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Abstract— Previous work has shown that it is possible to
train neuronal cultures on Multi-Electrode Arrays (MEAs), to
recognize very simple patterns. However, this work was mainly
focused to demonstrate that it is possible to induce plasticity
in cultures, rather than performing a rigorous assessment
of their pattern recognition performance. In this paper, we
address this gap by developing a methodology that allows us
to assess the performance of neuronal cultures on a learning
task. Specifically, we propose a digital model of the real
cultured neuronal networks; we identify biologically plausible
simulation parameters that allow us to reliably reproduce the
behavior of real cultures; we use the simulated culture to
perform handwritten digit recognition and rigorously evaluate
its performance; we also show that it is possible to find improved
simulation parameters for the specific task, which can guide the
creation of real cultures.

I. INTRODUCTION

Interesting insights on neural network behavior can be ob-
tained by analyzing the activity patterns of neuronal cultures
[1]–[4]. Multi-Electrode Arrays (MEAs) [5], [6] can be used
for this purpose. MEAs are two-dimensional electrode array
plates for parallel electrophysiological recording in neuronal
cultures that can be used to stimulate and read activation
values (spiking activity) from cultured neuronal networks.

So far, such cultures have been used for very simple
pattern recognition tasks (such as horizontal or vertical bars
or simple temporal signals) [1]–[4]. However a rigorous
assessment of their performance is lacking, and it is not clear
to which extent they can be used for more complex tasks.

The contributions of this work are the following: 1) we
designed a simulated model of a cultured neuronal network
on a MEA; 2) simulation parameters (e.g. learning rate,
excitatory/inhibitory strength, etc.) were tuned in order to
reproduce the behavior of biological cultures obtained in a
real-world scenario [1]; 3) the resulting model was trained to
recognize 0 and 1 digits from the MNIST dataset [7], and the
classification accuracy was evaluated. The model achieved
89% accuracy in the classification task, but we were also able
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to improve performance up to 95% by appropriately fine-
tuning the simulation parameters. Knowledge of the resulting
parameters can guide neuroscientists in the creation, through
modern cultivation techniques, of real-world cultures with
analogous properties [8]–[13], optimized for the desired task.

Therefore, our methodology suggests a path of cooperation
between computer science and neuroscience, in scenarios
where parameter tuning in a simulated setting is more eco-
nomical than in the real world, towards the future perspective
of building neural engineering products.

This paper is organized as follows: Sect. II overviews
some background and related material; Sect. III describes
how neuronal cultures were modeled in our simulations;
Sect. IV illustrates the experimental scenario that allowed us
to obtain reliable simulation parameters; Sect. V describes
the digit recognition experiments; the results of the various
simulations are presented in Sect. VI 1; finally, in Sect. VII,
we present our conclusions and hints for future works.

II. BACKGROUND AND RELATED WORK

The application of biological neural cultures for pattern
recognition is a difficult challenge, because the experimenter
has little or no control on the network architecture and the
learning mechanism for the task at hand. In the past few
years, neural cultures have been applied to the learning
tasks involving only very simple patterns. In [1], MEAs
were used to stimulate a network with patterns composed of
horizontal or vertical bars. The patterns were presented by
sending voltages on the electrodes of the MEA in the desired
positions. In particular, two patterns were constructed, one
with an horizontal and a vertical bar crossing at the lower-
left corner of the MEA (forming an “L” shape) and its
transpose. The work showed that after tetanization with the
“L” pattern (i.e. after repeated presentation of the pattern)
the network was able to respond more strongly when the
same pattern was presented again, while the response to the
other pattern was weaker. Thus, the network was able to
distinguish between these two simple patterns. In [3], tem-
porally repeated stimulation was delivered to the network.
It was shown that, initially, the network took about 50ms
to produce a response, but, after some cycles of pattern
presentation, this time became significantly shorter. In [4],
networks were also stimulated with temporally interleaved
patterns. The authors showed that specific changes occurred

1 The code to reproduce the experiments is available at
www.github.com/GabrieleLagani/SpikingGrid
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in the network connectivity, which allowed the network to
learn temporal intervals for predicting when the next stimulus
would occur.

Spiking Neural Networks (SNNs) are a realistic model of
biological networks [14]. In SNNs, neurons communicate by
short pulses called spikes. All the spikes are equal to each
others and values are encoded in the timing or frequency
with which they are emitted. Neurons are modeled as Leaky
Integrate and Fire (LIF) units : they sum up all the received
spikes (weighted by the synaptic coefficients) and when this
sum, represented by the neuron membrane potential, exceeds
a threshold, an output spike is emitted. At these point the
membrane potential is reset and the neuron cannot spike
anymore for a period called refractory time. These units
are leaky in the sense that, when no spikes are received in
input, the membrane potential decays exponentially. Synaptic
modification occurs by Spike Time Dependent Plasticity
(STDP) [14]. In STDP, weight strengthening occurs when
an input spike on a given synapse is immediately followed
by an output spike. Hence, when an input spike is a potential
cause for the output firing, STDP reinforces this correlation.
When, instead, an input spike is immediately preceded by an
output spike, the weight on the input synapse is weakened.
Formally, the STDP learning rule can be expressed as:

∆w =

{
A+e

−(tout−tin)/τ+ if tout > tin

A−e
(tout−tin)/τ− if tout ≤ tin

(1)

where A+ and A− are the learning rate parameters for
potentiation and weakening respectively, tau+ and tau− are
time constant parameters which determine the effect of input
and output spikes based on their temporal distance, tin is the
input spike time and tout is the output spike time.

III. MODELING NEURONAL CULTURES

We used the SNN model to build a digital counterpart of
the cultures used in [1]. We considered a MEA composed
of 60 electrodes, disposed in a grid of 6x10 elements,
with dimensions 3mm x 5mm. About 10000 neurons (each
receiving approximately 3000 excitatory and 500 inhibitory
connections) were randomly placed on top of the grid,
forming a SNN with random connectivity. Connectivity was
set up randomly, with neighboring neurons having a high
probability of connecting with each other, and distant neu-
rons having a small probability of forming a connection. The
connection probability decreased with distance following a
Gaussian profile. The standard deviation parameter of the
Gaussian profile allowed to control the connectivity range.
We used different Gaussian profiles for the excitatory and
inhibitory connections (parametrized by standard deviations
σE and σI ). Connection weights were initialized to small
random values. More precisely, weight values were drawn
from a uniform distribution between 0 and 1, and then
re-scaled by a factor controlled by simulation parameters
(EXC STRENGTH and INH STRENGTH). Stimuli were
delivered to neurons through voltages produced by the MEA
electrodes. Plasticity of the connection weights occurred
according to the STDP eq. 1, for excitatory connections, and

(a) Example of MEA electrode activations forming an L-shaped
pattern.

(b) Example of MEA electrode activations during training for the
digit recognition task. The digit image is encoded in the 6x6 region
of electrodes on the left, while, at the same time, the class label
stimulation is delivered on the electrodes on the right.

Fig. 1: 6x10 MEA grid with activated electrodes forming the
desired input stimulation.

to anti-STDP (i.e. the same rule but with opposite sign) for
inhibitory connections. The complete list of simulation pa-
rameters is shown in Tab. I. The values for these parameters
were determined as discussed in the next section.

IV. DETERMINATION OF SIMULATION PARAMETERS

Our experiments evolved in two stages. In the first stage,
we reproduced the experimental scenario described in [1],
and we tuned the simulation parameters in order to obtain
a behavior of the simulated culture as close as possible to
that of real-world cultures. In this scenario, the network was
stimulated with two types of patterns: an L-shaped pattern,
as shown in Fig. 1a, and its transpose. Stimulation consisted
in generating pulses on the desired electrodes of the MEA.
By virtue of the STDP updates, repeated stimulation with the
same pattern caused the network to consolidate its weights
in order to produce a stronger response to that pattern in the
future. This process is known as tetanization. We performed
tetanization using the L-shaped pattern, which was repeatedly
presented to the network as a spike train of 100 pulses at a
rate of 250Hz, thus having a total duration of the spike train
of 400ms. A total of 40 spike trains were delivered to the
network during the whole tetanization process. The response
of the network to the L-shaped pattern and its transpose was
evaluated both before and after tetanization.

We tuned simulation parameters by performing a grid
search within biologically plausible ranges [15]. Optimal
parameters were those minimizing the Mean Squared Error
(MSE) between the temporal evolution of the response
(averaged over all neurons) of the artificial and real cultures
following a stimulation.

V. DIGIT RECOGNITION EXPERIMENT

In the second stage of our experiments, we used the
neuronal culture for recognizing 0 and 1 digits from the



MNIST dataset [7]. Digit images were resized to 6x6 pixels,
in order to fit them to the MEA grid; then, each image was
mapped to the 6x6 sub-grid of electrodes on the left part of
the 6x10 MEA. Stimulation on each electrode consisted of
trains of pulses at a rate proportional to the intensity of the
corresponding pixel in the image, up to 200Hz, for 100ms.
In order to allow the network to learn input-class mappings,
we associated some of the neurons in the remaining 6x4
part of the MEA, where no image pixels were mapped,
with class labels. We call the neurons associated with class
labels output neurons. When an input was presented to the
network, the number of spikes emitted by neurons associated
with each class were counted, and the predicted class was
chosen as that associated with the group of neurons that
spiked the most. In order to enable learning of input-class
mappings, a variant of the teacher neuron technique [16] was
designed: during training, when an input of a given class
was presented, the electrodes on the locations of the grid
associated with the given class were also activated in order
to deliver a high frequency stimulation, at 200Hz, to output
neurons, simultaneous with input presentation. This caused
the output neurons to fire strongly, thus developing input-
class associations through the STDP rule. More in detail,
neurons placed on the electrodes in the last column and
first three rows were associated with class 0, while neurons
placed on electrodes in the last column and last three rows
were associated with class 1. Fig. 1b shows an illustration
of electrode activation for an example digit presentation,
together with the activation of the class label electrodes, for
the training task on the digit recognition dataset. At test time,
the label-related stimulation was removed, and the output
neurons had to reconstruct the missing label depending on
the input presented. The simulations were implemented in
Python, using the Bindsnet package [17] for SNN simulation.

VI. RESULTS

For the first stage of experiments, we evaluated the spatio-
temporal response of the network to both regular L-shaped
pattern (named regL) and to the upside-down (i.e. the
transposed) L pattern (named upsL). We collected data from
four independent repetitions of the experiments (because also
the biological experiment was repeated using four different
neuronal cultures) and we averaged the results and computed
95% confidence intervals. In Fig. 2, the temporal response, in
terms of number of spikes emitted, obtained by averaging the
spike count over all the neurons is shown. Spikes counts are
computed over time bins of 10ms each, and the response over
a time period of 150ms is plotted, comparing the simulated
results with real-world data. Stimulus delivery occurs at
50ms, and from this time instant we observe a sudden
response which then decays over time. Moreover, after
tetanization, we observe that the strength of the response
to regL patterns increases w.r.t. that of upsL patterns.

The first experimental stage gave us a set of simulation
parameters that allowed to obtain results most similar to real-
world data (Tab. I). For the second stage of experiments, we
evaluated the performance achieved by the neuronal culture,

TABLE I: Simulation parameters that produced simulated
response most similar to the real-world data

Parameter Value
Resting membrane potential -70mV

Threshold membrane potential -50mV
Reset membrane potential -70mV

Refractory period 5ms
Membrane potential decay time 50ms

STDP trace decay time τ+ = τ− = 20ms
Learning rate A+ = 10−2, A− = 10−4

EXC STRENGTH 1
INH STRENGTH 10

σE 1.2mm
σI 0.15mm

after training, in the digit recognition task, obtaining 89%
accuracy. For the simulation, we used the parameters from
the first experimental stage. We were also able to further
improve the accuracy up to 95%, by appropriately fine
tuning some of the simulation parameters. We found that the
parameters related to excitatory and inhibitory connection
strength had a great impact on the final results. In particular,
we found that we could improve the results by increasing the
excitatory connection strength by a factor of 8, and further
increasing the inhibitory connection strength to be two orders
of magnitude larger than the excitatory strength. Such strong
inhibitory connections can be justified in that they allow to
realize shunting inhibition, resulting in competitive interac-
tion among neurons, which is at the basis of competitive
learning [18].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we explored the possibility of using neuronal
cultures for pattern recognition. We developed a simulator
of neuronal cultures on MEA devices. We compared the
behavior of the simulated culture with that of biological
cultures, tuning the simulation parameters to make the sim-
ulated results as close as possible to the real-world data.
Then, using the same simulation parameters, we trained
a simulated neuronal culture to recognize 0 and 1 digits,
obtaining an accuracy of 89%. We also found that, by
appropriately modifying the simulation parameters, it was
possible to further improve the accuracy to 95%.

We have shown that, through simulation, it is possible to
obtain insights on the parameters and properties (such as
strength and range of excitatory and inhibitory connections)
that a neuronal culture should have in order perform well at a
given task. These insights can then be used by neuroscientists
in order to develop biological networks, by means of modern
cultivation techniques, with the desired properties [8]–[13].

In the future, we plan to reproduce the experimental
scenario of 0 and 1 recognition also in vitro. We also
propose to move towards more complex tasks, for instance,
recognition of more digits or even natural images. For this
purpose, it might be useful to consider larger MEAs (e.g.
with 4096 electrodes). Also, for more complex tasks, it might
be necessary to consider a different learning approach, such
as reward-driven [19]–[21].



(a) Temporal response to regL pattern,
before tetanization.

(b) Temporal response to upsL pattern,
before tetanization.

(c) Temporal response to regL pattern,
after tetanization.

(d) Temporal response to upsL pattern,
after tetanization.

Fig. 2: Temporal response to regular L (regL) and upside-down L (upsL) patterns, before and after tetanization. Comparison
of simulation and real-world (biological) data.

REFERENCES

[1] M. E. Ruaro, P. Bonifazi, and V. Torre, “Toward the neurocomputer:
image processing and pattern recognition with neuronal cultures,”
IEEE Transactions on Biomedical Engineering, vol. 52, no. 3, pp.
371–383, 2005.

[2] J. M. Ferrández, V. Lorente, F. de la Paz, and E. Fernández, “Training
biological neural cultures: Towards hebbian learning,” Neurocomput-
ing, vol. 114, pp. 3–8, 2013.

[3] G. Shahaf and S. Marom, “Learning in networks of cortical neurons,”
Journal of Neuroscience, vol. 21, no. 22, pp. 8782–8788, 2001.

[4] A. Goel and D. V. Buonomano, “Temporal interval learning in cortical
cultures is encoded in intrinsic network dynamics,” Neuron, vol. 91,
no. 2, pp. 320–327, 2016.

[5] G. W. Gross, E. Rieske, G. Kreutzberg, and A. Meyer, “A new fixed-
array multi-microelectrode system designed for long-term monitoring
of extracellular single unit neuronal activity in vitro,” Neuroscience
letters, vol. 6, no. 2-3, pp. 101–105, 1977.

[6] J. Pine, “Recording action potentials from cultured neurons with ex-
tracellular microcircuit electrodes,” Journal of neuroscience methods,
vol. 2, no. 1, pp. 19–31, 1980.

[7] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[8] M. Eiraku, K. Watanabe, M. Matsuo-Takasaki, M. Kawada, S. Yone-
mura, M. Matsumura, T. Wataya, A. Nishiyama, K. Muguruma, and
Y. Sasai, “Self-organized formation of polarized cortical tissues from
escs and its active manipulation by extrinsic signals,” Cell stem cell,
vol. 3, no. 5, pp. 519–532, 2008.

[9] N. Gaspard, T. Bouschet, R. Hourez, J. Dimidschstein, G. Naeije,
J. Van den Ameele, I. Espuny-Camacho, A. Herpoel, L. Passante, S. N.
Schiffmann, et al., “An intrinsic mechanism of corticogenesis from
embryonic stem cells,” Nature, vol. 455, no. 7211, pp. 351–357, 2008.

[10] S. M. Chambers, C. A. Fasano, E. P. Papapetrou, M. Tomishima,
M. Sadelain, and L. Studer, “Highly efficient neural conversion of
human es and ips cells by dual inhibition of smad signaling,” Nature
biotechnology, vol. 27, no. 3, pp. 275–280, 2009.

[11] M. Terrigno, I. Busti, C. Alia, M. Pietrasanta, I. Arisi, M. D’Onofrio,
M. Caleo, and F. Cremisi, “Neurons generated by mouse escs with

hippocampal or cortical identity display distinct projection patterns
when co-transplanted in the adult brain,” Stem cell reports, vol. 10,
no. 3, pp. 1016–1029, 2018.
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