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Abstract: A priori knowledge of the shelf life of energetic materials (EMs) is relevant due to its direct
association with safety and functionality. This paper proposes a quick and reliable approach to
predicting the shelf life of EMs whose thermal decomposition is an autocatalytic process once their
failure threshold has been defined as a function of the limiting extent of conversion. This approach
is based on the assumption of a kinetic law consistent with the autocatalytic behavior and on the
subsequent extraction, via a suitable procedure of parameter identification, of the kinetics of thermal
decomposition from differential scanning calorimetry (DSC) data gathered under dynamic conditions
at three different heating rates. Its reliability is proven for picric acid (PA) through the comparison
of kinetic predictions with evaluations of conversion obtained by using high performance liquid
chromatography (HPLC) analysis for samples subjected to isothermal and non-isothermal accelerated
aging tests, as well as for a sample of naturally aged material, i.e., PA, stored at room temperature for
more than 10 years.

Keywords: energetic materials; picric acid; aging; shelf life prediction; thermal decomposition;
model-based kinetic analysis; differential scanning calorimetry; high performance liquid chromatography

1. Introduction

Energetic materials (EMs) (i.e., explosives, propellants, and pyrotechnics) are thermo-
dynamically unstable substances—if they exist, it is only for kinetic reasons. Most of these
materials undergo slow chemical decomposition at room temperature and even more so at
elevated temperatures. Thermal stability is strictly dependent on the chemical nature of
the substance—aromatic and aliphatic nitro compounds, aliphatic nitramines, and organic
azides are considered to be relatively stable, whereas aliphatic nitrate esters are generally
less stable [1].

The occurrence of decomposition causes the aging of EMs with the consequent com-
promise of storage and handling safety as well of functionality. For example, if EMs are
exposed to higher temperatures during storage, their aging process is accelerated, and the
resulting loss of thermal stability can lead to failure or accidental ignition with potentially
catastrophic consequences, such as the explosion that occurred at the port of Beirut in 2020.
Therefore, it is essential to know the shelf life of EMs in advance, i.e., the time interval
during which they can be stored, handled, and used without any danger [2].

Aging studies are relevant regarding assessing the safe and reliable use of EMs. How-
ever, at ambient temperature, the degradation process of EMs is usually too slow for aging
studies to be conducted in reasonable times; thus, accelerated aging procedures (i.e., artifi-
cial aging treatments at higher temperatures) are generally used to reduce the time scale for
such studies. The thermal stability of EMs can be investigated using different test methods
based on accelerated aging, the most elaborate of which is the method for the prediction
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of their shelf life [2]. This method involves accelerated aging at different temperatures
(typically between 40 ◦C and 80 ◦C) for relatively long time periods (months to years)
with different aging time intervals, followed by analysis of the aging-induced changes. A
subsequent kinetic analysis and Arrhenius evaluation creates effective activation energy
for calculating shelf life at standard storage temperature (in other words, the shelf life is
obtained via extrapolation to lower temperatures). A practical example is given in Ref. [3]
for a nitrocellulose-based propellant whose accelerated aging process was tracked using
measurements of the content of the stabilizer performed by using high performance liquid
chromatography (HPLC) analysis. Besides suffering from some important limitations,
including its exclusive application to isothermal aging (whereas real life storage conditions
often include a complex history of temperature variations) [4], this method is extremely
time and money consuming [2]. Therefore, in order to predict the shelf life of EMs, more
effective approaches are necessary.

Thermal analysis techniques, especially thermogravimetry (TG), differential thermal
analysis (DTA), and differential scanning calorimetry (DSC), have been widely used to
investigate the decomposition of EMs (sometimes in combination with Fourier-transform
infrared (FTIR) spectroscopy or mass spectrometry (MS) for the identification of reaction
products) [5–7]. The kinetics of the thermal decomposition of EMs can be extracted from
the data gathered by using these techniques. Based on a review of about seventy literature
works, EL-Sayed [7] presented data in tabulated form and discussed the values of the kinetic
parameters (pre-exponential factor and activation energy) of EMs belonging to various
classes, highlighting that these values can vary (even significantly) for the same material
based on the measurement technique and the kinetic approach used. This variability is
an issue when trying to predict the shelf life of EMs based on their kinetics of thermal
decomposition once the failure threshold has been defined as a function of the limiting
extent of conversion. Such a prognostic approach is certainly interesting, mostly because it
saves time and experimental costs compared to the previously described approach based
on accelerated aging tests at different temperatures; thus, some research efforts have been
focused on it [8–11]. Specifically, both model-based [8–10] and isoconversional [8,10,11]
methods have been adopted. In the case of model-based methods, the kinetic law is
predetermined based on the thermal behavior of the substance under examination, whereas
this is not needed with isoconversional methods. However, the latter, which are sometimes
called “model-free” kinetic analyses, are not assumption-free methods. Burnham and
Dinh [8] found as much variability in prediction for various isoconversional methods
as between isoconversional methods as a group and different plausible explicit models.
However, their predictions (for the conversion of unspecified EMs as a function of time at
80 ◦C) were not validated against experimental data obtained on actually aged samples.

Li and Cheng [9] extracted the kinetics of the thermal decomposition of nitroguanidine
(NQ) in the frame of a model-based approach. The reaction of NQ under isothermal
conditions at a temperature of 210 ◦C was simulated for a total exposure time of 30 min,
and the simulated mass loss history was basically consistent with the corresponding
experimental curve. Isothermal simulations at temperatures between 150 ◦C and 210 ◦C
were also performed for a total exposure time of 12 h, showing that before 170 ◦C, the
mass loss raised to only 7%, whereas it shifted rapidly to much more after 170 ◦C. This is
consistent with the change in the mechanism of the decomposition of NQ in the 160–170 ◦C
temperature range inferred by Lee and Back [12] based on the comparison of the values of
rate constants they obtained from accelerating rate calorimetry (ARC) experiments with
literature values obtained by means of techniques other than ARC.

In order to predict the long term stability of dihydroxylammonium-5,5′-bistetrazolyl-
1,1′-diolat (TKX-50), Harter et al. [10] chose an isoconversional method that fitted TG data
slightly better than a model-based method also investigated. They also applied the same
isoconversional method to other four common explosives, including hexahydrotrinitrotri-
azine (RDX), octahydrotetranitrotetrazine (HMX), hexanitrohexaazaisowurtzitane (CL-20),
and pentaerythritoltetranitrate (PETN). Isothermal predictions at temperatures ranging
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from 0 ◦C to 100 ◦C as well as various climatic predictions of different countries were
calculated over a time period of 10 years, whereas the experimental validation was limited
to measurements of the mass loss performed after 4, 14, and 28 days of storage of the
various explosives at 100 ◦C. The highest value of mass loss reached after 28 days was
that of PETN (~1.4%). Although consistency was claimed between kinetic predictions and
experimental data, no direct quantitative comparison was presented.

Kim et al. [11] applied an isoconversional method to DSC data to extract the kinetics of
the thermal decomposition of 97.5% RDX, 95% HMX, and boron/potassium nitrate (BPN).
They set the reaction progress value of 0.01 after 20 years as the criterion for un-decayed
performance of EMs and estimated, through isothermal simulations performed at different
temperatures, that 97.5% RDX, 95% HMX, and BPN must be stored at temperatures below
149 ◦C, 110 ◦C, and 160 ◦C, respectively, for a 20-year safe storage. For the validation, only
BPN was subjected to accelerated aging tests at a single temperature of 71 ◦C for 8, 16,
24, and 48 weeks. There was agreement between experimental measurements and kinetic
predictions that, even after 48 weeks, the remaining fraction of BPN was very close to unity.
However, the negligible degradation of the material did not allow to accurately compare
the measured and predicted values of this fraction over the entire aging period.

Although some encouraging preliminary results have been obtained, the above discus-
sion points to the need for further efforts to be devoted to the development of prognostic
tools for EMs based on their kinetics of thermal decomposition and for thorough experi-
mental validation of such tools against aging data. The fact that reliable methods/models
have not been established yet for specific EMs or specific classes of EMs is also due to a
substantial lack of experimental data allowing detailed validation.

The present paper fits in this context with a focus on picric acid (PA), which is an
explosive belonging to the class of aromatic nitro compounds that includes, among others,
trinitrotoluene (TNT). The thermal decomposition of PA was investigated in this study
by means of DSC experiments which confirmed its autocatalytic nature [13,14]. A ki-
netic law consistent with this nature was thus assumed before extracting the kinetics of
thermal decomposition. After a preliminary validation against the DSC experiments, ki-
netic predictions were compared with evaluations of conversion obtained by using HPLC
analysis for samples of PA subjected to isothermal and non-isothermal accelerated aging
tests performed over wide ranges of temperature and exposure time and for a sample of
naturally aged material, i.e., PA stored at room temperature for more than 10 years. The
good agreement found between predictions and corresponding experimental data supports
the reliability of the kinetics from this study as a prognostic tool for PA and possibly the
extension of the model-based approach adopted to the prediction of the shelf life of EMs
that, like PA, decompose in an autocatalytic manner.

2. Materials and Methods

Picric acid (PA) was purchased from Sigma-Aldrich (St. Louis, MO, USA). For safety
reasons, this material was supplied moistened with water. Dry material was prepared by
subjecting the moistened material to vacuum drying at room temperature and then stored
in a silica gel desiccator for later use.

Differential scanning calorimetry (DSC) analysis was carried out by using a Perkin
Elmer DSC 8000 instrument (Shelton, CT, USA) equipped with an Intracooler II cooling
system. For each test, a few milligrams (0.5–2.0 mg) of material were loaded into a 30 µL
stainless steel pan that had 150 bar maximum pressure and an operating temperature range
of −170 to 400 ◦C. DSC experiments were performed under both dynamic and isothermal
conditions in order to estimate and validate the kinetics of the thermal decomposition
of PA (Table 1). At each condition, tests were carried out in triplicate and mean curves
were considered.
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Table 1. Conditions of DSC experiments performed to estimate and validate the kinetics of the
thermal decomposition of PA.

Estimation
Dynamic Conditions, Heating Rate (◦C min−1)

2.5; 10; 20

Validation

Isothermal Conditions, Temperature (◦C)

240; 250; 260; 280

Dynamic Conditions, Heating Rate (◦C min−1)

40

The ability of the kinetics to predict the effect of thermal aging for PA was assessed
against the conversion of artificially aged material, i.e., PA subjected to isothermal and
non-isothermal accelerated aging tests, and naturally aged material, i.e., PA stored as dry
powder at room temperature (in the Calorimetry Laboratory of CNR-STEMS) for more
than 10 years. As detailed in Table 2, isothermal accelerated aging tests were performed
over wide ranges of temperature and exposure time, by using the calorimeter used for
the DSC experiments and a dry bath heater (THERMOBLOCK TD 200 P2+ by FALC
Instruments, Treviglio, Italy). Specifically, the latter was used for tests carried out at lower
temperatures for which the exposure times were much longer. Even in these tests, PA
was loaded into the stainless steel pans used for DSC. A non-isothermal accelerated aging
test was also performed by subjecting a sample of PA to the complex thermal history of
Figure 1 (in the differential scanning calorimeter). Real life storage conditions often include
a complex history of temperature variations. The reliability of the kinetic predictions was
therefore assessed not only for isothermal conditions but also for time-varying temperature
conditions during the aging treatment of PA.

Table 2. Conditions of isothermal accelerated aging tests.

Differential Scanning Calorimeter
Temperature (◦C) Exposure Time (min)

200–230 25–180

Dry Bath Heater

Temperature (◦C) Exposure Time

140 1 week and 5 weeks

90 6 months

At the end of each test, the pan was recovered and the residue was dissolved in
acetonitrile after quenching. In order to evaluate the conversion of substrate, the resulting
solution was then subjected to high performance liquid chromatography (HPLC) analysis,
which was performed using an Agilent 1100 device (Waldbronn, Germany) equipped with
a binary pump and a Synergi 4 µm Hydro-RP 80 Å column by Phenomenex Inc. The elution
conditions were as follows: a temperature of 30 ◦C; 30% (v/v) acetonitrile in an aqueous
buffer solution with a pH of 2.5; and a flow rate of 1.0 mL min−1. The signal of PA was
acquired at 210 nm and the retention time was 10.35 min under the elution conditions
adopted. Naturally aged PA was also analyzed by HPLC after dissolution in acetonitrile.
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Figure 1. Temperature of PA as a function of time: non-isothermal accelerated aging test during
which the sample was subjected to a complex thermal history.

3. Results and Discussion
3.1. Estimation and Validation of the Kinetics of Thermal Decomposition of Picric Acid (PA)

The rate of reaction for many thermally stimulated processes can be written as follows:

rate of reaction =
dα
dt

= k(T) f(α) (1)

where α is the conversion of substrate, t is time, k(T) is the reaction rate constant which is
dependent on the absolute temperature, T, and f(α) is the kinetic law which describes the
dependence of the rate of reaction on α. The relationship between k and T can be described
with the Arrhenius equation:

k = k(T) = A e−(
Ea
RT ) (2)

where A is the pre-exponential factor, Ea is the activation energy, and R is the ideal gas
constant. A model-based approach was adopted in this study; thus, f(α) was predetermined
based on the thermal behavior of picric acid (PA). Estimating the kinetics of thermal
decomposition in the frame of a model-based approach means quantifying A, Ea, and the
parameters appearing in f(α).

Figure 2 shows the results of a set of dynamic differential scanning calorimetry (DSC)
experiments carried out on PA at heating rates of 2.5, 10, and 20 ◦C min−1 in terms of curves
“specific (i.e., referring to the mass of sample) heat power, q, versus temperature” (mean
curves). The presence of intersection points (A, B, and C) between two curves obtained
at different heating rates reveals the autocatalytic nature of the thermal decomposition of
PA [15,16], confirming previous findings (see, e.g., [13]).

A first estimate of the kinetic parameters, i.e., the pre-exponential factor, A, and
activation energy, Ea, was obtained by applying the extended Kissinger method [17] to the
curves of Figure 2. Figure 3 shows the resulting Kissinger plot. TP is the temperature that
corresponds to the maximum of the specific heat power curve collected at a given heating
rate, β. Based on the intercept and slope of this interpolation line, the values of A and
Ea were estimated to be equal to 1.98 × 1011 min−1 (i.e., 3.30 × 109 s−1) and 1.25 × 106 J
mol−1, respectively. Furthermore, a value of reaction heat, ∆HR, equal to −3338 ± 145 J
g−1 was obtained from the integration of the peaks of Figure 2.
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PA was also subjected to isothermal DSC experiments at 240 ◦C, 250 ◦C, 260 ◦C, and
280 ◦C. In this case, the value of ∆HR estimated from the mean specific heat power curves
was found to be equal to −3483 ± 391 J g−1. This value is close to the value obtained in
dynamic conditions. Figure 4 shows the conversion curves at different temperatures. The
conversion can be calculated according to:

α =

∫ t
0 q(t)dt∫ ∞

0 q(t)dt
=

∫ T
T0

q(T)dT∫ T∞
T0

q(T)dT
(3)
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where q(t) is the specific heat power as a function of time (isothermal and dynamic condi-
tions) and q(T) is the specific heat power as a function of temperature (dynamic conditions).
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The autocatalytic nature of the process under examination is further confirmed by
the sigmoidal shape of these conversion curves [15,16]. Consistently with this nature, the
following expression of f(α) was assumed in Equation (1) [16]:

f(α) = (z + αm)(1− α)n (4)

where z is the autocatalytic factor and m and n are the reaction orders. Equation (4)
represents a model of generalized autocatalysis [16,18]. The dynamic DSC data shown in
Figure 2 (mean data) were used to estimate the kinetic triplet, i.e., A, Ea, and the parameters
of the kinetic law, z, m, and n. The specific heat power, q, can be expressed as follows:

q =
dα
dt

(−∆HR) = K(T) f(α) (−∆HR) (5)

The values of q given by Equation (5) were used to construct the sum of squared errors
whose minimization with respect to the kinetic parameters provided their final estimate.

Assuming z = 0 in Equation (4) and plotting (for the different combinations of i and j

indices referring to two different heating rates) yi,j =
ln
(

qi
qj

)
ln
(

αi
αj

) as a function of xi,j =
ln
(

1−αi
1−αj

)
ln
(

αi
αj

)
near the intersection points (A, B, and C) of the curves of Figure 2 leads to a first estimate
of the reaction orders, m and n [15,16]. Table 3 gives these values along with the values of
Ea and A previously obtained using the extended Kissinger method.

Table 3. Kinetics of the thermal decomposition of PA: first estimate.

A (min−1) Ea (J mol−1) m n

1.98 × 1011 125,174 0.49 0.79
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Starting from the values of Table 3 and the data of Figure 2, a suitable identification
procedure [16] was used to get the final estimate of the kinetic triplet, which is given in
Table 4 in terms of mean values and 95% confidence intervals.

Table 4. Kinetics of the thermal decomposition of PA: final estimate.

A (min−1) Ea (J mol−1) z m n

Mean Value 1.52 × 1011 121,991 0.055 0.850 0.828
95% Confidence Interval 3.09 × 1010 1043 0.012 0.079 0.037

Figure 5 shows the comparison between experimental data at different heating rates
(dashed lines) and corresponding kinetic predictions (solid lines). These predictions and
those presented later in the manuscript were obtained by using the mean values of Table 4.
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Figure 5. Specific heat power curves at different heating rates: DSC data of Figure 2 (mean data,
dashed lines) and corresponding kinetic predictions (solid lines).

The obtained kinetics were validated against the conversion curve calculated from
additional dynamic DSC data gathered at a heating rate of 40 ◦C min−1 (mean data) and,
more importantly, against the isothermal conversion curves of Figure 4. The comparison
between experiments and corresponding kinetic predictions is shown in Figure 6 (isother-
mal conditions) and Figure 7 (dynamic conditions). Overall, these two figures show that
the kinetic predictions are in good agreement with both the isothermal and the dynamic
DSC experiments.

3.2. Kinetic Predictions for Aged PA

The ability of the kinetics of thermal decomposition extracted to predict the conversion
of aged PA was also assessed. Specifically, this assessment was first performed against
the conversion of PA evaluated using high performance liquid chromatography (HPLC)
analysis at the end of isothermal accelerated aging tests performed at the 200–230 ◦C
temperature range. Aging tests were carried out in triplicate for each condition investi-
gated. Table 5 details the values of conversion evaluated at the end of each test, αTest, the
mean conversion over three tests, αExperimental, along with the standard deviation, σ, and
conversion predicted by the kinetics, αPredicted. The error, ε, is defined as follows:

ε =
(αExperimental − αPredicted )

αPredicted
100 (6)
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and was also reported in Table 5. Figure 8 provides a more immediate representation of the
comparison between experimental conversions for the different sample groups of Table 5
and the corresponding kinetic predictions.
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Figure 6. The conversion of PA as a function of time at different temperatures: DSC experiments
(curves of Figure 4, dashed lines) and corresponding kinetic predictions (solid lines).
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Figure 7. The conversion of PA as a function of temperature at a heating rate of 40 ◦C min−1:
DSC experiments (mean data, dashed line) and corresponding kinetic predictions (solid line).

The good agreement between predictions and experiments shown in Table 5 and
Figure 8 is a first proof of the reliability of the kinetics adopted for simulating the effect of
thermal aging for PA. This reliability was further proven. To this end, PA was kept at lower
temperatures for longer time periods (1 week and 5 weeks at 140 ◦C and 6 months at 90 ◦C).
Moreover, given that real life aging conditions may include temperature variations, PA
was also subjected to the complex thermal history of Figure 1 (with temperatures varying
between 120 ◦C and 265 ◦C over a time period of 35 min). In all cases, a good agreement
was found between the kinetic predictions and the experimental data. Specifically, in
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the case of isothermal aging, the conversions evaluated using HPLC analysis were equal
to 5.70% and 72.10% after one week and five weeks at 140 ◦C, respectively, whereas the
corresponding predicted values were equal to 5.75% and 73.97%, respectively. In addition,
in agreement with the experiments, a very low conversion of PA (~0.70%) was predicted by
the kinetics after 6 months at 90 ◦C. In the case of non-isothermal aging, a conversion of PA
equal to 35.87% was evaluated using HPLC analysis, whereas the corresponding predicted
value was equal to 33.53%. These results highlight the versatility of the kinetics, which
provided reliable predictions not only for isothermal conditions but also for time-varying
temperature conditions during the aging treatment of PA.

Table 5. Conversions of PA evaluated using HPLC analysis at the end of isothermal accelerated aging
tests performed at the 200–230 ◦C temperature range and corresponding kinetic predictions.

Sample
Group ID mPA

(mg) *
T

(◦C)
Exposure Time

(min)
αTest
(%)

αExperimental
(%)

σ

(%)
αPredicted

(%)
ε (Equation (6))

(%)

A
1 5.5

200 180
10.8

10.4 0.6 11.0 −5.32 2.1 10.7
3 4.3 9.8

B
1 3.2

210 60
5.6

5.7 0.3 5.5 3.92 4.0 5.5
3 4.2 6.1

C
1 2.4

210 90
9.3

9.9 0.6 10.7 −7.72 2.2 10.6
3 2.4 9.8

D
1 2.3

210 120
14.7
14.0
14.9

14.5 0.5 16.3 −10.82 2.1
3 2.2

E
1 2.3

220 45
10.5

10.0 1.0 9.1 9.52 6.2 8.8
3 3.2 10.6

F
1 3.2

220 60
15.8

13.8 1.8 14.3 −3.62 2.5 13.3
3 3.7 12.4

G
1 4.9

230 25
9.2

8.8 0.4 9.0 −2.32 3.1 8.4
3 2.8 8.8

H
1 2.1

230 45
22.5

23.5 2.4 23.9 −1.42 8.0 26.3
3 3.4 21.8

* Mass of PA loaded into the pan.

The predictive ability of the kinetics of thermal decomposition from this study was
also assessed against the conversion of naturally aged PA, i.e., PA aged at a much lower
temperature and for a much longer time period than accelerated aging tests (i.e., room
temperature for more than 10 years). This material was stored (as dry powder) in the
Calorimetry Laboratory of CNR-STEMS. Its availability also justified the choice of PA as the
energetic material to focus on in this study. The kinetics predicted a negligible conversion
of substrate also confirmed by the HPLC analysis of this sample. This is consistent with
the almost overlap of the DSC thermograms recorded under dynamic conditions for fresh
(i.e., unaged) and naturally aged material [19].
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Figure 8. Conversions of PA evaluated using HPLC analysis for the different sample groups of Table 5
and the corresponding kinetic predictions.

The kinetics identified here allow for the prediction of shelf life once the failure
threshold of PA has been defined as a function of the limiting extent of conversion. Figure 9
shows the conversion of substrate versus time as calculated via isothermal simulations
performed at temperatures ranging from 80 ◦C to 140 ◦C. For example, when assuming
10% as the limiting extent of conversion, the shelf life of PA is about 4 months at 140 ◦C
and about 12 years (143 months) at 80 ◦C.

Table 6 provides the kinetic predictions of the shelf life of PA at temperatures lower
than 80 ◦C. These predictions confirm that the decomposition of PA (and, more generally, of
aromatic nitro compounds) can occur at room temperature, but it is so slow that it becomes
detectable only after thousands of years [1].

Table 6. Kinetic predictions of the shelf life of PA at different temperatures.

Temperature (◦C) 70 60 50 40 30 20

Shelf Life
(years) * 40 144 564 2411 11,287 58,800

* Calculated by assuming 10% as the limiting extent of conversion.
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Figure 9. The conversion of PA versus time obtained via isothermal simulations performed with
the kinetics from this study at different temperatures. Circles represent experimental data from
accelerated aging tests.

4. Conclusions

The thermal decomposition of picric acid (PA) was investigated in this study using dif-
ferential scanning calorimetry (DSC) experiments which confirmed its autocatalytic nature.
A kinetic law, Equation (4), consistent with this nature was assumed, and the kinetics of
thermal decomposition were extracted via a suitable procedure of parameter identification
from DSC data gathered under dynamic conditions at three different heating rates. In
addition to satisfactorily reproducing isothermal and further dynamic DSC experiments,
the obtained kinetics provided accurate predictions of the conversion of PA subjected to
isothermal and non-isothermal accelerated aging tests (performed over wide ranges of
temperatures and exposure times), which was evaluated using high performance liquid
chromatography (HPLC) analysis. However, even more interestingly, it also predicted a
negligible conversion for a sample of naturally aged PA, i.e., PA stored at room temperature
for more than 10 years, which was confirmed by the HPLC analysis of this material.

In light of the results obtained, the methodology adopted in this study, which is based
on the extraction of the kinetics of thermal decomposition from dynamic DSC data in the
frame of a model-based approach incorporating Equation (4) as a kinetic law, is proposed
to predict the shelf life of energetic materials that, like PA, decompose in an autocatalytic
manner once their failure threshold has been defined as a function of the limiting extent
of conversion. This is a reliable approach, as proven for PA, that can make it possible to
avoid time- and money-consuming aging tests or, in any case, to minimize them through a
reasoned planning of the experimental campaign.
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