corridor
infrastructure among the vehicle and the SP.

Before calculating the Driver DNA, we have to define the
quantile limits. As stated in Section V, the quantile limits
should be defined by the SP according to its proprietary
policies. A company can establish and modify the limits
following, for example, the evolution of its database. For
instance, if most parts of drivers are in a specific interval, the
service provider can decide to split this interval into more parts
or vice versa in the opposite case. In our research, the quantile
limits are not significant and they have to be established only
to be a base for our tests. For this reason, we decide to have
5 generic and conceivable intervals with the following ranges:
[0-1000][1001-1500][1501-2000][2001-2500][2501-3000].

Then, we create a specific program in Python language [64]
to sanitize with SHA-512 method the retrieved mean and each
quantile limit. After these operations, the edge node receives
the sanitized data. To perform the comparison between the
mean and the quantile limits, we implement in Python the ORE
method, following the Chenette schema [45], and we identify
for each driving slot to which quantile the mean belongs.

In Table II, we report the retrieved results. For each vehicle
and each driving slot, the value that defines the fuel price is
reported, i.e., rank value. In our scenario, the higher is the
rank value the higher is higher the price. On the opposite
situation, the lower rank value indicates a lower price. The
SP will receive this rank value from the edge node without
knowing anything in addition to the driver’s data. Finally,
the computation time of ORE comparisons to identify the
right quantile has been quantified. We tested ten times every
comparison with the ORE method and the average time was
about 1.5 milliseconds to identify to which quantile the mean
belonged.

TABLE I
RPM MEAN AND RANK FOR EACH DRIVING SLOT

Slot 1 Slot 2 Slot 3
Mean | Rank | Mean | Rank | Mean | Rank
Vehicle A: 1558 3 1588 3 1570 3
Vehicle B: 1448 2 1465 2 1486 2
Vehicle C: 1587 3 1621 3 1571 3
Vehicle D: | 3084 5 2981 5 2945 5
Vehicle F: 1347 3 1388 3 1440 3

D. Driver DNA using Homomorphic Encryption

Here, we adopt the Homomorphic Encryption (HE) method
to preserve the data privacy again when running the Driver
DNA analytic. HE is a cryptosystem that supports computation
on encrypted data and enables outsourcing of data storage and
analysis [65]. Moreover, nowadays it is possible to implement
Fully Homomorphic Encryption (FHE) that allows evaluation
of arbitrary functions on encrypted data like addition or
multiplication. HE allows us to share data in an untrusted
environment like our out-of-vehicle. We use one of the most
mature and well-defined HE schemes like CKKS, which
supports approximate computations of real numbers [32].

For this evaluation, we adopted the Python library Pyfhel
(Python For Homomorphic Encryption Libraries) that imple-
ments functionalities of multiple HE libraries such as addition,
multiplication, exponentiation, or scalar product in Python
[66]. Moreover, Pythel implements the backend of the SEAL
library, the most complete HE C++ library [67] [68], that
supports different calculation schema with varied features. To
operate both on integer and float numbers, we use the CKKS
scheme. However, we have to point out that as reported in
[69], the CKKS schema can yield some approximate results
especially with a large number of performed operations. To
deal with this problem, we performed several tests to choose
the correct setting. This allows us to maintain an acceptable
approximation to verify the scalability of the HE method, i.e.,
understanding the limit related to the number of values that
can be processed by Pyfhel.

To verify the scalability of the HE method, we evaluated its
limits by computing the average of a generic set A = ay,...,a;
of n elements, since HE supports only addition and multipli-
cation, we multiply the sum for 1/n, instead of performing
division.

TABLE III
FIRST TEST SET VALUES TO IDENTIFY MAXIMUM NUMBER OF VALUES
THAT CAN BE PROCESSED TOGETHER

Number values | Time in s | Sum correct | Average correct
2 > 0.00 Yes Yes
10 0.01 Yes Yes
100 0.10 Yes Yes

200 0.20 Yes Yes
250 0.23 Yes No
300 0.28 Yes No
350 0.32 Yes No
400 0.35 Yes No
450 0.43 Yes No
500 0.46 Yes Yes
550 0.54 Yes No
600 0.57 Yes No

We tested the parameters in Table III that shows in the first
column the number of values used to compute the average. The
second column shows the time needed to encrypt the values,
compute the average and decrypt the results with different
input dataset sizes. It should be noted that the computational
time grows constantly at the increase of the size of the
dataset. The third column reports if the sum of all elements
was properly performed on the encrypted data. In the fourth
column, we report if the multiplication, and so the average, is
rightly calculated.

To summarize Table I1I, we observe that Pythel can properly
work using up to 200 elements as input when establishing the
Driver DNA.

VII. PRIVACY METRICS

In the following two Sections, VII-A and VII-B, we com-
pute the privacy gain and the data loss utility to evaluate



privacy-preserving properties using the data generated by the
ORE and HE process.

A. Privacy Gain

To verify if ORE and HE methods are privacy-preserving,
we define a metric to measure the privacy gain on sanitized
data. We decide to use Shannon Entropy (SE) as defined in
[70] and applied in [48] and [71]. SE quantifies the amount
of information in a variable. If the information contained in
a message is surprising, we obtain a higher value of entropy.
Instead, if the message is not surprising, but its composition is
expected, we obtain a lower value of entropy. The mathemati-
cal definition for a random variable X is Equation 3, where p(x)
is the probability mass function of X and X denotes the sum
over the variable’s possible values. The choice of the base of
the logarithm can vary according to different applications and
the minus before the sum is necessary to have a meaningful
and non-negative entropy. In fact, probability density value
p(x) lays in the range from 0 to 1, which means that logarithm
functions will take on a negative value.

Entropy H(X) = = )" p(x;) log p(x:) 3)
i=1

After the computation of the entropy of the two values before
and after the sanitization, we defined privacy-preserving value
(pp) in Equation 4. If pp value is less than 1, the entropy
after the application of privacy mechanism is decreased, so
we have a loss of privacy. If pp value is equal to 1 means
that the privacy gain is 0. If pp is more than 1, it means that
we have a privacy gain caused by the increase of the entropy
between the two datasets before and after the application of
privacy mechanisms.

H(after)

H(before) @)

Privacy_Preserving (pp) =
To obtain a privacy-preserving value we need to compute the
entropy on the value before and after the encryption. The raw
value of the mean is retrieved from the dataset that we created
in §VI with CARLA simulator, while the sanitized values of
ORE and HE have been respectively generated applying SHA-
512 method, before ORE comparison and applying directly the
HE method with the Pyfhel library.

With these data, we can quantify the gain of privacy as
defined in Equation 4. We apply the function on each retrieved
RPM mean for each vehicle. Moreover, we calculate the
privacy gain for the quantile limits. This information is sent
from the SP to the EN to retrieve in which quantile the RPM
average belongs, so they should be protected. The privacy gain
results are reported in Table I'V.

From Table IV, we can observe a significant privacy gain
after the application of ORE or HE. All the values, both for
RPM and each limit, are larger than 1. This means an increase
in privacy after the protection process. Hence, data that are sent
from the vehicle to the edge node have an increase in privacy,
confirming our privacy-preserving process.

TABLE IV
PRIVACY GAIN AFTER APPLICATION OF PRIVACY MECHANISM
Privacy gain: < 1 loss; = 1 no loss or gain; > 1 gain
QL = Quantile Limit
Vehicle | RPM | Entropy | Entropy | Entropy | Privacy | Privacy
value | before after after Gain Gain
ORE HE ORE HE
A 1558 | 1.04 2.29 3.57 2.20 3.44
1588 | 1.04 2.26 3.57 2.18 3.44
1570 | 1.38 227 3.56 1.64 2.56
B 1448 | 1.04 2.25 3.56 2.16 3.42
1465 | 1.39 2.26 3.50 1.63 2.52
1486 | 1.38 2.25 3.54 1.62 2.55
C 1587 | 1.39 2.28 3.55 1.65 2.56
1621 1.04 2.27 3.55 2.19 3.42
1571 1.04 2.26 3.58 2.18 3.44
D 3084 | 1.39 227 3.53 1.64 2.55
2981 1.39 2.28 3.54 1.65 2.55
2945 | 1.39 2.26 3.53 1.63 2.55
E 1347 | 1.39 2.28 3.56 1.64 2.57
1388 | 1.04 2.29 3.55 2.20 3.42
1440 | 1.04 2.26 3.55 2.18 3.41
QL 0 0.00 2.25 3.58 inf inf
QL 1000 | 0.56 2.27 3.60 4.04 6.30
QL 1500 | 1.03 2.28 3.50 2.19 3.36
QL 2000 | 0.56 2.25 3.54 4.01 6.29
QL 2500 | 1.03 2.26 3.51 2.18 3.38
QL 3000 | 0.56 2.25 3.55 4.01 6.32

B. Data Loss Utility

After defining the privacy gain, we quantify the data loss
utility, defined as the amount of information that we lost
after the application of privacy methods [48]. In particular,
there is always a trade-off between the risk of disclosure and
data utility. To preserve privacy, if we modify too much the
original raw dataset, it may become impossible to perform
correct analytics on sanitized data. On the other side, if
the sanitization of original raw data is low, there could be
a disclosure of sensitive information. For this reason, we
define which analytics can be still performed correctly on
our sanitized dataset after the application of ORE or HE.
As suggested by [48], to measure the remaining data utility
after encryption, we could apply a non-symmetric measure
between two distributions called Kullback-Leibler divergence
(KL divergence) [72]. This measure studies two different
distributions using its easy optimization and its maximum
likelihood estimation, even if it does not take into account
how close two outcomes might be, but only their relative
probability [73]. This last limit does not affect our study
since we only need to find the relative probability that an
attacker may retrieve the raw data from encrypted data, so
we do not need to know the general distance between the
two distributions. Following, we compute KL divergence on
our dataset before and after encryption with ORE and HE. In
our study, during the KL divergence computation, we notice



that it is not significant to compare the distribution of raw
data with distribution of sanitized data, which does not follow
a distribution derived from raw data like it may be in the
differential privacy. Hence, we search for another solution to
compute data loss utility.

Several options, e.g., [74], [75], were proposed to compute
information loss after anonymization. The proposed solutions
use comparisons between the raw data and the encrypted
data using their distributions or correlation matrix. With the
proposed approaches, we may not retrieve any significant value
because a direct comparison between raw and sanitized data
could be again meaningless. However, in our architecture, we
state that we do not have data loss utility if we are able
to perform all the necessary operations to enable users to
receive customized services. For this purpose, we need that the
encryption method is able to correctly perform comparisons
between ciphertext. As shown in Table V, ORE method is
able to perform these operations, while HE may perform
other operations, but not the comparison between ciphertexts
without interaction with the subject to share a secret key.

TABLE V
DATA LOSS UTILITY - POSSIBLE OPERATIONS

Operation ORE | HE Pyfhel
Ciphertexts Comparison Yes No
Addition ciphertexts No Yes
Multiplication ciphertext per int/float No Yes
Multiplication between ciphertexts No Yes

To conclude, the information loss on sanitized data with
ORE process can be determined from the right result of the
comparisons.

VIII. DiscusSION ON ORE - HE METHODS FOR PRIVATE
DRIVER DNA

We apply both ORE and HE methods on the same dataset
and process to compute the privacy gain as shown in Table
IV. In particular, we can notice that with HE we can obtain a
higher privacy gain than with ORE. This is a positive feature
of the HE method, but the privacy gain generated with ORE,
as shown before, does not allow an attacker to steal personal
information from data. So, we consider this finding enough
to keep drivers’ data private when running the Driver DNA
analytic.

The above comparison between ORE ad HE is the only
positive finding that we can link to HE. In the following, we
list other findings of this comparison in which HE does not
overtake the ORE method on when running the analytic.

¢ On an input of maximum 200 values, the computation

time of HE is much larger than the computation time of
ORE. Besides, at the increase of the input size, also over
200 inputs, the difference continues to grow as shown
in Fig. 5. In a time-sensitive infrastructure like VANET,
timing is an important element and HE is too slow.

« As shown before, in our architecture, HE shows the limit

of 200 inputs, while ORE does not have these limitations.
Considering that a vehicle can generate more than one

input per second for each of the four parameters of driver
DNA, HE may need to compute the metric every minute
with a higher computational cost, while ORE can be
applied on a larger dataset.

« HE does not support comparison between ciphertexts with
Pythel, so it is necessary to decrypt data on the Edge
Node of E-Corridor to make comparisons. In this way,
data are clear on the Edge Node, which can be considered
trusted, but with ORE this decryption operation is not
necessary. ORE can compare encrypted data, so it may
be considered more secure for our infrastructure.

« HE requires the usage of secret keys in its protocol, while
ORE can work without shared secret keys.
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Fig. 5. Elapsed time of HE and ORE to compute the quantile of the user’s
driver DNA as the number of input values increases.

To conclude, considering the above motivations, we confirm
that the ORE method is more suitable for our infrastructure
than HE since it is faster, it works with a large amount of data
and it is more efficient in comparison operations than HE. On
the other side, HE can be considered a good candidate for
other infrastructures, where more operations like additions or
multiplications on encrypted data are needed, but only if it is
possible to decrease the computation time.

IX. PRIVACY-PRESERVING SCHEMA COMPARISON

After the definition of ORE as the best method for our
infrastructure, we decide to compare our schema, which we
call ORE, with other existing privacy-preserving schemas. As
described in §II, our work can be classified in the Identity
Based Authentication (IBA) category, where the identifier is
derived from driver and vehicle information. For this reason,
we compare our schema with the schemas of the same category
as described in [20] and [22]. Our schema uses the ORE
method to provide the service and it does not need any other
operation, except for the message exchange. For this reason,
even if our schema can be classified in the IBA category, we
can not compare it with the other bilinear pairing schemas or
use performance metrics because the only operations that ORE
implements are the numeric comparison. The only possible
comparison with other schemas is the feature comparison as
reported in the survey [22], published in 2021, of Mundhe
et al. which reports several IBA schemas and lists their
advantages and limitations. Table VI, derived from Table 5
of Mundhe’s survey [22], reports if our schema keeps the



advantages, but also it overcomes the limitations of some of
the current IBA schemas.

We can notice that our schema, identified as ORE in Table
VI, keeps most of the advantages of the other schemas. Al-
though, ORE does not provide unforgeability, traceability, and
non-repudiation as the schemas [76] and [77], it contains other
advantages, such as: i) a privacy-preserving authentication
schema, ii) the overcome of the issues derived from an external
TA, and iii) the process of data in clear only inside the vehicle.
In the second part of Table VI we show the limitations of the
compared schema, and we can notice that ORE has only two
limitations, both related to the lack of message verification.
The other limitations are defeated by ORE as described in
Table VI

To conclude, the ORE schema has most of the advantages
of the current IBA schemas and it can provide a significant and
efficient improvement. However, ORE is designed in a defined
infrastructure and context. The application of ORE in different
scenarios may request to modify some components and add
some solutions, for example, for message authentication.

X. CONCLUSION AND FUTURE WORK

Our research defines a privacy-preserving architecture where
a driver can receive personalized services, based on driving
style. We describe our solution, starting from the European
project E-Corridor, we identify the driving style mechanism,
Driver DNA, based on four different vehicles parameters, and
we assure the privacy using ORE mechanism. To show the
advantages of ORE we compare our method with HE, and,
then, we compare our schema with some current schemas for
VANETs.

The results of our research show the possibility to re-
ceive personalized services from ITS, but, at the same time,
preserving driver’s privacy. Our work can be a baseline for
further studies on this topic and it could be a great chance
to incentivize drivers to have a specific driving attitude to
improve safety on the roads and to save the environment by
reducing vehicle fuel consumption.

In the future several possible implementations can be
achieved. For example, the use of HE to compare ciphertexts
can increase the possibilities of our infrastructure, which is ac-
tually limited to comparison operations with the ORE method.
Another possible encryption method that can be applied is
secure Multi-Party Computation (MPC), which allows peers
to share data and preserve privacy. The infrastructure can
be also tested using data retrieved from real vehicles, while
in this research we simulated data with CARLA software.
Besides, driver DNA, which is actually composed of four
parameters, can be extended using more suitable data for
electric vehicles or it can be applied on autonomous vehicles
to define a specific algorithm for driving style. Finally, our
infrastructure can be studied with the data-sharing agreements
(DSA) among the driver and the different road actors like E-
Corridor infrastructure or the service providers.
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