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A B S T R A C T

Effective identification of tomato plant traits is crucial for timely monitoring and evaluating their growth
and harvest. However, conducting stress experiments on multiple tomato genotypes introduces challenges
due to the nature of the data. One of these challenges arises from an imbalanced sample distribution,
potentially leading to misclassification between classes and disruptions in model recognition. This paper
addresses the effect of these challenges by considering the imbalanced classes of flowers, fruits, and nodes
and proposing an improved detection approach through data balancing. A novel data-balancing approach
is introduced in this study to overcome the issue of imbalanced data. The proposed solution involves the
implementation of a YOLOv8 deep learning model, which effectively detects flowers, fruits, and nodes in
tomato plants. This model significantly enhances the ability of the algorithm to detect objects of varying
sizes within complex environments. To further bolster the recognition capability of the targeted classes, the
proposed model integrates a Squeeze-and-Excitation (SE) block attention module into its head architecture.
This module strengthens the model recognition ability by giving increased attention to the studied classes,
thereby enhancing overall detection performance. The results demonstrate that the data balancing approach
successfully improves the model performance in response to the data challenges. When applying the technique
of pre-training the optimal weights obtained from balanced data on imbalanced data, the SE-block module
showed significant improvements in outcomes.
1. Introduction

Recent catastrophic events caused by climate change and the con-
stantly growing population led to the need to achieve the optimal
trade-off between crop yields and environmental sustainability. As
such, the detailed analysis of plant morphological traits (e.g., nodes,
fruit, or flowers) plays a central role in providing critical information
on aspects such as the span of the growth period and the optimal
time for flowering and fruit harvesting (Maji et al., 2022). This aspect
was further stressed by the developments achieved in high-throughput
phenotyping (HTP), an entirely new field related to the provisioning of
high quantities of data able to characterize the phenotyping traits of
plants. The amount of data available to the researchers allowed them to
address a whole set of new applications, mainly related to the real-time
identification of phenotypical traits under challenging conditions (Bac
et al., 2017; Afonso et al., 2020; Cardellicchio et al., 2023).

∗ Corresponding author.
E-mail address: angelo.cardellicchio@stiima.cnr.it (A. Cardellicchio).

One of the most studied crops is tomato, an iconic vegetable in
several parts of the world, including Italy (Wang and Liu, 2021).
Specifically, relevant phenotypical traits of this crop, such as flowers
and fruit, serve as reproductive organs, hence playing a crucial role
in real-time monitoring and crop growth assessment (Luo and Li,
2018). For example, HTP, along with machine learning (ML) and deep
learning (DL) methods, can help in the assessment and prevention of
issues related to shading exposure (Solimani et al., 2023), which can
negatively impact fruit quality or the differentiation of ripe and unripe
berries.

To this end, DL-based object detectors were successfully applied in
the assessment of phenotypical traits in tomato plants (Rong et al.,
2023; Cardellicchio et al., 2023). This was related to the development
of two categories of detectors: two-stage detectors, such as R-CNN
and its successors (Girshick, 2015), and single-stage detectors, whose
main exponent is the You Only Look Once (YOLO) family (Redmon
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et al., 2016). While both types of detectors provided relevant results
in phenotypical traits detection, the algorithms belonging to the YOLO
family gathered the focus of the research community due to their
practical applications in agriculture (Boogaard et al., 2020; Mahaur
and Mishra, 2023; Tian et al., 2023; Zhang et al., 2023). In other
words, the models derived by the YOLO family achieved an optimal
trade-off between model complexity and real-time performance, al-
lowing the capture of complex patterns and relationships while being
deployable on constrained hardware, such as the one available on
terrestrial drones and Unmanned Aerial Vehicles (UAVs). Furthermore,
researchers focused their efforts on improving the performance of the
model, using advanced techniques such as hyper-parameters optimiza-
tion and data augmentation (Mu et al., 2020; Magalhães et al., 2021;
Lawal, 2021). Still, these methods have to deal with many issues related
to the phenomena under analysis: one of the most relevant is data
imbalance, which implies an uneven distribution of samples among
different classes and is likely to occur in real-world scenarios, where,
for example, it is expected to have a much higher density of some
specific phenotyping traits (e.g., nodes) over others (e.g., fruit and
flowers). Furthermore, the traits of interest are often of small size.
Hence, the use of the bare YOLO architecture may provide suboptimal
results due to a lack of optimization for the task at hand.

This work proposes a framework for phenotypical trait detection
that deals with the aforementioned issues. The framework is based on
the latest iteration of the YOLO family, YOLOv8, and proposes two
main points.

• First, a data balancing and augmentation strategy to effectively
improve the overall detection performance while retaining the
effectiveness and deployability of the model under constrained
conditions is proposed. Specifically, this strategy involves a data
generation step, where data are artificially generated by applying
relevant image processing (IP) techniques, and a balancing step,
where the classes are further balanced. These steps resulted in an
improved prediction accuracy.

• Second, the architecture of YOLOv8 is improved by adding an at-
tention module, therefore improving the efficiency of the network
in dealing with objects of small size.

An extensive comparative evaluation between the approach previ-
ously used in Cardellicchio et al. (2023) is then performed, and the
results show that the proposed methodology provides improved results,
ensuring the reliable detection of tomato plants.

2. Related work

Many studies have focused in recent years on identifying and clas-
sifying tomato traits using models based on the YOLO family, as de-
scribed in Table 1.

Earlier works were based on the third iteration of the YOLO family,
that is, YOLOv3. For example, authors in Liu et al. (2020) intro-
duced a modified version of YOLOv3, called YOLO-Tomato, specifically
designed to deal with lighting changes, overlapping, and occlusions.
The proposed model used a denser architecture and circular bounding
boxes, achieving an overall mean average precision (mAP) of 94.58%
under challenging conditions using a dataset of 609 images. The au-
thors provided an improved version of this model in Wang and Liu
(2021) by incorporating dense backbone connections and leveraging
K-means clustering to improve the box size calculation and facilitate
multi-scale training. These modifications resulted in an improvement
in terms of mAP, achieving an overall value of 96.41%. In a sep-
arate investigation, Lawal (2021) proposed two distinct models de-
rived from YOLOv3 by replacing the existing backbone either with
DenseNet (YOLO-DenseNet) or with a combination of the existing
architecture and DenseNet (YOLO-MixNet). YOLO-MixNet achieved the
best performance in the tests, with an mAP of 98.40% on the proposed
2

dataset.
Table 1
Results achieved by models based on the YOLO family in tomato traits identification
and classification.

Reference Phenotypical
traits

Images (#) mAP (%)

Liu et al. (2020) Fruit 966 94.58%
Lawal (2021) Fruit 425 98.40%
Wang and Liu (2021) Fruit 3165 96.41%
Ruparelia et al. (2022) Fruit 2000 81.28%
Zheng et al. (2022) Fruit 1698 94.44%
Qi et al. (2022) Fruit 1036 94.10%

Cardellicchio et al. (2023) Fruit
Flowers
Nodes

1683 67.90%

Zeng et al. (2023) Fruit 932 96.90%
Li et al. (2023) Fruit 6000 97.42%
Mbouembe et al. (2023) Fruit 966 98.50%
Rong et al. (2023) Fruit 574 74.80%
Wang et al. (2023b) Fruit 230 98.80%
Zhang et al. (2023) Fruit, Flowers 946 86.16%
Yang et al. (2023) Fruit 922 93.40%

Over time, YOLOv3 was superseded by YOLOv4, which achieved
improved performance, as shown by Ruparelia et al. (2022), where
the authors compared YOLOv3 and YOLOv4 over a dataset composed
of 2000 images. The research demonstrated that 𝑌 𝑂𝐿𝑂𝑣4 was able
to exhibit a mAP of 81.28%, while YOLOv3 achieved a lower mAP
of 78.49%, highlighting the advantage of denser models in achieving
enhanced precision in phenotypic traits detection. Networks derived
from the standard YOLOv4 but including some modifications, mainly
in the backbone, also showed interesting results. For example, Zheng
et al. (2022) achieved a mAP of 94.44% after the introduction of
several changes in the original CSPDarkNet53 backbone against a
dataset comprising 1698 images featuring tomatoes at various stages of
maturity. Another example was the work proposed by Roy and Bhaduri
(2022), where the authors customized the backbone to improve the
receptive field and preserve accurate localized information, achieving
an mAP of 96.29% against a dataset comprising about 12 000 images of
tomatoes affected by four distinct plant diseases. In Mbouembe et al.
(2023), the authors focused on the neck, replacing the CSP modules
with a lightweight version and the standard neck sampling operator
with content-aware reassembly of features (CARAFE), achieving an mAP
of 82.8% on the proposed dataset.

Introducing the denser YOLOv5 model allowed further improve-
ment in localization and detection results. Specifically, Cardellicchio
et al. (2023) conducted an investigation on the capabilities of different
versions of the YOLOv5 base model, exploring its effectiveness in the
identification of three phenotypic traits, that is, flowers, fruits, and
nodes, on a challenging dataset. Interestingly, the research demon-
strated that the denser YOLOv5 models were able to both reduce false
negatives and correctly label objects that were missed on purpose
during the labeling step. Other authors also proposed several enhance-
ments to the original model. For example, Qi et al. (2022) modified the
standard backbone via Squeeze-and-Excitation (SE) modules, achieving
a 94.10% on the proposed dataset. Another proposal was made by Rong
et al. (2023) with their YOLOv5-4D model, which combined object
detection, multiple object tracking, and specific tracking area counting
to effectively count tomato clusters, achieving an mAP of 74.8% on the
proposed dataset. The authors in Li et al. (2023) modified the YOLOv5s
standard model, introducing a stepwise partial network to enhance the
inference speed of the network, and replaced the complete loss of In-
tersection over union (CIoU) with the efficient loss of Intersection over
union (EIoU) to optimize the prediction box regression process. These
changes improved the mAP of the original YOLOv5s model of 0.66%
on the proposed dataset. To further reduce the computational cost
associated with the development of denser models, the authors in Zeng

et al. (2023) proposed THYOLO, an algorithm aimed at reducing the
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computational cost by combining channel pruning and the optimization
of key hyper-parameters, achieving an overall reduction of parameters
of 84.15%, while keeping comparable performances. Another approach
was proposed by SM-YOLOv5, developed by Wang et al. (2023b), which
replaced the original backbone with the MobileNetV3-Large network.
This reduced both the computational cost and the model weight, mak-
ing it deployable easily on constrained robots. The model also achieved
interesting results, with an mAP of 98.80% on the proposed dataset.

To address the identification of small targets, such as flowers and
tomato fruits, Zhang et al. (2023) proposed a variant to the standard
YOLO architecture using a detachable head, thus removing the require-
ment of pre-determined anchor boxes. The authors used two variants
of this network, namely YOLOXMOB and YOLOXPC, which achieved
an mAP of 62.10% and 77.33%, respectively, surpassing the value
achieved by the bare network on the proposed dataset. Finally, Yang
et al. (2023) proposed an enhancement to the YOLOv8 architecture
specifically tailored for tomato harvesting automation, implementing a
feature enhancement module to improve feature extraction, replacing
deeply separable convolution with regular convolution to reduce com-
putational complexity, and introducing a two-way attention gate for
enhancing the overall recognition accuracy. These modifications lead to
an overall mAP of 93.4% on the proposed dataset, reducing the overall
number of parameters required.

As it can be seen from the literature review, at the time of writing,
there was a minimal focus on the implication of the use of the YOLOv8
model in plant phenotyping, leaving questions regarding its effective-
ness on a complex tomato dataset and the potential enhancement of
its architecture unanswered. As such, this work aims to bridge this
knowledge gap by investigating the advantages offered by architectural
refinements, ultimately contributing to the more precise identification
of fruits, flowers, and nodes within the domain of plant phenotyping.

3. Materials and methods

In this section, the dataset used for the analysis will be first de-
scribed in Section 3.1. Then, the balancing of the classes is discussed
in Section 3.2. Subsequently, in Section 3.3, the YOLOv8 model is
reviewed. Finally, a brief overview of the criteria used to improve the
base YOLOv8 network is provided in Section 3.4.

3.1. Dataset description

The dataset used in this work was composed of 1673 images, each
captured at a standardized resolution of 1624 × 1234 pixels. These
data, already used in Cardellicchio et al. (2023), were gathered at the
HTP platform located at the ALSIA Metapontum Agrobios Research
Centre. The images in the dataset encompass three categories of objects
related to phenotypic traits: flowers, fruits, and nodes. It is important
to underline that the intrinsic structure of the tomato plant makes
these traits hard to recognize. For example, some branches may have
clusters of large tomatoes, while others may present smaller ones.
Additionally, some fruits may be positioned close to the nodes, leading
to overlaps between the nodes and the fruit, making it challenging
for the model to provide an accurate analysis. These complexities
are further exacerbated when encountering data imbalance in real-
world scenarios. It is important to highlight that the labeled dataset
demonstrates an imbalanced distribution of classes. Specifically, the
node class is more than double samples if compared to the other two
classes, as depicted in Table 2. This skewed distribution between nodes,
flowers, and fruits has the potential to impact the ability of the model
to classify instances correctly. Indeed, there is a risk that the model
may incorrectly classify nodes as fruits due to this imbalance, primarily
stemming from the similarity in color between nodes and unripe fruits,
both predominantly displaying a green hue. To mitigate this issue, one
strategy is to balance the class distribution, which could contribute to
alleviating this challenge to some extent. Furthermore, as fruits grow,
3
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Table 2
Number of instances per class before and after data balancing.

Class Before balancing After balancing

Fruit 1862 4614
Nodes 9276 4744
Flowers 3111 4925

they transition to a yellow hue. Consequently, when they are smaller,
they may be similar to the appearance of flowers (as they are yellow).
Therefore, this can be another risk of the model misclassifying between
flowers and fruits.

3.2. Data balance

The first challenge to address in this work is the class imbalance
among different categories within the dataset. Imbalanced datasets pose
significant challenges for data-driven algorithms, primarily due to the
unequal distribution of samples across different classes. This imbal-
ance can introduce biases and hinder the ability of the algorithm to
comprehend and effectively learn from under-represented classes (Ruiz-
Ponce et al., 2023). Consequently, the generalization capabilities of
the algorithm are compromised, leading to potential inaccuracies and
limited performance when applied to real-world scenarios. Various
techniques are available to address data imbalances. In this specific
scenario, performing a naive random image-based under-sampling is
not a viable option, as it may operate on images instead of labels,
potentially causing the inadvertent removal of objects belonging to
minority classes instead of the ones belonging to the majority classes.
A potential improvement may be disregarding a certain percentage of
objects belonging to the majority class. However, this could result in
an uptick in false positives during the prediction as the model attempts
to learn and identify nodes.

In response to these challenges, this paper proposes a way that
strategically overlaps the flowers and fruit with existing nodes, ef-
fectively concealing the latter from the attention of the model and,
consequently, causing it to disregard them during the prediction. In
other words, data are ‘‘amalgamated’’ to generate supplementary sam-
ples for underrepresented classes. As for the new instances, these were
designed to capture the characteristics of the minority classes closely
and were created by using various manipulation techniques on existing
data.

To adopt this approach, an analysis was conducted to determine the
number of instances within the majority class that did not overlap with
other classes or, in other words, exhibited a value for the Intersection
over Union (IoU) equal to 0. A similar calculation was then also per-
formed for the minority classes. This evaluation estimated the number
of new samples that should be generated. Then, the extracted objects
were combined with the original images from the dataset to obtain
new instances. The number of instances per class before and after data
balancing is summarized in Table 2.

The following formula can be used to calculate the required number
of samples for achieving balance:

𝑁fruit +𝑁flower +𝑋
(𝑁node −𝑋) + (𝑁fruit +𝑁flower +𝑋)

= 2
3

(1)

where:

• 𝑁fruit represents the number of fruit class.
• 𝑁flower represents the number of flower class.
• 𝑁node represents the number of node class.
• 𝑋 represents the number of samples deducted from 𝑁node and

added to 𝑁fruit and 𝑁flower.

Therefore, the proposed method generated new data by introducing
ruit and flowers on the coordinate of empty nodes, i.e., nodes without
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Fig. 1. Comparison between an instance of the dataset before and after the data balancing process. (a) Instance with an empty node; (b) Effect of adding fruits on empty nodes;
(c) Instance with an empty node; (d) Effect of adding flowers on empty nodes.
any existing overlap with fruit and flowers. This approach aligns with
a similar method proposed by Ruiz-Ponce et al. (2023). In Fig. 1,
the comparison between the original instances before and after data
balancing is shown.

3.3. YOLOv8 for object detection

You Only Look Once (YOLO) was initially proposed by Redmon
et al. (2016), and revolutionized object detection by introducing an
end-to-end network capable of simultaneously detecting object bound-
ing boxes and classifying their labels. Since then, YOLO has evolved
throughout a series of iterations, reaching the eighth version in January
2023 (Jocher et al., 2023). Specifically, the latest iteration focuses on
the following key elements:

• Backbone: The YOLOv8 backbone uses a variant of Cross Partial
Stage (CSP) (Wang et al., 2020), which divides the feature map
into separate components for convolution operations and their
outputs, resulting in an overall reduced computational complex-
ity, while also retaining the learning capability of the detector.
As such, YOLOv8 bases its backbone on the C2f module, a faster
implementation of the CSP inspired by the ELAN structure used
in YOLOv7 (Wang et al., 2023a). Furthermore, using the SPPF
module allows the backbone to improve the detection across
different scales.

• Neck: The neck of YOLOv8 uses the PAN-FPN module for effec-
tive feature fusion across different scales. This module exploits a
multi-scale fusion approach using the FPN and PAN architectures,
where upper layers capture richer information while lower layers
retain specific location details. YOLOv8
4

• Head: YOLOv8 introduces a decoupled head architecture that sep-
arates the classification and detection processes. In contrast to the
previous anchor-based method, YOLOv8 adopts an anchor-free
approach, which locates objects based on their centers, and pre-
dicts the distances from them to the bounding box, thus removing
the need for predefined anchors.

An overview of the structure of the YOLOv8 model is shown in
Fig. 2.

YOLOv8 was the choice for the basic model to be used in this work
due to its lightweight architecture, which enables real-time object de-
tection, and its effectiveness at multiple scales. The overall framework
used in this work is shown in Fig. 3

3.4. Adding attention to YOLOv8

The Squeeze-and-Excitation (SE) block, as proposed by Hu et al.
(2018), is a widely adopted attention mechanism crafted to charac-
terize the relationships among channels. This mechanism enables the
network to recalibrate its features effectively, granting it the ability to
selectively amplify valuable features by harnessing global information
while diminishing the importance of less relevant ones (Lu et al., 2023).

In tomato image analysis, the challenge arises from the similarity
in color between nodes, unripe fruits, and the background of the
images (which typically consists of leaves). Additionally, the diminu-
tive size of target classes (flowers, fruits, and nodes) exacerbates the
difficulty of distinguishing them accurately. Consequently, the model
may inadvertently distribute its weights uniformly across the entire
image dataset. Accordingly, a strategic approach is needed because a
substantial portion of these images lacks utility for our purposes. To
refocus the attention of the model on the relevant classes, the idea was



Computers and Electronics in Agriculture 218 (2024) 108728F. Solimani et al.
Fig. 2. The architecture of the YOLOv8 model.
Fig. 3. The processing framework proposed within this work. First, images are gathered directly from a data source like an HTP platform. Then, data augmentation and balancing
steps are used to gather a suitable dataset. Finally, several improvements are added to the bare YOLOv8 architecture to improve results.
to embed the SE module as a preprocessing step in the head of the
YOLOv8 model.

The placement of the SE-block module, shown in Fig. 4, was de-
termined starting from the considerations provided by the original
authors, who highlighted that, even if the optimal location may vary
and should be identified through an empirical process, in general, the
SE-block achieves suboptimal performance when placed after a concat
operation (Hu et al., 2018). Hence, the SE-block module was placed
after the C2f modules of the original architecture, focusing attention
on the features extracted from these layers. The overall architecture of
the modified YOLOv8 with the SE-block module is shown in Fig. 5.

3.4.1. Theory behind the Squeeze-and-Excitation module
A SE-block constitutes a computational unit that can be constructed

using a transformation 𝐹tr, which maps an input 𝑋 ∈ R𝐻 ′×𝑊 ′×𝐶′ to
feature maps 𝑈 ∈ R𝐻×𝑊 ×𝐶 .

Therefore, the output can be written as:

𝑦𝑐 = 𝑣𝑐 ⋅𝑋 =
𝐶′
∑

𝑠=1
𝑣𝑠𝑐 ⋅ 𝑥

𝑠 (2)

Addressing channel dependencies, the focus is on channel-specific
signals in output features. However, local receptive fields limit contex-
tual exploitation. Global spatial data were incorporated into channel
descriptors using global average pooling to overcome this, producing
statistics 𝑍 ∈ R𝐶 .

𝑧𝑐 = 𝐹sq(𝑦𝑐 ) =
1

𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝑦𝑐 (𝑖, 𝑗) (3)

Channel dependencies are consequently considered to harness
squeezed information. This operation must be flexible, accommodating
5

nonlinear interactions and supporting non-mutually-exclusive relation-
ships. This was achieved using a sigmoid-activated gating mechanism
to meet these criteria.

𝑠 = 𝐹ex(𝑧,𝑊 ) = 𝜎(𝑔(𝑧,𝑊 )) = 𝜎(𝑊2𝛿(𝑊1𝑧)) (4)

For model simplicity and enhanced generalization, the SE-block
used in this work contains two fully connected layers around the
non-linearity.

�̃�𝑐 = 𝐹scale(𝑦𝑐 , 𝑠𝑐 ) = 𝑠𝑐 ⋅ 𝑦𝑐 (5)

3.4.2. Metrics
Finally, the evaluation metrics used in this work are mainly four,

that is, precision (P), recall (R), F1-score, and mean average precision
(mAP). Let us briefly recall how precision and recall are computed.
For the sake of simplicity, the discussion will be limited to the binary
case, that is, a classification problem that accounts for two classes, one
labeled as positives, and the other labeled as negatives. The following
equations show the formulas for 𝑃 and 𝑅.

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(6)

𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(7)

In the previous Equations:

• TP are the true positives, that is, the instances correctly identified
by the model as samples of the positive class.

• TN are the true negatives, that is, the instances correctly identified
by the model as samples of the negative class.

• FP are the false positives, that is, the instances incorrectly identi-
fied by the model as samples of the positive class.
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Fig. 4. The result of embedding the SE-block within the C2f and Conv modules.
Fig. 5. The proposed architecture, with the addition of the SE-block modules.
• FN are the false negatives, that is, the instances incorrectly identi-
fied by the model as samples of the negative class.

The F1-score can be derived from 𝑃 and 𝑅 as follows:

𝐹1 = 2 𝑃 ⋅ 𝑅
𝑃 + 𝑅

(8)

In a multi-class problem, such as the one under investigation, these
metrics are computed for all the possible pairs of classes and finally
6

averaged according to the overall number of samples belonging to
each class. The evaluation of the mAP requires the introduction of the
concept of Intersection over Union (IoU), defined as:

𝐼𝑜𝑈 =
𝐴𝑂
𝐴𝑈

(9)

In Eq. (9), 𝐴𝑂 is the overlap area between the ground truth and
its corresponding predicted box, while 𝐴 is the union between the
𝑈
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Table 3
Training parameters settings.

Parameter Values

Batch size 4
Image size 960 × 960
Initial learning rate 0.01
Final learning rate 0.001
Weight decay 0.937
Momentum 0.0005

abovementioned areas. 𝐼𝑜𝑈 can have a value defined within the [0, 1]
range and is directly proportional to the overlap between the predicted
box and its corresponding ground truth. In practice, when 𝐼𝑜𝑈 = 1,
the predicted box completely overlaps the ground truth, while when
𝐼𝑜𝑈 = 0, no pixels of the ground truth are contained within the
predicted bounding box.

The 𝐼𝑜𝑈 = 0.5 is the most commonly used threshold to confirm the
detection. Starting from this value, it is possible to compute the average
precision (AP) as the area under the precision–recall curve computed
at the given IoU threshold. As this value is computed per class, the
𝑚𝐴𝑃 is the average value of the 𝐴𝑃 over all classes. In the performed
experiments, two values were evaluated for the 𝑚𝐴𝑃 :

• 𝑚𝐴𝑃 −0.5, which is the value for the 𝑚𝐴𝑃 computed considering
an 𝐼𝑜𝑈 threshold of 0.5.

• 𝑚𝐴𝑃 − 0.5 − 0.95, which is the value for the 𝑚𝐴𝑃 computed for
10 different 𝐼𝑜𝑈 threshold ranging from 0.5 to 0.95 at a step
frequency of 0.05, and then averaged.

. Experiments and results

.1. Experimental setup

The machine used for the experiments was based on a Windows
1 operating system, equipped with an NVIDIA GeForce RTX 3080
PU with 10 GB of RAM and an Intel Core i9-11900HK CPU with
2 GB of RAM. The framework used for deep learning was based on
he Ultralytics package and PyTorch 1.11.0.

As for the dataset, YOLOv8 accepts, by default, images with a fixed
ize of 640 × 640. On the one hand, this resolution can be chosen to
vercome the high requirements in terms of the memory computational
oad of the network, making it feasible, especially for denser models,
o be trained on (relatively) constrained machines. At the same time,
t is important to underline that using this resolution may compromise
he visual appearance of the objects of interest, as most occupy only
mall patches of the original image. To capture detailed information
hile still keeping the computation feasible, the images were fed to

he network with a fixed size of 960 × 960.
To train the algorithms, two optimization algorithms were tested,

hat is, stochastic gradient descent (SGD), and Adam. The comparison be-
ween these algorithms was motivated by several findings. For example,
he authors in Yuan and Gao (2020) state that SGD is fast and has low
omputational requirements but is strongly susceptible to fixed learning
ates, as noted in Ding et al. (2019), Luo et al. (2019), and Wu and Liu
2023). To address the latest issue, authors in Carvalho et al. (2020)
uggest adopting a flexible learning rate, reducing it progressively
hrough the training process. As for Adam, it is less susceptible to the
earning rate, as shown in Llugsi et al. (2021), and Kunstner et al.
2023) highlights how it yields more accurate gradient estimates, even
f, as noted in Wilson et al. (2017), its generalization capabilities can
e less effective if compared with SGD.

A fixed set of parameters was experimentally set to provide a
air comparison between the algorithms, as shown in Table 3. It is
mportant to underline how the adaptive learning rate was used, as the
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arameter was gradually reduced from 0.01 to 0.001 during training.
Table 4
Results of the comparison between YOLOv8n and Fast R-CNN on imbalanced data.

Model mAP0.5 mAP0.95

YOLOv8n 𝟔𝟓.𝟎𝟖% 𝟏𝟗.𝟏𝟐%
Fast R-CNN 26.29% 7.50%

4.2. Comparison with two-stages detectors

To validate the effectiveness of the proposed approach, a com-
parison with another state-of-the-art method, Faster R-CNN, was per-
formed. Specifically, the Faster R-CNN model was proposed by Girshick
(2015) as a two-stage detector, embedding a first step where a region
proposal network proposes suitable areas of the image for object local-
ization, and a second step, where a classification model establishes the
most likely class to which the objects within the proposed area belong.

As such, the baseline YOLOv8n model and Fast R-CNN were com-
pared. To ensure the fairness of the comparison, the models were
trained on the imbalanced dataset for 100 epochs. This was specifi-
cally designed to evaluate whether the bare YOLOv8 model had more
representational capability of one of the most performing two-stage
detectors. The results are shown in terms of mAP in Table 4.

Results show that the baseline model vastly outperforms Fast R-
CNN on the proposed dataset. This is also confirmed by looking at
some of the predictions performed by Fast R-CNN, shown in Fig. 6. The
network could partially identify objects belonging to the majority class
(i.e., nodes) but underperforms in identifying traits belonging to the
two minority classes. As such, it is safe to assume that, in the specific
context, YOLOv8 outperforms Fast R-CNN, and should be selected as
the base architecture for object identification.

4.3. Evaluation of the impact of data augmentation

The effectiveness of data augmentation was evaluated using the base
YOLOv8n model. Specifically, four transforms were tested, that is:

• HSV, where new images were generated with an increment V
value to enhance the differences between fruits and nodes.

• Translate, where new images were generated by translating dif-
ferent image patches.

• Scale, where new images were generated by scaling the original
ones.

• Flip, where new instances were generated by randomly flipping
the original data vertically or horizontally.

The results, shown in Table 5, demonstrate slight improvements in
the mAP scores, especially on minority classes with the HSV, Translate,
and Scale operations. The most impactful adjustment was achieved
when the Scale transform was considered, resulting in the best mAP
performance on both minority classes. As such, it can be safely assumed
that introducing data augmentation enhances the sensitivity of the
model by allowing it to focus on small objects, which is particularly
beneficial given the specificities of the dataset used in this work.

4.4. Comparison of the SGD and adam optimizers

In this section, the performance of both the optimizers are com-
pared. In this case, the comparison was performed using all the densi-
ties provided by YOLOv8, ranging from the sparser model (YOLOv8n)
to the denser one (YOLOv8x). It is important to underline that this
evaluation was performed on the base dataset (i.e., the dataset without
augmentation). This was experimentally chosen to assess the effec-
tiveness of the compared algorithms fairly. The results are shown in
Table 6.

The results in Table 6 highlight that SGD provides a better out-
come regarding all metrics. Moreover, the best-performing model is



Computers and Electronics in Agriculture 218 (2024) 108728F. Solimani et al.
Fig. 6. Predictions performed by Fast R-CNN.
Table 5
Comparison of the results provided by using different data augmentation methods on
YOLOv8n with the proposed approach.

Hyper-parameter Class mAP50% mAP50 − 95%

Baseline Fruit 66.20% 19.26%
Flower 57.31% 18.34%
Node 𝟔𝟓.𝟎𝟖% 19.12%

HSV (V) Fruit 𝟔𝟖.𝟑𝟎% 19.44%
Flower 59.07% 18.34%
Node 63.03% 19.02%

Translate Fruit 67.25% 𝟐𝟎.𝟒𝟗%
Flower 𝟔𝟒.𝟑𝟓% 19.17%
Node 57.02% 𝟐𝟎.𝟏𝟏%

Flip Fruit 66.37% 20.14%
Flower 61.24% 19.27%
Node 64.02% 20.01%

Scale Fruit 𝟔𝟖.𝟑𝟎% 20.14%
Flower 61.14% 𝟐𝟎.𝟏𝟎%
Node 62.07% 20.04%

Table 6
Results of evaluating different data augmentation methods on YOLOv8n with the
proposed approach.

Optimizer Models P% R% F1 mAP50% mAP50%–95%

SGD YOLOv8n 58.63% 58.98% 58.80% 53.69% 18.75%
YOLOv8s 62.56% 62.90% 62.72% 58.25% 20.56%
YOLOv8m 63.93% 61.35% 62.61% 58.14% 20.53%
YOLOv8l 62.49% 62.26% 62.37% 56.88% 20.22%
YOLOv8x 𝟔𝟗.𝟕𝟖% 𝟔𝟑.𝟏𝟐% 𝟔𝟓.𝟐𝟖% 𝟔𝟒.𝟎𝟗% 𝟐𝟑.𝟏𝟓%

Adam YOLOv8n 57.08% 57.12% 57.09% 52.70% 18.10%
YOLOv8s 61.36% 59.61% 60.47% 55.31% 19.63%
YOLOv8m 60.43% 61.19% 60.80% 56.19% 19.70%
YOLOv8l 61.16% 60.44% 60.79% 55.07% 18.68%
YOLOv8x 58.79% 59.66% 59.22% 53.98% 18.86%

YOLOv8x, which shows a noticeable difference in precision (about
10%) and mAP50 (about 11%). As such, it can be safely assumed
that SGD outperforms Adam. This can be explained as follows. In the
scenario under analysis, an imbalanced dataset where the minority
classes had a noticeably smaller number of samples if compared with
the majority class, the dynamic adjustment of the learning rate used by
SGD was probably able to play a crucial role in effectively guiding the
optimization process. Conversely, the adaptive learning rate algorithm
used by Adam was probably less suited to this particular scenario.
Moreover, the simplicity of the SGD update rule likely contributed to
its capability of preventing over-fitting on the limited data available
for the minority classes. In other words, by incorporating class weights
during training, SGD implemented a prioritized learning approach that
8

Table 7
Results of the comparison between imbalanced and balanced data.

Dataset Models P% R% F1 mAP50% mAP50%–95%

Imbalance YOLOv8n 58.63% 58.98% 58.80% 53.69% 18.75%
YOLOv8s 62.56% 62.90% 62.72% 58.25% 20.56%
YOLOv8m 63.93% 61.35% 62.61% 58.14% 20.53%
YOLOv8l 62.49% 62.26% 62.37% 56.88% 20.22%
YOLOv8x 69.78% 𝟔𝟑.𝟏𝟐% 𝟔𝟔.𝟐𝟖% 𝟔𝟒.𝟎𝟗% 𝟐𝟑.𝟏𝟓%

Balance YOLOv8n 64.65% 58.35% 61.33% 59.77% 21.42%
YOLOv8s 66.81% 60.55% 63.52% 61.40% 22.22%
YOLOv8m 69.32% 60.31% 64.50% 61.94% 22.69%
YOLOv8l 𝟕𝟎.𝟖𝟒% 60.73% 65.39% 62.11% 22.44%
YOLOv8x 69.37% 59.52% 64.06% 61.66% 22.12%

assigns higher weights to the instances belonging to the minority
classes, resulting in observed performance improvements.

Consequently, the decision was made to proceed with the rest of
the tests using SGD optimizer. Still, an important aspect that must still
be addressed is the impact of balancing the data distribution on the
outcome of the analysis.

4.5. Evaluation of the impact of data balancing

The impact of data balancing was evaluated by comparing the
performance of different models on imbalanced and balanced data. The
results are shown in Table 7.

From the results presented in Table 7, the impact of data balancing
is clear, with an increment between 3% and 8% for all metrics on
almost all the proposed models.

Let us consider briefly the results achieved. As already shown in
Section 4.4, YOLOv8x is the model that is able to achieve the best re-
sults, probably thanks to the large capacity of the model. However, the
results are biased towards the majority class; consequently, the model
would probably present reduced generalization capabilities. When data
are balanced, however, smaller models are able to achieve performance
comparable to the ones from YOLOv8x, mainly due to the availability
of an adequate amount of samples that properly characterize the data
generation mechanism. Consequently, when balanced data are consid-
ered, YOLOv8l achieves the best performance. Interestingly, when data
are balanced, YOLOv8x appears to be affected by the double descent
phenomena (Nakkiran et al., 2021), hence its performance decrease.

4.6. Embedding the SE-block attention module

After applying data balancing, let us evaluate the effects of embed-
ding the SE-block attention module, as described in Section 3.4. The
results are described in Table 8.
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Table 8
Results of evaluating balanced data using the attention mechanism.

Model P% R% F1 mAP50% mAP50%–95%

YOLOv8n 66.08% 52.23% 58.34% 55.85% 18.77%
YOLOv8s 66.37% 58.40% 62.13% 60.47% 21.23%
YOLOv8m 68.49% 58.74% 63.24% 60.03% 20.49%
YOLOv8l 68.52% 𝟔𝟎.𝟔𝟖% 𝟔𝟒.𝟑𝟔% 60.52% 21.33%
YOLOv8x 𝟔𝟗.𝟐𝟑% 56.87% 62.44% 𝟔𝟎.𝟓𝟕% 𝟐𝟏.𝟗𝟒%

Table 9
Results of evaluating imbalanced data using the attention mechanism.

Model 𝑃% 𝑅% F1 mAP50% mAP50%–95%

YOLOv8n 69.48% 57.31% 62.81% 60.85% 20.90%
YOLOv8s 68.66% 62.51% 65.44% 64.25% 22.98%
YOLOv8m 𝟕𝟏.𝟎𝟑% 𝟔𝟑.𝟔𝟔% 𝟔𝟕.𝟏𝟒% 𝟔𝟓.𝟖𝟐% 𝟐𝟑.𝟕𝟎%
YOLOv8l 70.50% 63.31% 66.71% 64.62% 22.61%
YOLOv8x 69.60% 64.01% 66.68% 64.67% 22.99%

Table 10
Results of evaluating imbalanced data using the attention mechanism and pre-trained
weights obtained from the balanced dataset.

Models P% R% F1 mAP50% mAP50%–95%

YOLOv8n 70.01% 60.69% 65.01% 63.69% 22.33%
YOLOv8s 70.20% 64.61% 67.28% 65.65% 23.27%
YOLOv8m 𝟕𝟏.𝟓𝟗% 𝟔𝟒.𝟗𝟔% 𝟔𝟖.𝟏𝟏% 𝟔𝟓.𝟕𝟕% 𝟐𝟑.𝟑𝟖%
YOLOv8l 70.11% 65.59% 67.77% 64.82% 22.61%
YOLOv8x 71.17% 62.15% 66.35% 64.83% 23.89%

Interestingly, there is a decrement in performance across all versions
f YOLOv8 when the attention module is applied to the balanced
ataset. This effect can be explained by looking at the data balancing
rocess itself, as one of its drawbacks is that, regardless of the augmen-
ation technique used, there is a risk of information loss. In other words,
he proposed technique may duplicate existing objects multiple times
o achieve data balancing. Hence, some underlying data generation
echanisms may assume a more relevant weight. As the attention
echanisms focus on local information, which may be biased by the

ugmentation process, a decrease in performance can be experienced.
urthermore, as already seen in Section 4.5, the reduced information
bout the nodes could further impact the overall effectiveness of the
odel.

As such, the performance of the modified version of YOLOv8 should
lso be evaluated on imbalanced data. The results of this evaluation are
resented in Table 9.

It becomes evident that the models yield improved results on im-
alanced data when the attention module is used. Again, this is due
o the fact that imbalanced data retains a broader spectrum of avail-
ble information, which, in this particular situation, may be able to
rovide better results if compared with data balanced with the method
reviously proposed.

Still, an alternative approach was followed to deal with the chal-
enge of information loss while still taking advantage of data balancing.
pecifically, rather than using balanced data directly, the idea was to
rain the model on the original, imbalanced data and assign a higher
eight to instances belonging to minority classes, effectively achieving
balance between data classes while retaining the original informa-

ion. This was effectively implemented using a ‘‘transfer learning-alike’’
pproach by applying the weights of the model trained on balanced
ata when dealing with imbalanced data. This approach achieved a
oticeable improvement in the results, even if compared with the
esults achieved on imbalanced data, as described in Table 10.

.7. Comparing YOLOv5 and YOLOv8

The final comparison proposed in this paper assesses the results
chieved by this work with respect to the approach proposed in Cardel-
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icchio et al. (2023). To this end, let us recall that Cardellicchio et al.
Table 11
Comparison between the results achieved by YOLOv8 and YOLOv5 in Cardellicchio
et al. (2023).

Class Density YOLOv8 YOLOv5

TP B-FN B-FP TP B-FN B-FP

Fruit Small 75.97% 13.75% 20.89% 64.55% 35.71% 70.69%
Medium 𝟕𝟗.𝟐𝟒% 𝟏𝟏.𝟕𝟓% 18.36% 73.36% 24.57% 70.29%
Large 79.04% 12.28% 𝟏𝟖.𝟐𝟐% 76.17% 22.30% 70.69%
eXtra 78.77% 16.36% 19.49% 77.97% 19.83% 80.84%

Nodes Small 56.26% 47.69% 44.56% 50.45% 48.99% 48.40%
Medium 61.49% 52.16% 𝟑𝟗.𝟏𝟒% 64.84% 54.00% 54.89%
Large 60.05% 57.84% 40.66% 𝟔𝟔.𝟔𝟔% 58.83% 58.55%
eXtra 55.04% 𝟒𝟔.𝟗𝟐% 45.67% 68.71% 59.64% 59.25%

Flowers Small 𝟔𝟖.𝟎𝟐% 40.02% 𝟑𝟏.𝟖𝟔% 48.41% 51.59% 45.84%
Medium 67.38% 37.28% 31.90% 56.81% 44.07% 39.49%
Large 67.34% 𝟑𝟏.𝟓𝟎% 32.02% 64.12% 34.35% 34.71%
eXtra 65.09% 38.85% 33.67% 64.52% 34.39% 33.15%

(2023) evaluated the use of YOLOv5 on the same dataset used in
this work; however, it is important to underline that the assessment
was performed exclusively on imbalanced data and that no atten-
tion mechanisms were placed on the head of the model. Hence, this
comparison could help to evaluate the impact of the proposed bal-
ancing and attention mechanisms. To compare the results achieved by
the two approaches, only the denser architectures (that is, YOLOv5x
and YOLOv8x) were considered. The differences between the two ap-
proaches were evaluated in terms of precision, recall, and F1 score.

Let us start with the precision shown in Fig. 7. The two networks
achieve comparable results, even if YOLOv5x presented a sudden drop
in precision at around 0.7 confidence, while YOLOv8x shows consis-
tently better results when balancing and attention mechanisms are
used. Interestingly, a decline in precision still appeared at a confidence
score of 0.8, mainly due to a decline for the node class. This may be
interpreted as an intrinsic limitation of the model, which should be
addressed in future works.

The recall confirms these findings, shown in Fig. 8, which is consis-
tently higher for YOLOv8x.

Let us also check the values for the F1 score, depicted in Fig. 9. As
for YOLOv5, the maximum F1 score was achieved at a confidence score
of 0.4. In contrast, YOLOv8 obtained a consistent F1 score, peaking at
a confidence level of around 0.6.

This comparison confirms that YOLOv8 is able to characterize ob-
jects of interest with a higher confidence score. This is related to
the improvements the network added, which shows better representa-
tion capabilities, and the introduction of attention mechanisms, which
allows for properly characterizing small patches of interest.

Finally, let us delve deeper into the results achieved by both ap-
proaches, as shown in Table 11. Here, B-FP corresponds to background
false positives, that is, boxes detected by the model that lack correspond-
ing labels provided by domain experts. Meanwhile, B-FN represents
background false negatives, which refers to labeled bounding boxes not
detected by the network.

Although the B-FN occurrence in the YOLOv8 model was relatively
lower than YOLOv5, both nodes and flowers still show a high level
of B-FN. This indicates that although data balancing in YOLOv8 has
helped mitigate this issue to some extent, as noted in the previous
study, the primary concern likely lies in the inability of the model
to properly characterize the visual appearance of the objects of these
classes. This is also true for B-FPs, which highlights the inability of the
model to effectively distinguish between primary and secondary nodes
of the stems or even from nodes and visually overlapped leaves. Still,
the comparison shows that YOLOv8, due to the innovation proposed,
consistently outperforms YOLOv5 in terms of all the provided metrics,
independently from the considered density.



Computers and Electronics in Agriculture 218 (2024) 108728F. Solimani et al.
Fig. 7. The precision achieved by the YOLOv5x model (on the left) and the YOLOv8x model (on the right) after applying data balancing and attention. Light blue results are for
fruit, orange for nodes, and green for flowers.
Fig. 8. The recall achieved by the YOLOv5x model (on the left) and the YOLOv8x model (on the right) after applying data balancing and attention. Light blue results are for
fruit, orange for nodes, and green for flowers.
Fig. 9. The F1-score achieved by the YOLOv5x model (on the left) and the YOLOv8x model (on the right) after applying data balancing and attention. Light blue results are for
fruit, orange for nodes, and green for flowers.
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5. Conclusions and future works

Identifying relevant phenotypical traits in tomato plants is demand-
ing, requiring solutions to enhance data balance for accurate diagnosis.
This motivated the proposal of an end-to-end pipeline for data balanc-
ing and phenotypical trait detection under challenging conditions using
single-stage detectors.

Although this work was mainly focused on challenges centered on
a specific tomato plants dataset, the approach is straightforward to
adapt to other similar scenarios with low effort. Results showed that
by incorporating attention mechanisms, along with a transfer-learning-
like method to use best weights achieved on balanced data to evaluate
imbalanced data, the accuracy in the detection of relevant phenotypical
traits improved significantly.

Still, several limitations remain to be addressed, mainly due to
the requirement for semantic information to be embedded within the
framework to let the network differentiate, for example, between nodes
on primary stems, which are phenotypically relevant, and nodes on sec-
ondary stems. As such, future research will focus on this kind of integra-
tion, exploiting the knowledge achievable by using other approaches,
such as graph neural networks, and exploring other mechanisms to
enhance the proposed pipeline further, expanding the experiments to
sibling domains.

CRediT authorship contribution statement

Firozeh Solimani: Conceptualization, Data curation, Formal anal-
ysis, Investigation, Methodology, Writing – original draft. Angelo
Cardellicchio: Data curation, Formal analysis, Investigation, Method-
ology, Software, Supervision, Validation, Visualization, Writing – re-
view & editing. Giovanni Dimauro: Formal analysis, Supervision, Vali-
dation, Writing – review & editing. Angelo Petrozza: Resources, Super-
vision, Writing – review & editing. Stephan Summerer: Data curation,
Resources, Writing – review & editing. Francesco Cellini: Funding ac-
quisition, Project administration, Resources, Writing – review & editing.
Vito Renò: Conceptualization, Data curation, Formal analysis, Fund-
ing acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization, Writing –
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

The activities described in this work are within the research projects
PHENO – Accordo di collaborazione tra ALSIA e CNR STIIMA – ref. prot.
CNR STIIMA 3621/2020.

References

Afonso, M., Fonteijn, H., Fiorentin, F.S., Lensink, D., Mooij, M., Faber, N., Polder, G.,
Wehrens, R., 2020. Tomato fruit detection and counting in greenhouses using deep
learning. Front. Plant Sci. 11, URL https://www.frontiersin.org/articles/10.3389/
fpls.2020.571299.

Bac, C.W., Hemming, J., van Tuijl, B., Barth, R., Wais, E., van Henten, E.J.,
2017. Performance evaluation of a harvesting robot for sweet pepper. J. Field
Robotics 34 (6), 1123–1139. http://dx.doi.org/10.1002/rob.21709, URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/rob.21709. _eprint: https://onlinelibrary.
11

wiley.com/doi/pdf/10.1002/rob.21709.
Boogaard, F.P., Rongen, K.S.A.H., Kootstra, G.W., 2020. Robust node detection and
tracking in fruit-vegetable crops using deep learning and multi-view imaging.
Biosyst. Eng. 192, 117–132. http://dx.doi.org/10.1016/j.biosystemseng.2020.01.
023, URL https://www.sciencedirect.com/science/article/pii/S1537511020300350.

Cardellicchio, A., Solimani, F., Dimauro, G., Petrozza, A., Summerer, S., Cellini, F.,
Renò, V., 2023. Detection of tomato plant phenotyping traits using YOLOv5-based
single stage detectors. Comput. Electron. Agric. 207, 107757. http://dx.doi.org/10.
1016/j.compag.2023.107757, URL https://www.sciencedirect.com/science/article/
pii/S016816992300145X.

Carvalho, P., Lourenço, N., Assunção, F., Machado, P., 2020. AutoLR: an evolutionary
approach to learning rate policies. In: Proceedings of the 2020 Genetic and
Evolutionary Computation Conference. GECCO ’20, Association for Computing
Machinery, New York, NY, USA, pp. 672–680. http://dx.doi.org/10.1145/3377930.
3390158, URL https://dl.acm.org/doi/10.1145/3377930.3390158.

Ding, J., Ren, X., Luo, R., Sun, X., 2019. An adaptive and momental bound method
for stochastic learning. http://dx.doi.org/10.48550/arXiv.1910.12249, URL http:
//arxiv.org/abs/1910.12249. arXiv:1910.12249 [cs, stat].

Girshick, R., 2015. Fast R-CNN. pp. 1440–1448, URL https://openaccess.thecvf.com/
content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html.

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-Excitation Networks. pp. 7132–7141,
URL https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-
Excitation_Networks_CVPR_2018_paper.html.

Jocher, G., Chaurasia, A., Qiu, J., 2023. Ultralytics YOLO. URL https://github.com/
ultralytics/ultralytics.

Kunstner, F., Chen, J., Lavington, J.W., Schmidt, M., 2023. Noise is not the main factor
behind the gap between SGD and adam on transformers, but sign descent might
be. http://dx.doi.org/10.48550/arXiv.2304.13960, URL http://arxiv.org/abs/2304.
13960. arXiv:2304.13960 [cs, math].

Lawal, O.M., 2021. Development of tomato detection model for robotic platform using
deep learning. Multimedia Tools Appl. 80 (17), 26751–26772. http://dx.doi.org/
10.1007/s11042-021-10933-w.

Li, R., Ji, Z., Hu, S., Huang, X., Yang, J., Li, W., 2023. Tomato maturity recognition
model based on improved YOLOv5 in greenhouse. Agronomy 13 (2), 603. http://
dx.doi.org/10.3390/agronomy13020603, URL https://www.mdpi.com/2073-4395/
13/2/603. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute.

Liu, G., Nouaze, J.C., Touko Mbouembe, P.L., Kim, J.H., 2020. YOLO-tomato: A robust
algorithm for tomato detection based on YOLOv3. Sensors 20 (7), 2145. http://dx.
doi.org/10.3390/s20072145, URL https://www.mdpi.com/1424-8220/20/7/2145.
Number: 7 Publisher: Multidisciplinary Digital Publishing Institute.

Llugsi, R., Yacoubi, S.E., Fontaine, A., Lupera, P., 2021. Comparison between adam,
AdaMax and adam w optimizers to implement a weather forecast based on neural
networks for the andean city of quito. In: 2021 IEEE Fifth Ecuador Technical
Chapters Meeting (ETCM). pp. 1–6. http://dx.doi.org/10.1109/ETCM53643.2021.
9590681, URL https://ieeexplore.ieee.org/abstract/document/9590681.

Lu, Z., Miao, J., Dong, J., Zhu, S., Wu, P., Wang, X., Feng, J., 2023. Automatic
multilabel classification of multiple fundus diseases based on convolutional neural
network with squeeze-and-excitation attention. Transl. Vis. Sci. Technol. 12 (1),
22. http://dx.doi.org/10.1167/tvst.12.1.22.

Luo, H., Li, F., 2018. Tomato yield, quality and water use efficiency under dif-
ferent drip fertigation strategies. Sci. Horticult. 235, 181–188. http://dx.doi.
org/10.1016/j.scienta.2018.02.072, URL https://www.sciencedirect.com/science/
article/pii/S0304423818301560.

Luo, L., Xiong, Y., Liu, Y., Sun, X., 2019. Adaptive gradient methods with dynamic
bound of learning rate. http://dx.doi.org/10.48550/arXiv.1902.09843, URL http:
//arxiv.org/abs/1902.09843. arXiv:1902.09843 [cs, stat].

Magalhães, S.A., Castro, L., Moreira, G., dos Santos, F.N., Cunha, M., Dias, J.,
Moreira, A.P., 2021. Evaluating the single-shot multibox detector and YOLO deep
learning models for the detection of tomatoes in a greenhouse. Sensors 21 (10),
3569. http://dx.doi.org/10.3390/s21103569, URL https://www.mdpi.com/1424-
8220/21/10/3569. Number: 10 Publisher: Multidisciplinary Digital Publishing
Institute.

Mahaur, B., Mishra, K.K., 2023. Small-object detection based on YOLOv5 in au-
tonomous driving systems. Pattern Recognit. Lett. 168, 115–122. http://dx.doi.
org/10.1016/j.patrec.2023.03.009, URL https://www.sciencedirect.com/science/
article/pii/S0167865523000727.

Maji, A.K., Marwaha, S., Kumar, S., Arora, A., Chinnusamy, V., Islam, S., 2022. SlypNet:
Spikelet-based yield prediction of wheat using advanced plant phenotyping and
computer vision techniques. Front. Plant Sci. 13, URL https://www.frontiersin.org/
articles/10.3389/fpls.2022.889853.

Mbouembe, P.L.T., Liu, G., Sikati, J., Kim, S.C., Kim, J.H., 2023. An efficient tomato-
detection method based on improved YOLOv4-tiny model in complex environment.
Front. Plant Sci. 14, URL https://www.frontiersin.org/articles/10.3389/fpls.2023.

1150958.

https://www.frontiersin.org/articles/10.3389/fpls.2020.571299
https://www.frontiersin.org/articles/10.3389/fpls.2020.571299
https://www.frontiersin.org/articles/10.3389/fpls.2020.571299
http://dx.doi.org/10.1002/rob.21709
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21709
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21709
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21709
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21709
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21709
https://onlinelibrary.wiley.com/doi/pdf/10.1002/rob.21709
http://dx.doi.org/10.1016/j.biosystemseng.2020.01.023
http://dx.doi.org/10.1016/j.biosystemseng.2020.01.023
http://dx.doi.org/10.1016/j.biosystemseng.2020.01.023
https://www.sciencedirect.com/science/article/pii/S1537511020300350
http://dx.doi.org/10.1016/j.compag.2023.107757
http://dx.doi.org/10.1016/j.compag.2023.107757
http://dx.doi.org/10.1016/j.compag.2023.107757
https://www.sciencedirect.com/science/article/pii/S016816992300145X
https://www.sciencedirect.com/science/article/pii/S016816992300145X
https://www.sciencedirect.com/science/article/pii/S016816992300145X
http://dx.doi.org/10.1145/3377930.3390158
http://dx.doi.org/10.1145/3377930.3390158
http://dx.doi.org/10.1145/3377930.3390158
https://dl.acm.org/doi/10.1145/3377930.3390158
http://dx.doi.org/10.48550/arXiv.1910.12249
http://arxiv.org/abs/1910.12249
http://arxiv.org/abs/1910.12249
http://arxiv.org/abs/1910.12249
https://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/Girshick_Fast_R-CNN_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://dx.doi.org/10.48550/arXiv.2304.13960
http://arxiv.org/abs/2304.13960
http://arxiv.org/abs/2304.13960
http://arxiv.org/abs/2304.13960
http://dx.doi.org/10.1007/s11042-021-10933-w
http://dx.doi.org/10.1007/s11042-021-10933-w
http://dx.doi.org/10.1007/s11042-021-10933-w
http://dx.doi.org/10.3390/agronomy13020603
http://dx.doi.org/10.3390/agronomy13020603
http://dx.doi.org/10.3390/agronomy13020603
https://www.mdpi.com/2073-4395/13/2/603
https://www.mdpi.com/2073-4395/13/2/603
https://www.mdpi.com/2073-4395/13/2/603
http://dx.doi.org/10.3390/s20072145
http://dx.doi.org/10.3390/s20072145
http://dx.doi.org/10.3390/s20072145
https://www.mdpi.com/1424-8220/20/7/2145
http://dx.doi.org/10.1109/ETCM53643.2021.9590681
http://dx.doi.org/10.1109/ETCM53643.2021.9590681
http://dx.doi.org/10.1109/ETCM53643.2021.9590681
https://ieeexplore.ieee.org/abstract/document/9590681
http://dx.doi.org/10.1167/tvst.12.1.22
http://dx.doi.org/10.1016/j.scienta.2018.02.072
http://dx.doi.org/10.1016/j.scienta.2018.02.072
http://dx.doi.org/10.1016/j.scienta.2018.02.072
https://www.sciencedirect.com/science/article/pii/S0304423818301560
https://www.sciencedirect.com/science/article/pii/S0304423818301560
https://www.sciencedirect.com/science/article/pii/S0304423818301560
http://dx.doi.org/10.48550/arXiv.1902.09843
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1902.09843
http://dx.doi.org/10.3390/s21103569
https://www.mdpi.com/1424-8220/21/10/3569
https://www.mdpi.com/1424-8220/21/10/3569
https://www.mdpi.com/1424-8220/21/10/3569
http://dx.doi.org/10.1016/j.patrec.2023.03.009
http://dx.doi.org/10.1016/j.patrec.2023.03.009
http://dx.doi.org/10.1016/j.patrec.2023.03.009
https://www.sciencedirect.com/science/article/pii/S0167865523000727
https://www.sciencedirect.com/science/article/pii/S0167865523000727
https://www.sciencedirect.com/science/article/pii/S0167865523000727
https://www.frontiersin.org/articles/10.3389/fpls.2022.889853
https://www.frontiersin.org/articles/10.3389/fpls.2022.889853
https://www.frontiersin.org/articles/10.3389/fpls.2022.889853
https://www.frontiersin.org/articles/10.3389/fpls.2023.1150958
https://www.frontiersin.org/articles/10.3389/fpls.2023.1150958
https://www.frontiersin.org/articles/10.3389/fpls.2023.1150958


Computers and Electronics in Agriculture 218 (2024) 108728F. Solimani et al.
Mu, Y., Chen, T.-S., Ninomiya, S., Guo, W., 2020. Intact detection of highly occluded
immature tomatoes on plants using deep learning techniques. Sensors 20 (10),
2984. http://dx.doi.org/10.3390/s20102984, URL https://www.mdpi.com/1424-
8220/20/10/2984. Number: 10 Publisher: Multidisciplinary Digital Publishing
Institute.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., Sutskever, I., 2021. Deep
double descent: Where bigger models and more data hurt. J. Stat. Mech. Theory
Exp. 2021 (12), 124003.

Qi, J., Liu, X., Liu, K., Xu, F., Guo, H., Tian, X., Li, M., Bao, Z., Li, Y., 2022.
An improved YOLOv5 model based on visual attention mechanism: Application
to recognition of tomato virus disease. Comput. Electron. Agric. 194, 106780.
http://dx.doi.org/10.1016/j.compag.2022.106780, URL https://www.sciencedirect.
com/science/article/pii/S0168169922000977.

Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You Only Look Once:
Unified, Real-Time Object Detection. pp. 779–788, URL https://www.cv-
foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_
CVPR_2016_paper.html.

Rong, J., Zhou, H., Zhang, F., Yuan, T., Wang, P., 2023. Tomato cluster detection
and counting using improved YOLOv5 based on RGB-D fusion. Comput. Electron.
Agric. 207, 107741. http://dx.doi.org/10.1016/j.compag.2023.107741, URL https:
//www.sciencedirect.com/science/article/pii/S0168169923001291.

Roy, A.M., Bhaduri, J., 2022. Real-time growth stage detection model for high degree of
occultation using DenseNet-fused YOLOv4. Comput. Electron. Agric. 193, 106694.
http://dx.doi.org/10.1016/j.compag.2022.106694, URL https://www.sciencedirect.
com/science/article/pii/S0168169922000114.

Ruiz-Ponce, P., Ortiz-Perez, D., Garcia-Rodriguez, J., Kiefer, B., 2023. POSEIDON: A
data augmentation tool for small object detection datasets in maritime environ-
ments. Sensors 23 (7), 3691. http://dx.doi.org/10.3390/s23073691, URL https:
//www.mdpi.com/1424-8220/23/7/3691. Number: 7 Publisher: Multidisciplinary
Digital Publishing Institute.

Ruparelia, S., Jethva, M., Gajjar, R., 2022. Real-time tomato detection, classification,
and counting system using deep learning and embedded systems. In: Thakkar, F.,
Saha, G., Shahnaz, C., Hu, Y.-C. (Eds.), Proceedings of the International E-
Conference on Intelligent Systems and Signal Processing. In: Advances in Intelligent
Systems and Computing, Springer, Singapore, pp. 511–522. http://dx.doi.org/10.
1007/978-981-16-2123-9_39.

Solimani, F., Cardellicchio, A., Nitti, M., Lako, A., Dimauro, G., Renò, V., 2023.
A systematic review of effective hardware and software factors affecting high-
throughput plant phenotyping. Information 14 (4), 214. http://dx.doi.org/10.
3390/info14040214, URL https://www.mdpi.com/2078-2489/14/4/214. Number:
4 Publisher: Multidisciplinary Digital Publishing Institute.

Tian, Z., Huang, J., Yang, Y., Nie, W., 2023. KCFS-YOLOv5: A high-precision detection
method for object detection in aerial remote sensing images. Appl. Sci. 13 (1),
649. http://dx.doi.org/10.3390/app13010649, URL https://www.mdpi.com/2076-
3417/13/1/649. Number: 1 Publisher: Multidisciplinary Digital Publishing Institute.
12
Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M., 2023a. YOLOv7: Trainable Bag-
Of-Freebies Sets New State-Of-The-Art for Real-Time Object Detectors. pp.
7464–7475, URL https://openaccess.thecvf.com/content/CVPR2023/html/
Wang_YOLOv7_Trainable_Bag-of-Freebies_Sets_New_State-of-the-Art_for_Real-
Time_Object_Detectors_CVPR_2023_paper.html.

Wang, C.-Y., Liao, H.-Y.M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W., Yeh, I.-H., 2020.
CSPNet: A new backbone that can enhance learning capability of CNN. pp.
390–391, URL https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/
Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_
2020_paper.html.

Wang, X., Liu, J., 2021. Tomato anomalies detection in greenhouse scenarios based
on YOLO-dense. Front. Plant Sci. 12, URL https://www.frontiersin.org/articles/10.
3389/fpls.2021.634103.

Wang, X., Wu, Z., Jia, M., Xu, T., Pan, C., Qi, X., Zhao, M., 2023b. Lightweight
SM-YOLOv5 tomato fruit detection algorithm for plant factory. Sensors 23
(6), 3336. http://dx.doi.org/10.3390/s23063336, URL https://www.mdpi.com/
1424-8220/23/6/3336. Number: 6 Publisher: Multidisciplinary Digital Publishing
Institute.

Wilson, A.C., Roelofs, R., Stern, M., Srebro, N., Recht, B., 2017. The marginal value of
adaptive gradient methods in machine learning. In: Advances in Neural Information
Processing Systems. Vol. 30, Curran Associates, Inc., URL https://proceedings.
neurips.cc/paper_files/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-
Abstract.html.

Wu, Y., Liu, L., 2023. Selecting and composing learning rate policies for deep neural
networks. ACM Trans. Intell. Syst. Technol. 14 (2), 22:1–22:25. http://dx.doi.org/
10.1145/3570508, URL https://dl.acm.org/doi/10.1145/3570508.

Yang, G., Wang, J., Nie, Z., Yang, H., Yu, S., 2023. A lightweight YOLOv8 tomato
detection algorithm combining feature enhancement and attention. Agronomy
13 (7), 1824. http://dx.doi.org/10.3390/agronomy13071824, URL https://www.
mdpi.com/2073-4395/13/7/1824. Number: 7 Publisher: Multidisciplinary Digital
Publishing Institute.

Yuan, W., Gao, K.-X., 2020. EAdam optimizer: How $\epsilon$ impact adam. http:
//dx.doi.org/10.48550/arXiv.2011.02150, URL http://arxiv.org/abs/2011.02150.
arXiv:2011.02150 [cs, stat].

Zeng, T., Li, S., Song, Q., Zhong, F., Wei, X., 2023. Lightweight tomato real-time
detection method based on improved YOLO and mobile deployment. Comput.
Electron. Agric. 205, 107625. http://dx.doi.org/10.1016/j.compag.2023.107625,
URL https://www.sciencedirect.com/science/article/pii/S0168169923000133.

Zhang, J., Zhang, J., Zhou, K., Zhang, Y., Chen, H., Yan, X., 2023. An improved
YOLOv5-based underwater object-detection framework. Sensors 23 (7), 3693. http:
//dx.doi.org/10.3390/s23073693, URL https://www.mdpi.com/1424-8220/23/7/
3693. Number: 7 Publisher: Multidisciplinary Digital Publishing Institute.

Zheng, T., Jiang, M., Li, Y., Feng, M., 2022. Research on tomato detection in
natural environment based on RC-YOLOv4. Comput. Electron. Agric. 198, 107029.
http://dx.doi.org/10.1016/j.compag.2022.107029, URL https://www.sciencedirect.
com/science/article/pii/S0168169922003465.

http://dx.doi.org/10.3390/s20102984
https://www.mdpi.com/1424-8220/20/10/2984
https://www.mdpi.com/1424-8220/20/10/2984
https://www.mdpi.com/1424-8220/20/10/2984
http://refhub.elsevier.com/S0168-1699(24)00119-4/sb23
http://refhub.elsevier.com/S0168-1699(24)00119-4/sb23
http://refhub.elsevier.com/S0168-1699(24)00119-4/sb23
http://refhub.elsevier.com/S0168-1699(24)00119-4/sb23
http://refhub.elsevier.com/S0168-1699(24)00119-4/sb23
http://dx.doi.org/10.1016/j.compag.2022.106780
https://www.sciencedirect.com/science/article/pii/S0168169922000977
https://www.sciencedirect.com/science/article/pii/S0168169922000977
https://www.sciencedirect.com/science/article/pii/S0168169922000977
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html
http://dx.doi.org/10.1016/j.compag.2023.107741
https://www.sciencedirect.com/science/article/pii/S0168169923001291
https://www.sciencedirect.com/science/article/pii/S0168169923001291
https://www.sciencedirect.com/science/article/pii/S0168169923001291
http://dx.doi.org/10.1016/j.compag.2022.106694
https://www.sciencedirect.com/science/article/pii/S0168169922000114
https://www.sciencedirect.com/science/article/pii/S0168169922000114
https://www.sciencedirect.com/science/article/pii/S0168169922000114
http://dx.doi.org/10.3390/s23073691
https://www.mdpi.com/1424-8220/23/7/3691
https://www.mdpi.com/1424-8220/23/7/3691
https://www.mdpi.com/1424-8220/23/7/3691
http://dx.doi.org/10.1007/978-981-16-2123-9_39
http://dx.doi.org/10.1007/978-981-16-2123-9_39
http://dx.doi.org/10.1007/978-981-16-2123-9_39
http://dx.doi.org/10.3390/info14040214
http://dx.doi.org/10.3390/info14040214
http://dx.doi.org/10.3390/info14040214
https://www.mdpi.com/2078-2489/14/4/214
http://dx.doi.org/10.3390/app13010649
https://www.mdpi.com/2076-3417/13/1/649
https://www.mdpi.com/2076-3417/13/1/649
https://www.mdpi.com/2076-3417/13/1/649
https://openaccess.thecvf.com/content/CVPR2023/html/Wang_YOLOv7_Trainable_Bag-of-Freebies_Sets_New_State-of-the-Art_for_Real-Time_Object_Detectors_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Wang_YOLOv7_Trainable_Bag-of-Freebies_Sets_New_State-of-the-Art_for_Real-Time_Object_Detectors_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Wang_YOLOv7_Trainable_Bag-of-Freebies_Sets_New_State-of-the-Art_for_Real-Time_Object_Detectors_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Wang_YOLOv7_Trainable_Bag-of-Freebies_Sets_New_State-of-the-Art_for_Real-Time_Object_Detectors_CVPR_2023_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Wang_YOLOv7_Trainable_Bag-of-Freebies_Sets_New_State-of-the-Art_for_Real-Time_Object_Detectors_CVPR_2023_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Wang_CSPNet_A_New_Backbone_That_Can_Enhance_Learning_Capability_of_CVPRW_2020_paper.html
https://www.frontiersin.org/articles/10.3389/fpls.2021.634103
https://www.frontiersin.org/articles/10.3389/fpls.2021.634103
https://www.frontiersin.org/articles/10.3389/fpls.2021.634103
http://dx.doi.org/10.3390/s23063336
https://www.mdpi.com/1424-8220/23/6/3336
https://www.mdpi.com/1424-8220/23/6/3336
https://www.mdpi.com/1424-8220/23/6/3336
https://proceedings.neurips.cc/paper_files/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/81b3833e2504647f9d794f7d7b9bf341-Abstract.html
http://dx.doi.org/10.1145/3570508
http://dx.doi.org/10.1145/3570508
http://dx.doi.org/10.1145/3570508
https://dl.acm.org/doi/10.1145/3570508
http://dx.doi.org/10.3390/agronomy13071824
https://www.mdpi.com/2073-4395/13/7/1824
https://www.mdpi.com/2073-4395/13/7/1824
https://www.mdpi.com/2073-4395/13/7/1824
http://dx.doi.org/10.48550/arXiv.2011.02150
http://dx.doi.org/10.48550/arXiv.2011.02150
http://dx.doi.org/10.48550/arXiv.2011.02150
http://arxiv.org/abs/2011.02150
http://dx.doi.org/10.1016/j.compag.2023.107625
https://www.sciencedirect.com/science/article/pii/S0168169923000133
http://dx.doi.org/10.3390/s23073693
http://dx.doi.org/10.3390/s23073693
http://dx.doi.org/10.3390/s23073693
https://www.mdpi.com/1424-8220/23/7/3693
https://www.mdpi.com/1424-8220/23/7/3693
https://www.mdpi.com/1424-8220/23/7/3693
http://dx.doi.org/10.1016/j.compag.2022.107029
https://www.sciencedirect.com/science/article/pii/S0168169922003465
https://www.sciencedirect.com/science/article/pii/S0168169922003465
https://www.sciencedirect.com/science/article/pii/S0168169922003465

	Optimizing tomato plant phenotyping detection: Boosting YOLOv8 architecture to tackle data complexity
	Introduction
	Related work
	Materials and methods
	Dataset description
	Data balance
	YOLOv8 for object detection
	Adding attention to YOLOv8
	Theory behind the Squeeze-and-Excitation module
	Metrics


	Experiments and results
	Experimental Setup
	Comparison with two-stages detectors
	Evaluation of the impact of data augmentation
	Comparison of the SGD and Adam optimizers
	Evaluation of the impact of data balancing
	Embedding the SE-Block Attention Module
	Comparing YOLOv5 and YOLOv8

	Conclusions and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


