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Highlights 

 

 Smart mobility is crucial for smart cities and traffic-related issues. 

 We introduce a multi-camera system able to count cars from images of 

parking areas. 

 We combine a deep learning-based technique and a decentralized geometric-

based approach. 

 All the algorithms run on the edge devices reducing the traffic on the 

network. 

 Our solution benefits from redundant information from different data 

sources. 
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This paper presents a novel solution to automatically count vehicles in a parking

lot using images captured by smart cameras. Unlike most of the literature on

this task, which focuses on the analysis of single images, this paper proposes

the use of multiple visual sources to monitor a wider parking area from different

perspectives. The proposed multi-camera system is capable of automatically es-

timating the number of cars present in the entire parking lot directly on board

the edge devices. It comprises an on-device deep learning-based detector that

locates and counts the vehicles from the captured images and a decentralized

geometric-based approach that can analyze the inter-camera shared areas and

merge the data acquired by all the devices. We conducted the experimental

evaluation on an extended version of the CNRPark-EXT dataset, a collection

of images taken from the parking lot on the campus of the National Research

Council (CNR) in Pisa, Italy. We show that our system is robust and takes

advantage of the redundant information deriving from the different cameras,

improving the overall performance without requiring any extra geometrical in-

formation of the monitored scene.

Keywords: Smart Parking, Counting Objects, Edge AI, Counting Vehicles,

Smart Mobility, Deep Learning

1. Introduction1

Traffic-related issues are constantly increasing, and tomorrow’s cities cannot2

be considered intelligent if they do not enable smart mobility. Smart mobility3

applications, such as smart parking and road traffic management, are nowadays4

widely employed worldwide, making our cities more livable and bringing benefits5

to the cities and, consequently, to our lives.6

Images are perhaps the best sensing modality to perceive and assess the flow7

of vehicles in large areas. Like no other sensing mechanism, city camera net-8

Preprint submitted to Expert Systems with Applications May 16, 2022
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systems to extract relevant information from this deluge of data. However, this10

application is often hampered by the massive flow of data that must be sent to11

central servers or the cloud for processing. On the other hand, edge computing12

is a recent paradigm that promotes the decentralization of data processing to13

the border, i.e., where the data are generated, thus reducing the traffic on the14

network and the pressure on central servers. No wonder that combination of15

recent Computer Vision deep learning-based techniques and the edge comput-16

ing paradigm is an emerging trend, as witnessed, for example, by Khan et al.17

(2019) that tackles the face recognition task or by Amato et al. (2019b); Ciampi18

et al. (2020a) that instead can detect people directly onboard surveillance cam-19

eras. Nonetheless, this promising paradigm brings along with it also some new20

challenges related to the limited computational resources on the disposable edge21

devices and also concerning security inside IoT networks (Ujjan et al., 2020).22

In this work, we tackle the problem of estimating the number of vehicles23

present in a parking lot using images captured by smart cameras. Whereas24

classic car counting solutions are sensor-based (e.g., entrance-level photocells,25

per-space ground sensors), vision-based solutions provide several advantages,26

such as a) flexibility, as cameras can adapt to more challenging configurations27

of parking spaces (e.g., undelimited parking lots with non-fixed spaces), b) lower28

hardware and maintenance cost, as smart cameras can cost few tens of dollars29

while each monitoring multiple parking spaces, and c) being multi-purpose, as30

the same hardware can be used to perform additional tasks (e.g., surveillance).31

However, this vision-based counting task is challenging as the process of un-32

derstanding the captured images faces many problems, such as shadows, light33

variation, weather conditions, and inter-object occlusions. Although most of34

the existing works concerning the vehicle counting task focus on the analysis of35

single images, in many real-world scenarios, one can benefit from using multiple36

cameras to monitor the same parking lot from different perspectives and view-37

points. Furthermore, multiple neighboring cameras can also help cover a wider38

area. At the same time, such an approach introduces issues related to merg-39
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fields of views (FOVs), as shown in Figure 1.41

In this paper, we propose a novel solution to improve car counting when42

scaled up with multi-camera setups. Specifically, we introduce a multi-camera43

system that estimates the number of cars present in the entire parking lot by44

combining a state-of-the-art Convolutional Neural Network (CNN), which can45

locate and count vehicles present in images belonging to individual cameras,46

along with a decentralized geometry-based approach that is responsible for ag-47

gregating the data gathered from all the devices. Our solution performs the task48

directly on the edge devices (i.e., the smart cameras) without using a central49

server or cloud, consequently reducing the communication overhead. The total50

count is built exploiting the partial results computed in parallel by the single51

cameras and propagated through messages. Hence, our system scales better52

when the number of monitored parking spaces increases. Moreover, our solu-53

tion does not require any manual intervention or any extra information about54

the monitored parking area, such as the location of the parking spaces, nor any55

geometric information about the camera positions in the parking lot. In short,56

it is a flexible and ready-to-use solution that allows a simple “plug-and-play”57

insertion of new cameras into the system.58

To validate our multi-camera solution, we employed the CNRPark-EXT59

dataset (Amato et al., 2017), a collection of images taken from the parking60

lot on the campus of the National Research Council (CNR) in Pisa, Italy. The61

pictures are acquired by multiple cameras having partially overlapping fields of62

view and describing challenging scenarios with different perspectives, illumina-63

tions, weather conditions, and many occlusions. Since the annotations of this64

dataset concern single images, we extended it by manually labeling a part of65

it to be consistent with our algorithm that instead considers the entire parking66

area. We conducted extensive experiments testing the generalization capabil-67

ities of the CNN-based technique responsible for detecting vehicles in single68

images and the effectiveness of our multi-camera algorithm, demonstrating that69

our system is robust and benefits from the redundant information deriving from70
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Figure 1: An example of two cameras monitoring the same parking area with partially over-

lapping fields of view. This redundancy provides robustness and fault-tolerance but also raises

the problem of aggregating knowledge extracted from the individual cameras.

the different cameras improving the overall performance.71

To summarize, the main contributions of this work are the followings:72

• We introduce a novel multi-camera system able to automatically estimate73

the number of cars present in the entire monitored parking area. It runs74

directly on the edge devices and combines a deep learning-based detector75

together with a decentralized technique that exploits the geometry of the76

captured images.77

• We specifically extend the CNRPark-EXT dataset (Amato et al., 2017),78

a collection of images acquired by multiple cameras having partially over-79

lapping fields of views and describing various parking lots. We manually80

label a subset of it, making it suitable for our considered scenario in which81

we consider the whole parking area.82

• We conduct an experimental evaluation showing that our system is ro-83

bust, flexible, and can benefit from redundant information from different84
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We organize the rest of the paper as follows. Section 2 reports other works86

present in the literature related to our topic. Section 3 describes our multi-87

camera counting algorithm. Section 4 states the experimental setup, describing88

the dataset, the metrics, and the implementation details. Section 5 presents and89

discusses the experiments and the obtained results. Finally, Section 6 concludes90

the paper with some insights on future directions.91

2. Related Work92

This section overviews some works related to our, organizing them into two93

categories. The first one concerns the counting task, while the second regards94

multi-camera parking lot monitoring systems.95

2.1. The counting task96

The counting task estimates the number of object instances in still images97

or video frames (Lempitsky & Zisserman, 2010). This topic has recently at-98

tracted much attention due to its inter-disciplinary and widespread applicability99

and paramount importance for many real-world applications. Examples include100

counting bacterial cells from microscopic images (Xie et al., 2016; Ciampi et al.,101

2022), estimating the number of people present at an event (Boominathan et al.,102

2016; Benedetto et al., 2022), counting animals in ecological surveys to moni-103

tor the population of a specific region (Arteta et al., 2016) and evaluating the104

number of vehicles on a highway or in a car park (Amato et al., 2019a).105

Several machine learning-based solutions (especially supervised) have been106

suggested in the last years. Following the taxonomy adopted in Sindagi & Patel107

(2018), we can broadly classify existing counting approaches into two categories:108

counting by regression and counting by detection. Counting by regression is109

a supervised method that tries to establish a direct mapping (linear or not)110

from the image features to the number of objects present in the scene or a111

corresponding density map (i.e., a continuous-valued function), skipping the112

5
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Oñoro-Rubio & López-Sastre, 2016; Ciampi et al., 2020b, 2021). Counting by114

detection is, instead, a supervised approach where we localize instances of the115

objects, and then we count them (Amato et al., 2018; Ciampi et al., 2018). While116

regression-based techniques work very well in very crowded scenarios where the117

single object instances are not well defined due to inter-class and intra-class118

occlusions, they perform poorly in images with a large perspective and oversized119

objects. Another remarkable drawback of the regression-based approaches is120

that they cannot precisely localize the objects present in the scene, eventually121

providing only a coarse position of the area in which they are distributed.122

In this work, we estimate the number of vehicles present in a park area from123

images collected by smart cameras having large perspectives. The cars close124

to the cameras are much larger than those far away from them. Therefore, we125

employ a detection-based method. Furthermore, another reason which led us to126

discard counting by regression approaches is that we need to know the precise127

localization (with boundaries) of the detected vehicles. Most of the existing128

counting solutions do not directly deal with edge computing devices and the129

consequent constraints due to the limited available computing resources. They130

use deep learning-based approaches that typically require the use of a GPU131

and that are computationally expensive. Moreover, they consider the images132

as single entities. They do not account for the possible benefits of monitoring133

the same lots from different perspectives or covering a wider parking area with134

multiple cameras. Instead, our solution runs directly on the edge devices and135

can estimate the number of vehicles present in the entire parking lot.136

2.2. Multi-camera parking lot monitoring137

Only a few works addressed parking lot monitoring considering a multi-138

camera scenario. In Nieto et al. (2019), the authors applied a homography to139

project the detected vehicles from the plane of each camera to a common plane,140

where they performed a perspective correction to correct matching between141

the vehicle detections and the parking spots. Also, the authors in Vı́tek &142

6
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vacant or occupied. In this solution, the acquired images are processed onboard144

Raspberry Pi devices. The extracted information about the status of parking145

spaces is then transmitted to a central server, which evaluates the parking spaces146

in the overlapping areas. Their algorithm is based on the histogram of oriented147

gradients (HOG)(Dalal & Triggs, 2005) feature descriptor and support vector148

machine (SVM) classifier. Since the HOG feature descriptor cannot adequately149

describe rotated vehicles, the authors have provided a descriptor with additional150

information about rotation to increase the system accuracy.151

However, these solutions rely on prior knowledge of the monitored scene, such152

as the position of the parking spaces or some geometric information concerning153

the parking area. For instance, the proposed system in Nieto et al. (2019)154

requires manually annotating the corners of the parking area and the number of155

spots. In essence, a preliminary annotation of the new areas and a new training156

phase of the algorithm are often mandatory operations. Consequently, these157

techniques are not very flexible. On the other hand, we propose a simple yet158

effective solution that does not need any extra information about the monitored159

scene. The smart cameras can automatically localize and count the vehicles160

present in their field of view, propagating the single results to the other edge161

devices through messages. A decentralized technique, again running directly on162

the edge devices, is instead in charge of analyzing and merging these results,163

exploiting the captured images geometry, and automatically outputs the number164

of cars present in the entire parking area.165

3. Proposed approach166

3.1. Overview167

In this section, we describe our multi-camera counting algorithm. We based168

our system on the parallel processing of each of the smart cameras followed by169

the fusion of their results to estimate the number of vehicles present in the entire170

parking area.171

7
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with its graphical representation. We model our system as a graph G, comprised173

of n nodes νi and one Sink node S, V = {ν1, ν2, · · · , νn, S}. Each node νi174

represents an independent edge device, i.e., a smart camera in our case. Two175

nodes νi and νj are considered neighbors if their FOVs overlap. In this case,176

a directed edge of the graph connects them. Each edge device νi can capture177

images, localize and count the vehicles present in its FOV exploiting a deep178

learning-based detector, and communicate with its neighboring nodes through179

messages mi containing the cars detections. Furthermore, each node νi can also180

run a local counting algorithm in charge of computing partial counting results181

concerning the estimation of the number of vehicles present in overlapped areas182

between its FOV and the ones belonging to its neighbors.183

The fusion of the partial results is performed by the Sink node S, which is184

also in charge of providing the final result and synchronizing all the algorithm185

steps through synchronization signals headed towards the other nodes νi. On186

the other hand, the nodes νi can also communicate through messages with the187

Sink node. Messages can be of two types: i) messages ηi containing the number188

of cars captured by the node νi in its FOV, and ii) messages µj,i representing189

the partial counting estimation related to the overlapping area between two190

neighboring nodes νi and νj .191

In the following sections, we describe all the steps of our algorithm in detail.192

First, in Section 3.2, we outline the automatic system initialization performed by193

the smart cameras themselves, in which they compute the homographic trans-194

formations between the scene they are monitoring and the scene observed by the195

neighboring cameras. Then, in Section 3.3, we describe the CNN-based local196

counting algorithm that runs on each of the smart cameras and the geometric-197

based technique helpful for the overlapped areas. Finally, in Section 3.4, we198

depict the global counting algorithm responsible for the fusion of these individ-199

ual and partial results, and that finally outputs the number of cars present in200

the entire parking area.201

8
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Figure 2: An example of our multi-camera counting system, with n = 5 smart cameras.

We model it as a graph G, comprised of n nodes νi (one for each camera) and one Sink

node S, V = {ν1, ν2, · · · , νn, S}. Each node νi can capture images, localize and count the

vehicles present in its FOV, and communicate with its neighboring nodes through messages

mi containing these detections. Moreover, each node νi can run a local counting algorithm in

charge of computing partial counting results concerning the overlapped areas between its FOV

and the ones belonging to its neighbors, exploiting images geometry. These partial results are

sent through messages to the Sink node S, which is responsible for their fusion and provides

the final result. Messages to S can be of two types: i) ηi containing the number of cars

captured by the node νi in its FOV, and ii) µj,i representing the partial counting estimation

related to the overlapping area between two neighboring nodes νi and νj .

3.2. Initialization202

This step is aimed at automatically initializing the system, estimating the203

geometric relationship between each node (i.e., each scene monitored by a smart204

camera) and its neighbors. The only hypotheses we impose are i) each smart205

camera is aware of the IP addresses of its neighbors, i.e., the cameras having206

the field of view overlapped with its own; ii) the Sink node S is aware of the IP207

addresses of all the smart cameras belonging to the system.208

The Sink node S starts the initialization phase, sending a synchronization209

signal to the other nodes. Once received, each smart camera captures an image210

of the scene it monitors and sends it to all its neighbors. Once a smart camera211

i receives an image from a neighboring camera j, it computes a homographic212

transformation Hj,i between the image j and the image i describing its mon-213

itored scene. This allows us to establish a correspondence between the points214

belonging to the pair of images taken by the two cameras, which will be used215

subsequently in the algorithm. We formalized the system initialization for a216

9
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However, finding this homography can be challenging because neighboring218

cameras can have different angles of view, leading to a perspective distortion be-219

tween the images captured by them. Given a pair of neighboring nodes νi, νj , we220

employ a procedure that starts with finding the SIFT (Lowe, 2004) key-points221

and feature descriptors of the images i, j captured by the two nodes. Then, we222

match the two sets of feature descriptors by performing David Lowe’s ratio test223

(Lowe, 2004), and we further filter the matched feature descriptors by keeping224

only the pairs whose euclidean distance is below a given threshold. Finally, we225

obtain the homographic transformation by applying the random sample con-226

sensus (RANSAC (Fischler & Bolles, 1981)) algorithm to the filtered feature227

descriptors. All these computations are performed automatically without the228

need of any extra geometric information about the monitored scene, and no229

manual intervention is needed. Figure 3 shows the concatenation of two neigh-230

boring images i and j in which we apply the found homographic matrix to the231

image i, to have the same perspective as the image j.232

Algorithm 1 : Initialization

At each Initialization Signal by S, each node νi performs the following steps:

1: ReceiveInitSignal() . waits the initialization signal from S

2: imagei ← CameraCapture()

3: for each j ∈ J do . J is the set of neighboring nodes of node νi

4: SendImage(imagei,νj) . sends imagei to node νj

5: imagej ← ReceiveImage() . receives imagej from node νj

6: Hj,i = ComputeHomography(imagej , imagei)

3.3. Local Counting Algorithm233

This section describes the local counting algorithm that runs directly on-234

board the edge devices. It combines a CNN-based counting technique in charge235

of the localization and the estimation of the number of vehicles present in the236

acquired single images, i.e., the contents of the messages mi and the quantities237

10
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Figure 3: Example of concatenation of two images using a homographic transformation, where

it is also visible the overlapping area between them.

ηi shown in Figure 2, together with a geometric-based approach responsible of238

estimating the number of vehicles present in the overlapping areas between the239

nodes and their neighbors, i.e., the quantities µj,i.240

A vehicle counting CNN on the Edge. Each smart camera needs to indepen-241

dently detect and count vehicles from its captured frame. For this step, every242

approach providing precise localization of the detected vehicles in the pixel243

space is suitable, and the choice of a particular approach should be guided by244

resource constraints, e.g., available memory, prediction frequency, or energy con-245

sumption, if any. Here, we base our vehicle counting technique on Mask R-CNN246

(He et al., 2017), a popular deep CNN for instance segmentation that operates247

within the ‘recognition using regions paradigm‘ (Gu et al., 2009). In particular,248

it extends the Faster R-CNN detector (Ren et al., 2017) by adding a branch249

that outputs a binary mask saying whether or not a given pixel is part of an250

object. Briefly, a CNN acts as a backbone in the first stage, extracting the input251

image features. Starting from this feature space, another CNN named Region252

Proposal Network (RPN) generates region proposals that might contain objects.253

RPN slices pre-defined region boxes (called anchors) over this space and ranks254

them, suggesting those most likely containing objects. Once RPN produces the255

Regions Of Interests (ROIs), they might be of different sizes. Since it is hard256

to work on features having different sizes, RPN reduces them into the same di-257

mension using the Region of Interest Pooling algorithm. Finally, these fixed-size258

11
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ble for classifying and localizing the objects inside them with bounding boxes;260

the second produces a binary mask that says whether or not a given pixel is261

part of an object. In the end, given an input image, the network produces per-262

pixel masks localizing the detected objects together with the associated labels263

classifying them.264

To make our counting solution able to run efficiently directly on the edge de-265

vices, we employ, as a backbone, the ResNet50 architecture, a lighter version of266

the popular ResNet101 (He et al., 2016). This simplification is also justified be-267

cause the more powerful version of Mask R-CNN based on the ResNet101 model268

was designed for more complicated visual detection tasks than ours. Originally,269

Mask R-CNN was trained on the COCO dataset (Lin et al., 2014) to detect270

and recognize 80 different classes of everyday objects. In our case, we have271

to localize and identify objects belonging to just one category (i.e., the vehicle272

category). To this end, we further simplify the model by reducing the number273

of the final fully convolutional layers responsible for the classification of the de-274

tected objects, making the model lighter. Once we have localized the instances275

of the objects, we count them estimating the number of vehicles present in the276

scene.277

Local counting. The Sink node S starts this phase, sending a synchronization278

signal to all the smart cameras belonging to the system. Once received the syn-279

chronization signal, each node νi captures an image belonging to its underlying280

FOV and feeds it to the previously described CNN-based counting technique281

obtaining a set of masks masksi localizing the vehicles present in the scene. The282

cardinality of this set of masks corresponds to the number of cars present in283

the image, i.e., the quantity ηi, that is sent with a message to the Sink node S.284

Then, the node νi packs this set of masks masksi in a message mi, sends it to285

all its neighboring nodes νj , and receives from them their corresponding set of286

masks masksj packed in a message mj . Once received a message mj , the node287

νi is responsible for analyzing the potential vehicles present in the overlapped288

12
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homographic transformation Hj,i computed during the system initialization, as290

described in Section 3.2. Specifically, it projects the masks belonging to the set291

masksj into its image plane, filtering them and discarding the ones that overlap292

with the masks belonging to the set masksi having a value of Intersection over293

Union (IoU) greater than a threshold that we empirically found to be optimal294

at 0.2. These masks indeed localize vehicles already detected, which should not295

be considered a second time. On the other hand, the cars left after this filtering296

are vehicles that were not detected in the FOV underlying the node νi, but297

instead found by the node νj , probably because of having a better view of this298

object. Referring to our graph modeling the system and reported in Figure 2,299

the number of the discarded cars after this filtering operation corresponds to300

the message µj,i, that is sent to the Sink node S. We detail all the described301

steps in the Algorithm 2 and in the Procedure 3.302

Algorithm 2 : Local Counting

At each Computational Signal by S, each node νi performs the following steps:

1: ReceiveComputSignal() . waits the computational signal from S

2: imagei ← CameraCapture()

3: masksi ← MaskRCNN(imagei)

4: ηi ← |masksi|
5: SendMessage(ηi, S) . sends ηi to Sink node S

6: mi ← PackMessage(masksi) . builds message mi containing masksi

7: for each j ∈ J do . J is the set of neighboring nodes of node νi

8: SendMessage(mi, νj) . sends mi to node νj

9: mj ← ReceiveMessage() . receives message mj from node νj

10: masksj ← UnpackMessage(mj) . unpacks mj containing masksj

11: µj,i ← compute µ(masksi, masksj , Hj,i)

12: SendMessage(µj,i, S) . sends µj,i to Sink node S

13
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µ represents the num of cars detected by νj and already detected by νi

Each node νi performs the following procedure:

1: procedure compute µ(masksi, masksj , Hj,i)

2: n cars already detected ← 0

3: for each mask ∈ masksj do

4: maskh ← Project(Hj,i, mask) . projects mask points on plane i

5: if maskh falls within imagei then

6: maskmax ← arg maxm∈masksi IoU(maskh,m)

7: if IoU(maskh,maskmax) > τ then

8: n cars already detected ++

9: return n cars already detected

3.4. Global Counting Algorithm303

In this section, we describe the global counting algorithm that runs on the304

Sink node S, responsible for the fusion of the partial results coming from all the305

other nodes, and that finally outputs the number of cars present in the entire306

monitored parking area.307

This phase starts when S receives all the ηi and the µj,i messages, i.e.,308

the number of vehicles estimated in the single FOVs and the estimation of the309

number of cars already considered in the overlapping areas between neighbor-310

ing cameras, from all the nodes belonging to the system. Specifically, for each311

overlapped area shared between a pair of nodes νi, νj , the node S receives two312

messages µj,i and µi,j , the contents of which are computed by the two nodes313

employing two homographic transformations Hj,i and Hi,j , respectively. These314

two quantities can be potentially different. We choose the best value by aggre-315

gating them, choosing between three different functions - max, min and mean,316

finding that the latter is the best one. Finally, the node S builds the final result,317

i.e., the estimation of the number of vehicles present in the entire parking lot,318

by summing up the content of all the ηi messages and subtracting the computed319

aggregated values. We detail all these steps in the Algorithm 4.320
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The Sink node S performs the following steps:

1: for each (µi,j , µj,i) do

2: µk ← Aggregate(µi,j , µj,i)

3: global cars count ←∑N
n=1 ηn −

∑K
k=1 µk

. N is the set of nodes, K is the set of aggregations

4. Experimental Setup321

In this section, we describe the simulated scenario that we exploited for our322

experiments. In particular, we extended the CNRPark-EXT dataset (Amato323

et al., 2017), adapting it to be suitable for the counting task so that it was324

usable for training the vehicles counting CNN running on the smart cameras325

and applicable to validate our multi-camera algorithm. Furthermore, we briefly326

describe the PKLot dataset (de Almeida et al., 2015), a public dataset compris-327

ing parking lot scenes that we exploited for further assessing the generalization328

capabilities of the local vehicles counting network. Then, we illustrate the em-329

ployed evaluation metrics, and, finally, we report some implementation details.330

4.1. The CNRPark-EXT Dataset331

In this work, we exploit the CNRPark-EXT public dataset introduced in332

Amato et al. (2017), a collection of annotated images of vacant and occupied333

parking spaces on the campus of the National Research Council (CNR) in Pisa,334

Italy. This dataset represents most of the challenging situations that can be335

found in a real scenario: nine different cameras capture the images under var-336

ious weather conditions, angles of view, light conditions, and many occlusions.337

Furthermore, the cameras have their fields of view partially overlapped. Since338

this dataset is specifically designed for parking lot occupancy detection, it is not339

directly usable for the counting task. Indeed, each image, called patch, contains340

one parking space labeled according to its occupancy status - 0 for vacant and341

1 for occupied. Since this work aims at counting the cars present in the parking342
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truth to our purposes.344

Specifically, we created a suitable label set to train and evaluate the local ve-345

hicles counting based on Mask R-CNN. In this case, labels correspond to binary346

masks, i.e., binary images identifying the polygons surrounding the vehicles we347

want to detect. Since mask creation is a very time-consuming operation, dif-348

ferently from our previous work (Ciampi et al., 2018), we considered the raw349

masks obtained directly from the bounding boxes localizing the occupied park-350

ing spaces. The idea is that we do not need precise polygons that identify the351

vehicles we want to detect. Still, we can use the region within the delimiters352

that identify the occupied parking spaces and the underlying part of the car.353

On the other hand, to validate our multi-camera algorithm, we built a simu-354

lated scenario considering some sequences of images belonging to different cam-355

eras captured simultaneously. In other words, a sequence is defined as the set of356

images captured by the different smart cameras that are monitoring the parking357

area at the same moment. Hence, a sequence represents a snapshot of the entire358

parking lot at a given timestamp, and it takes into account all the spaces from359

the available different views. We manually annotated these sequences to obtain360

the ground truth car counts. Specifically, we considered the single images com-361

posing a sequence, counting the vehicles present in the scenes, but taking care of362

accounting for them just once if they appear in more than one view, i.e., discard-363

ing the cars from the global count if they were located in the overlapping areas.364

We labeled six different sequences, two for each weather condition, considering365

the images belonging from camera2 to camera9. We did not consider camera1366

since it has small and particularly skewed field-of-view overlaps with the other367

cameras, hindering the automatic homography estimation and the subsequent368

projections.369

4.2. The PKLot Dataset370

To further validate the generalization capabilities of the CNN-based local371

vehicles counting algorithm, we exploited an additional public dataset, named372
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three different scenarios describing three different parking lot scenes - UFPR04,374

UFPR05 and PUC. We considered only the first two subsets since the third one375

contains images captured from a fixed camera located at the height of the 10th376

floor of a building, which provides a slanted view of the parking lot and results377

in a different setting without intra-vehicle occlusions. Since also the PKLot378

dataset, like the CNRPark-EXT one, is specifically designed for the parking379

lot occupancy detection task, we manually re-labeled the ground truth for our380

purposes as already described in Section 4.1, obtaining a simulation scenario381

suitable for measure the performance of our solution for the counting task.382

4.3. Evaluation Metrics383

Following other counting benchmarks, we exploited Mean Absolute Error384

(MAE ), Mean Square Error (MSE ), and Mean Relative Error (MRE ) as the385

metrics for the performance evaluation, defined as follows:386

MAE =
1

N

N∑

n=1

|cgtn − cpredn |, (1)

MSE =
1

N

N∑

n=1

(cgtn − cpredn )2, (2)

MRE =
1

N

N∑

n=1

|cgtn − cpredn |
num spacesn

, (3)

where N is the total number of the images, cgt, cpred and num spacesn are387

the actual count, the predicted count, and the total number of parking spaces388

of the n-th image, respectively. Note that as a result of the squaring of each389

difference, MSE effectively penalizes large errors more heavily than small ones390

and thus should be more useful when large errors are particularly undesirable.391

On the other hand, MRE also considers the relation between the error and the392

total number of objects present in the image.393
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We report in this section some implementation details concerning the Mask395

R-CNN-based algorithm responsible for the prediction of the number of vehi-396

cles in the single images. In particular, we trained the modified Mask R-CNN397

initializing the weights of the ResNet50 backbone with the ones of a pre-trained398

model on ImageNet (Deng et al., 2009), a popular dataset for classification399

tasks, and the remaining ones at random. We froze the backbone for the first400

10 epochs, and then we trained the whole network for 20 additional epochs.401

We used Stochastic Gradient Descent (SGD) to perform the CNN parameters402

update. Concerning the Region Proposal Network, explained in Section 3.3, we403

exploited a set of five anchors of sizes 16, 32, 64, 128, and 256 pixels. To prevent404

overfitting, we applied some standard augmentation techniques to the training405

data: images are horizontally flipped with a 0.5 probability, then their pixels are406

multiplied by a random value between 0.8 and 1.5, and finally, they are blurred407

using a Gaussian kernel with a standard deviation of a random value between408

0 and 5. Then, to support training multiple images per batch, we resized all409

pictures to the same size. If an image was not square, we padded it with zeros410

to preserve the aspect ratio. In the end, we obtained images of size 1024×1024.411

At inference time, images were resized and padded with zeros to get a square412

picture of size 1024× 1024, and no other augmentations took place.413

5. Experiments and Results414

In this section, we report the experiments and the obtained results. First, we415

evaluate the performance against other state-of-the-art solutions of the CNN-416

based technique responsible for estimating the vehicles in the single images417

directly onboard the smart cameras, also stressing its generalization capabilities.418

Then, we validate the effectiveness of our multi-camera algorithm by testing it419

in the simulated scenario previously described. We demonstrate that our system420

can benefit from the redundant information deriving from the different cameras,421

obtaining performance improvements in all the considered counting metrics.422
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5.1.1. State-of-the-art comparison424

We compared our solution with the results obtained in our previous work425

Ciampi et al. (2018), where we presented a centralized counting approach based426

on the original version of Mask R-CNN having the ResNet101 model as a fea-427

tures extractor, which has been fine-tuned on a very small manually annotated428

subset of the CNRPark-EXT dataset, starting from the model pre-trained on429

the COCO dataset (Lin et al., 2014). We filtered the detections considering430

only the predictions related to the car class, and we counted them. Although431

this solution is very computationally expensive and unsuitable for edge devices,432

it represents a direct comparison in terms of counting on the same dataset.433

We also compared our technique against the method proposed in Amato et al.434

(2017), an approach for car parking occupancy detection based on mAlexNet,435

a deep CNN designed explicitly for smart cameras. This work represents an436

indirect method for counting cars in a parking lot, as the counting problem is437

cast as a classification problem: if a parking space is occupied, we increment the438

total number of cars; otherwise, we do not. We illustrate the results in Table 1,439

where we also report the performance obtained using the Mask R-CNN network440

without a preliminary fine-tuning on the CNRPark-EXT dataset. Our solution441

performs better than the other considered methods, considering all three count-442

ing metrics. In particular, our approach outperforms the solution introduced443

in Ciampi et al. (2018), despite the latter employing a more deep and powerful444

CNN, and it is designed to be used as a centralized-server solution. This is ex-445

plained by the fact that in Ciampi et al. (2018) the authors fine-tuned the CNN446

using a tiny dataset. Consequently, the algorithm overfits on the training data,447

and it cannot generalize over the test subset. It is also worthy of notice that our448

CNN also outperforms the mAlexNet network, even though the latter knows the449

exact location of the parking spaces. Figure 4 shows some examples of images450

belonging to different cameras and different weather conditions together with451

the masks localizing them computed by our counting solution.452

19



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

CNRPark-EXT PKLot

Method MAE MSE MRE MAE MSE MRE

(Amato et al., 2017) 1.34 8.00 0.04 -

(Ciampi et al., 2018) 1.05 4.41 0.03 -

ResNet50 Mask R-CNN 11.20 247.40 0.30 16.90 522.40 0.48

Our solution 0.49 1.04 0.01 4.56 33.88 0.13

Table 1: Local Counting: Left-side: results obtained using our counting solution on the edge

compared with other state-of-the-art approaches; we get the best results on all the three

considered counting metrics. Right-side: evaluation of the generalization capabilities on the

PKLot dataset (de Almeida et al., 2015), using the model trained on the CNRPark-EXT

dataset; we achieved an error that is approximately four times lower than the one obtained

with the COCO pre-trained model.

(a) Image from Camera2 (b) Image from Camera8

Figure 4: Two examples of the output of our counting method. Images are taken from the

CNRPark-EXT dataset. We report the predictions and the estimate of the number of vehicles

present in the scene.
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Errors in vehicle detection and counting are due to many reasons, but critical454

points are different light conditions and diverse perspectives. Weather condi-455

tions might produce significant illumination changes since puddles and wet floors456

create a textural pattern that may lead to an error, and sunbeams can create457

reflections on the car windscreen, covering the majority of the images with sat-458

urated patterns. When a CNN does not generalize well, it works well only in459

the conditions where it was trained.460

To measure the robustness of our approach to these scenarios, we per-461

formed two types of experiments exploiting the CNRPark-EXT dataset: i)462

inter-weather and ii) inter-camera experiments. In the former, we trained our463

CNN with images taken in one particular weather condition, and we computed464

the performance metrics obtained on images having different weather condi-465

tions. In particular, we performed three experiments, training respectively on466

the Sunny, Overcast and Rainy subsets of the CNRPark-EXT dataset. In the467

latter, we trained our algorithm employing images from one camera, and then468

we computed the performance metrics on pictures captured by another cam-469

era. In particular, we performed two experiments, training with images coming470

respectively from camera1 and camera8. We chose these two cameras because471

they are particularly representative since one has a side view of the parking lot472

while the other has a pure front view.473

We report the results of the two experiments in Table 2 and Table 3, respec-474

tively. We achieve a good generalization in both the considered scenarios. We475

experienced a larger amount of error when the CNN was trained and tested on476

two opposite weather conditions, for instance, Sunny and Rainy, while the more477

accurate model was the one trained on Overcast weather conditions. However,478

the performance difference is quite small. On the other hand, in inter-camera479

experiments, the model trained on camera8 is the best, and it has a slight drop480

in performance only when tested on the camera1 subset. The model trained on481

the camera1 dataset performs in general worse. This is probably due to a bias482
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Train Set MAE MSE MRE MAE MSE MRE MAE MSE MRE

Sunny - - - 0.29 0.34 0.009 0.96 2.78 0.02

Overcast 0.62 1.09 0.02 - - - 0.56 1.26 0.01

Rainy 0.84 1.65 0.02 0.49 0.65 0.01 - - -

Table 2: CNRPark-EXT: Results of inter-weather experiments in terms of counting metrics

obtained when training on sunny, overcast, or rainy weather.

Test Set

Metric Train Set C1 C2 C3 C4 C5 C6 C7 C8 C9

MAE
C1 - 0.77 1.21 2.53 3.26 2.57 2.88 2.88 1.54

C8 3.87 0.85 0.76 0.45 0.48 0.71 1.07 - 0.41

MRE
C1 - 0.08 0.05 0.06 0.07 0.05 0.06 0.05 0.05

C8 0.11 0.09 0.03 0.01 0.01 0.01 0.02 - 0.01

MSE
C1 - 1.48 2.91 10.61 20.24 13.50 19.82 17.30 7.19

C8 22.60 1.78 1.36 0.57 0.74 0.95 4.97 - 2.13

Table 3: CNRPark-EXT: Results of inter-camera experiments in terms of counting metrics

obtained when training on camera 1 and camera 8.

in the CNRPark-EXT dataset, where the majority of the images are captured483

from a frontal viewpoint.484

Moreover, to further validate the generalization capabilities of our approach,485

we considered our counting network trained on the entire training set of the486

CNRPark-EXT dataset, and we tested it over a different dataset, the PKLot487

dataset (de Almeida et al., 2015). Results are shown in Table 1 where we also488

report the performance obtained using the Mask R-CNN network without a489

preliminary fine-tuning on the CNRPark-EXT dataset. As we can see, using490

our solution, we achieve an error that is approximately four times lower than491

the one obtained with the COCO pre-trained model.492
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To the best of our knowledge, there are no annotated datasets in the liter-494

ature suitable for evaluating counting algorithms operating on multiple FOV-495

overlapping cameras. The most relevant work in this context is Nieto et al.496

(2019), in which there are only two overlapping cameras facing each other with497

an extreme perspective transformation between the two; this makes any auto-498

matic perspective computation nearly impossible without manual intervention,499

and this is a mandatory assumption for our proposed method. Hence, we per-500

formed our experiments on the extended version of the CNRPark-EXT dataset501

created on purpose in this work, which we hope will become a new benchmark502

for this task. Furthermore, to demonstrate that our algorithm can benefit from503

the redundant information deriving from the different cameras, we compared the504

obtained results against a baseline and a simplified version of our algorithm.505

Specifically, we compared our solution against a system that is not aware506

of the other cameras’ overlapped areas, and so it just sums up all the vehicles507

detected by all the cameras belonging to a sequence (Näıve Counting N). Then,508

we considered a more conservative approach, where the nodes employ the homo-509

graphic transformations only with the purpose of black-masking the overlapped510

areas (Overlap Masking M). This latter baseline then loses the ability to take511

advantage of monitoring the same lots from different views. However, it is still512

aware of the locations of the overlapping areas, and it considers the vehicles513

inside them only once.514

Results are shown in Table 4. Our solution obtains the best results compared515

to the considered baselines in all the three counting metrics and all the employed516

scenarios. We report the errors concerning the considered six sequences of the517

CNRPark-EXT dataset, together with the MAE, MSE, and MRE, which sum-518

marize the mean results regarding all the scenarios. As an example, in Figure519

5 we also report the output of our multi-camera algorithm for a pair of images520

belonging to two different cameras having a shared area in their field of view,521

where we highlight in red and blue the masks projected from one camera to the522

other, using the previously computed homographic transformations.523
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N M O N M O N M O N M O

Overcast-1 124 -33 2 124 33 2 15,376 1,089 4 71.6 19.0 1.2

Overcast-2 131 -26 1 131 26 1 17,161 676 1 76.1 15.1 0.6

Rainy-1 80 -39 -5 80 39 5 6,400 1,521 25 47.6 23.2 2.9

Rainy-2 105 -44 -5 105 44 5 11,025 1,936 25 54.4 22.8 2.6

Sunny-1 117 -38 2 117 38 2 13,689 1,444 4 68.0 22.1 1.2

Sunny-2 113 -37 2 113 38 2 12,769 1,444 4 66.1 22.2 1.2

Mean 111.6 -36.1 -0.5 111.6 36.3 2.8 12,736.6 1,351.6 10.5 63.9 20.7 1.6

N: Näıve Counting; M: Overlap Masking; O: Ours (mean aggr., IoU Threshold τ = 0.2)

Table 4: Results using our multi-camera counting algorithm, considering the entire parking

lot. We compare our solution against a baseline and a simplified version of our algorithm. We

report the errors obtained on the six considered sequences (two for each weather condition)

of the CNRPark-EXT dataset that we extend on purpose.

(a) Image from Camera9 (b) Image from Camera8

Figure 5: Example of the output of our multi-camera algorithm for a pair of images belonging

to two different cameras i, j having a shared area in their FOV. We report in green the

masks localizing the vehicles detected by a camera in its own FOV, while in red and blue,

the masks projected from camera j to camera i and vice-versa, employing the homographic

transformations pre-computed during the system initialization.
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This paper presented a distributed artificial intelligence-based system that525

automatically counts the vehicles present in a parking lot using images taken526

by multiple smart cameras. Unlike most of the works in literature, we intro-527

duced a multi-camera approach that can estimate the number of cars present in528

the entire parking area and not only in the single captured images. The main529

peculiarities of this approach are that all the computation is performed in a530

distributed manner at the edge of the network and that there is no need for531

any extra information about the monitored parking area, such as the location532

of the parking spaces, nor any geometric information about the position of the533

cameras in the parking lot. We modeled our system as a graph. The nodes, i.e.,534

the smart cameras, are responsible for estimating the number of cars present in535

their view and merging data from nearby devices with an overlapping field of536

view. Our solution is simple but effective, combining a deep-learning technique537

with a distributed geometry-based approach. We evaluated our algorithm on538

the CNRPark-EXT dataset, which we specifically extended and which we hope539

will become a new benchmark for counting vehicles in multi-camera parking540

area scenarios. Through an experimental evaluation, we showed how we bene-541

fit from redundant information from different cameras while improving overall542

performance.543

There are multiple lines of future development that can help improve the544

proposed system. Although our multi-camera algorithm is flexible, one limita-545

tion relies on computing the homographic matrix between images captured by546

cameras placed in completely different locations, such as facing each other. In547

such cases, the two perspectives are totally different, and manual intervention548

is required to avoid the generation of an inaccurate geometric transformation.549
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