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ABSTRACT 

When solving sparse linear systems, it is desirable to produce the solution of a 
nearby sparse problem with the same sparsity structure. Tlùs kind ofbackward stability 
helps guarantee, for example, that one has solved a problem with the same physical 
connectivity as the original problem. Theorems of Oettli, Prager and Skeel show that 
one step of iterative refinement, even with single precision accumulation of residuals, 
guarantees such a small backward error ifthe final matrix is not too ill-conditioned and 
the solution components do not vary too much in magnitude. We incorporate these 
results into the stopping criterion of the iterative refinement step of a direct sparse 
matrix solver and verify by numerical experiments that the algorithm frequently stops 
after one step of iterative refinement with a componentwise relative backward error at 
the level of the machine precision. Furthermore, calculating this stopping criterion is 
very inexpensive. We also discuss a candition estimator corresponding to this new 
backward error which provides an error estimate for the computed solution. This error 
estimate is generally tighter than estimates provided by standard condition estimators. 
We also consider the effects of using a drop tolerance during the LU decomposition. 
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1 Introduction 

When solving systems of n linear equations Ax = b by means of Gaussian elimination with 

pivoting, a classical analysis, (Willdnson 1961), shows that we should expect to get the exact 

solution i of a slightly different linear system (A+ o A) x = b + ob where o A and ob are bOth 

smali with respect to A and b. By small we mean small in norm, Le. Il o A Il S; k c Il A 1/ and 

Il ob!l S; k c Il b Il where Il . Il is a matrix norm, c is the machine precision (that is, the greatest 

positive number such thatfl( l + c), the floating-point representation of ( l + c), equals 1) and k is 

the produet of the pivot growth faetor and a modestly growing function of the dimension n. This 

classical view permits anyentry of oA or ob to be equally large, and in particular A+oA may be 

dense even if A is quite sparse. This is unsatisfactory because zero entries of A may represent 

nonexistent physical connections in a system being modelled, and so may be known exaetly. 

A more satisfying approach to backward error than merely bounding Il oA Il and Il ob Il would 

permit the user to specify sealing factors e ij ~ O and/i ~ O for each entry of o A and ob, and would 

compute the smaliest m~ O sueh that 

loaijls;meij' lobjlS;wli. (1) 

By setting some e ij to zero, we can insist that, if m<oo, the corresponding a ij are known exactly. 

For example, il e ij = la ij I and li = Ib d, m bounds the relative perturbation in each component of A 

md b needed to make x an exact solution, and, in particular, oA and ob have the same sparsity 

structures as A and b. We will cali this m the componentwise relative backward error. It is 

important to use this different errar estimate when considering these restricted perturbations, since 

Gear (1975) has shown that the conventional errar bounds are not appropriate in this case. It turns 

out that the backward error m is quite easy to compute, and in fact costs as little as two 

matrix-vector multiplications. 

In the following, if II and v are vectors of entri es U i and v i and Q and P are matrices of entries 

q ij and p ij' lui is the vector of entries l U il, IQI is the matrix of entri es I q ijl. u S; v means U i $. v i for 

all i, and Q $. P means q ij $. P ij for all i and j. 

Theorem l: [Oettli and Prager 1964J . The smallest m satisfying (1) is given by 

IAx-bl i 

m=mF(Elxl+f)i . 
(2) 

In this expression, 010 should be interpreted as O and ç/ O (ç;tO) as infrnity. m=oo implies that no 

m satisfying (1) exists. In particular, the smallest componentwise relative perturbation of A and b 

that makes i an exact solution is 

IAi-·bl i 

m= m~x (jAllxl+lbl) i . 
(3) 

Thus, this theorem gives an a posteriori measure of the backward errar that is cheap to compute. 

Gaussian elimination with pivoting do es not guarantee that the backward errar m will be small 
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for ali possible E and f. However, a theorem of Skeel (1980) shows that as long as A is not too 

. ill-conditioned, and as long as the quantities (IAllxl)i in the denominator of (3) do not vary too 

much in magnitude, then one step of iterative refmement is enough to guarantee that m will be 

smali for the componentwise relative backward error in (3). This is true even if the residual 

r = AX-b is computed in the same arithmetic precision as used for the Gaussian elimination. The 

actual conditions under which the following theorem is true are quite complicated, and we refer 

for details to Skeel (1980, Theorem 5.1) 

Theorem 2: [Skeel 1980J Let e be the machine precision, and let the arithmetic be such that the 

floating-point result fl(aOb) of the operation aOb,(Oe {+,-,x,l}) satisfies 

fl(aO b) = (aOb)(l+e), with lei S; e. There is a functionit A,b), typicaliy behaving as O (n), such that 

when the product of K(A)= Il IAIIA-I III and a(A,x)=max(IAllxl)./min(lAllxl). is less than 
• I. I 
, l 

CitA ,b) e)-l, and there is no overflow or underflow, the following iterative refinement algorithm 

will converge after one update of x: 

Solve Ax= b using Gaussian elimination, obtaining solution X and saving the LV factors; 

Compute the residual r = A x - b (using arithmetic of machine precision e); 

while m=maxlrjl/(lAI!xl+lbDj>(n+l)e do 
i 

begin 

end; 

Solve Ad=r for d using the saved LV factors of A; 

Update x=x-d; 

This theorem may also be extended to take into account underflow and the possibility that, for lack 

of a guard digit in the hardware, we can only assert that 

fl(a±b) =a(l+e l )±b(1+e2)' 

where !ed$e, (Demmel1984). 

For sparse systems, it is also possible to improve the stopping criterion of Theorem 2 by 

changing n to y, the maximum number of nonzero entries in one row of A. 

Note that this theorem contradicts the usual advice that iterative refinement is not worth doing 

unless the residual r = Ax-b is computed using arithmetic of machine precision ~. Note also that 

the theorem do es not say that the refined solution will be more accurate, just that it reflects the 

structure of the original problem more closely than the unrefined solution. If each of the nonzero 

entri es of the original A is uncertain in its least significant bit and if m= e, then one could say thar 

one has computed the solution as accurately as the data warrants, since the answer is exact for a 

problem indistinguishable from the problem one realiy wanted to solve. 

To use Theorem 2 as the basis of a practical scheme for solving sparse linear systems, some 
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moclifications are necessary. In particular, when solving sparse linear systems where both A and b 

are sparse (or b has components of widely varying magnitude), it often happens that the quantity 

cr(A,x) in Theorem 2 is huge, and convergence does not occur. Therefore, we must make another 

choice for f, taking less account of the smaller components bi' This can be done quite easily using 

a modification of Theorem 1, and is discussed in Section 2.2. ,.. 

There is a new condition number corresponding to the new defmition of backward error in (1). 

In the case of E=IAI and f=lbl, this conclition number is just Il lA-li IAI II· This new conclition 

number is no larger than the traditional condition number Il A-l" Il A Il. In facto it may be much 

smaller than Il A-I Il Il A Il if the rows of A are badly scaled. Thus, combining the componentwise 

relative backward error with the new conclition number, we obtain bounds for the real error which 

are independent of row scaling. We cliscuss this further in Section 2.1. 

It has become common to use inexpensive estimators for the usual condition number 

Il A-I li Il A Il to estimate a bound for the error in the computed solution ofAx = b (Cline et al. 

1979, Higham 1987a, Dongarra et al. 1979). In Section 4, we present an mexpensive and accurate 

condition estimator for the new condition number IIIA -IIIAIII (and its variations). The new 

condition estimator is based on recent work by Hager (1984) and Higham (1987). 

Fmally, we tested our algonthm and associated condition estimator in a modified version ofthe 

sparse linear system solver MA28 (Duff 1977) from the Harwell Subroutine Library, which uses 

the pivotal strategy of Markowitz (1957) and a relative pivot test 

la.w I ~ u max la (~) I 
j>k Ig 

on the elements a z) of the k-th pivot row. Here u (the threshold parameter) is a preassigned factor, 

usually set to 0.1. MA28 can also drop entries of L and U that fall below a 'drop tolerance' in 

order to further decrease fili-m. The L and U factors are used to solve Ax = b for x by forward and 

back substitution in the usual way, followed by some steps of iterative refinement. We report on 

the details of the experiments in Section 5. Our conclusion is that a stopping cnterion like the one 

in Theorem 2 (bU! suitably modified as discussed in Section 5) is a reliable and inexpensive 

stopping criterion for iterative refinement, often stopping after one or no update of x. When drop 

tolerances are used and we have convergence, the rate of convergence degrades slightly but is still 

quite good. The new condition estimator of Section 4 also proves to be inexpensive to calculate 

and is an accurate estimate on our test matrices, usually providing good accuracy for the cost of a 

few fOfìvard and back substitutions with the LV factors of A. 

The rest of this paper is organized as follows. Section 2 discusses the componentwise backward 

error further and also the conditioning ofAx= b with respect to this backward error measure. 

Section 3 examines how the statement of Theorem 2 must change when either the floating-poin! 

arithmetic has no guard digit (such as on the CRAY) or underflow occurs. Section 4 presents a 

condition estimator corresponding to componentwise relative backward error. Section 5 discusses 

the numerical experiments. Section 6 has conclusions. 
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2 Backward error and conditioning 

2.1 Condition number 

The condition number of a problem is the least upper bound of the ratio of the norrn of 

perturbation in the solution to the norrn of the perturbation in the input data, in the limit as the 

perturbation in the input data goes to zero. To compute it, we need a norrn for the perturbation .1 x 

in the solution as well as a norrn far the perturbations L1 A and L1 b in the input data. The norrn for 

the input data will depend on E and f as described above: Il (.1 A,.1 b) Il E,r is defined as the smallest 

m such that 1.1 AI :s; m E and 1..1 bi :s; mf. For the llorrn of the output, we choose the usual sup norrn 

Il x Il 00 == max Ix d, in order to cater far zero components in x. With this notation we can write 
i 

Il..1xll oo /llxll oo 

KE,r(A,b) ==~~~ /I (.1 A,.1 b) Il E,r 
.d.b-70 

where x+..1 x = (A+..1 A) -1 (b+..1 b). Following Skeel (1979), this may be easily evaluated as 

KE,r(A,h)== Il lA-li E Ixl+!A-
1

1 flloo 
Ux IL., 

For ex ampIe, if we choose E= IAI and f= Ibl for the componentwise relative errar, 

K1A1,lbl (A,h) = Il lA -I! IAllxl+IA -lllbill 00 
Il x Ilo. 

(4) 

(5) 

(6) 

Sometimes it is convenient to have a condition number wruch is independent of the right-hand side 

h. Since 

Il IA-1 1IAI Ixllloo IIIA-IIIAllxlll oo 
Il x Il 00 :s; K1A1,lbl (A,b):S; 2 .. .. 

and Il lA -li IAI Ixl Il,,,, / "x 1l00:S; Il lA -11 IAI 1100' we get the simpler condition number 

K1A1(A)== IIIA-11IAllloo~ 0.5 KIA1,lbl(A,h). 

(7) 

(8) 

The purpose of the condition number is, of course, to provide errar bounds: if A is perturbed by 

Id AI:S; m IAI and b by 1..1 hl :s; m Ihl, and if Cù is srnall enough, then x will be perturbed by no more 

than about m KIAI,lbICA,h). More rigorously, Skeel (1979) shows that, for Cù defmed as in (3), 

Similarly, if we define 

we have, for Cù defined as in (2), 

Il ox 1100 < Cù K1A1,lbl(A,h) 
"xII"" - l--CùK1A1 (A) . 

KE(A)== III A-l I E Il,,,, , 
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Iloxll ... (01(E,f(A,b) 
-:----< . Il x 1100 l-l:v1(E(A) 

(11) 

It is easy to see that the problem is no more badly conditioned with respect to the 

componentwise relative backward error measure than with respect to the usua! normed baekward 

error measure. This is because 

K(A) = IIA-l
U ... IIAII..,;::: IIIA- 1 1IAIIL,,,=1(IAI(A). (12) 

It is possible for 1(1A1(A) to be much smaller than 1(A). For example, we can make 1(A) 

arbitrarily large by multiplying one of the rows of A by a l~ge enough constant. However, 1(IAI (A) 

is independent of the row scaling of A. 

2.2 Backward error 

As stated in the introduction, it is in practice necessary to modify the choice f=lbl of the 

eomponentwise relative baekward error. This need arises beeause of the faetor a(A,x) in Theorem 

2; when a(A,x) is large, eonvergenee of the backward error (O in equation (3) to the roundoff level 

is not guaranteed. Take, for example, A sparse and irreducible, and x sparse sueh that some 

bi = 2;.aijxj are zero beeause eaeh aijxj =0. Sinee A-l is structurally full (Duff, Erisman, Gear, 
J . 

and Reid 1985), x will be structurally full as well, so that a computed eomponent xk can be zero 

only through exact cancellation. In practice, this means that all components of the computed 

solution x will be nonzero, with the entries wrnch should be zero containing roundoff error of 

unpredictable sign. Therefore both r j = (Ax-b) i and (lAllxl+lbl) j may be small but of similar 

orders of magnitude, so that (O stays large even after some steps of iterative refrnement. 

Ideally, we would like to choose f to satisfy the following four criteria: 

(i) the backward error (O (in (2» usually converges to machine precision after one step of 

iterative refinement, 

(ii) (Of 1S "small" eompared to b, 

(iii) the resulting error bound in (11) is as small as possible, and 

(iv) (1) is row-sealing independent 

We have experimented with two choices for f wrnch come close to meeting these four eriteria; 

this will be bome out by the numerica! experirnents in Section 5. It turns out we must sacrifice the 

sparsity structure of b in order to guarantee a small backward error bound (1) (criterion (i». A 

trivial way to do this 1S to set E=O and f=lrl/ e=IAx-bl/ e, whence oA=O, ob=r and (O=e. Of 

course this is unsatisfactory because ob = r may be much larger in norm than b if the system is 

ill-conditioned, violating eriterion (ii). Our approach is to keep E= IAI and choose li larger than 

Ib d only if it is necessary to keep (1) small. 

We will choose fin an a posteriori way, letting it depend on the computation as follows: Let 
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w=IAllil+lbl be the vector of denominators in equation (3). We then choose a threshold 'ri for 

each w i' so that when Wj>'"Cj we can use the usual scaling factorfi = IbJ Otherwise, when w i ~ 'ri• 

we choose a larger li' Correspondingly, we divide the equations ofAx=b into two categories, 

those where w j>'ri , and those where w i ~ '"Ci' We may assume without 10ss of generality that the 

leading m equations ofAx=b, which we denote by A(l)x(l) =b(l), belong to the first category, 

and the remaining n-m equations, A (2) x (2) = b (2) , belong to the secondo As stated above, we will 

let r(l) = lb (1) I in the first category. There are several possibilities for '"Ci' but in practice the 

following one has worked well: 'rj = 1000 n e ( Il A i. n 00 Il i: Il 00 +Ib i D, where A i. is the ith row of A. 

Note that 'rj is about 1000 times larger than the maximum possible roundoff error committed in 

computing Wi' and W j can only be less than 'ri if each product aijxj is tiny. We perfonned other 

runs to check the sensitivity of this choice and found that a change of say a factor of ten (to 100) 

could occasionaliy change the number of iteratioIls and the error estimate but usualiy not by much. 

We note, however, that this can be viewed as a local choice and could be varied while performing 

iterative refmement, possibly increasing it in order to decrease co. 

Given the vector 1: of the thresholds 'rj , we can choose f(2) in at least two ways. The first way 

that we consider is as follows. We let f(2) = lA (2) I e Il i: Il 00' where e is the column vector of ali ones. 

This corresponds to the usual normwise backward error, and so the components r i of the residual 

are almost guaranteed to be smali compared to these l?) , insofar as Gaussian elimination alone 

guarantees a smali residual in the nonn sense. Since we have not modified the definition of E, we 

are further guaranteed a solution x which preserves the sparsity structure of A. 

There is a difficulty with this choice of f, however: we are no longer guaranteed that Il ob Il 00 is 

small compared to /I bilo.' This can on1y happen when A is very ill-conditioned, since 

Il A (2) Il 00 Il X Il 00 / 1/ bilo. is a lower bound on the condition number Il A-l Il 00 Il A Il 00 of A. We have 

constructed artificial examples where this happens, but not obser'Ved it in practice. There is also 

the possibility that large components in fwill make the condition number K1AIJ(A,b) too large and 

so make the error estimate co K1A1,feA,b) too pessimisti c, but note that this condition number is still 

bounded by 2 KIAI(A). We may avoid this possibility as follows. Given the two backward errors 

the residual satisfies 

IA(')x-b(I)lj ,i=1,2, 
co i == m;-,< (lA (l) Ilxl+lf(t) Dj 

(
lA (l) x-b (l) I) ( co (lA (l) Ilxl+lb (l) D ) 

Irl = lA (2) x-b (2) I ~ co
2 
(1~(2) Ilxl+IA (2) I e Il x Il 00) 

and, to frrst order, the error is bounded by 
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lIoxll oo Il A-1r 1100 IIIA-Il/rlli co ----= ~~~--
!I xII... "xII"" Il x 1100 

Il Wl I (lA (1) 11~lb (1) I) II- + '" Il Wl I (lA (2: 1:1+[(2) ) II- (15) 

~Wl Uxll... 2 IIxll oo 

== Wl K(}} +C02 1((}} • 
1 l 

The advantage of this fOIUlUlation is that components of r(2) may be very large compared to the 

components of b (2) , causing W2 te be very small and 1((}} to be correspondingly large but without 
2 

affecting Wl or 1((}} • This formulation is tested in the numerical experiments in Section 5. 
l 

A second possible choice for r(2) is to use r(2) = n b 1100 e. This choice of f(2) assures us that a 

small backward error indeed means 1I0b 1100 / Il b 1100 will be small, but gives us less assurance that 

the backward error will converge to macrune precision. We have not seen it fail in practice. As 

with the other choice off, we can bound the errorusing two backward errors defmed as in (13) and 

the sum of theÌr products with two condition numbers as in (15). Section 5 also reports on 

numerica! experience with this backward errur measure. 

Both the previous choices for f(2) can violate one of the criteri a (ii) or (iv). The choice 

r(2) = lA (2) I e Il X Il 00 guarantees that co i' i = 1,2, are row-scaling independent (criterion (iv», while 

it can violate criterion (ii). The choice f(2) = Il b Il 00 e satisfies criterion (ii), but the corresponding 

co2 is row-scaling dependent Both, as we shall see, satisfy criteria (i) and (iii). 

We also see that the bound depends on the accuracy with which we can compute the residual r 

and the backwards error co in (2). How much can roundoff contaminate the computed co, especially 

when r=Ax-b is computed by an arithmetic with macrune precision e? A standard error analysis 

shows that the errar in the computed r, Or, is bounded by (r+1) E (lAllxl+lbl), where r is the 

maximum number of nonzero entries in a row of A. When E = IAI and f = Ibl. this means that the 

computed co cannot differ from the true co by more than about ±( r+1)e which will be within the 

tolerance of our sparse modiflcation of Skeel's stopping criterion in Theorem 2. Since the 

computed co is almost certain1y at least abour re, the final errar bound co 1(IAI,lbl (A,b). can be low 

by no more than a factor of 2. The same is true for W i ' i = l , 2. 

At this point, one might ask what choice of E and f minimizes the resulting errar estimate (11). 

It is easy to see that any choice of E and f such that Elxl+f is a multiple of Irl, say E = O and f= Irl, 

yields the minimum product co 1( E,r(A,b) = Il lA -lllrlil 00 / Il x Il 00. Since the true error is 

Il O x Il 00 / Il x 1/ 00 = Il A -1 r /I 00 / Il x Il 00' we see that the bound is as tight as ignoring signs in r allows. 

For this special choice ofE and f, we should also add (r+1) e(lAllxl+lbl) to Irl since roundoffmay 

lower the computed value of Irl by the same amount The choice E = O and 

f = Irl + ( r+ 1) e(lAI/xl+lbl) yields a new errur bound of 
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Il oxll.o !IlA -lllrlll ... +( r+1)eK'IAI,lbl(A,b). -~ -~~-~ .... (16) 

Thus we see mat me con<Ìition number K'IAI,lbl (A,b) plays a centraI role independent of me notion 

of backward error, just because it reflects me possible roundoff errors in me computed residuaI. 

Furthermore, after only a few steps of iterative refmement Theorem 2 guarantees that, to frrst 

order, tbe bound (9) will be about the same as the bound (16). In our experiments we have seen 

that, usually, the estimates of the real error given by (9) and (15) have the same order of aecuraey 

as the estimates obtained by the bound (16). 

Note that if we set e ij = Il A 11.0 and ii = Il b Il 00' tbe baekward error of i with respeet to E and f is 

given by Il Ai-b Il 00 I ( Il A 1100 Il i 111 + Il b IL,J. lt is a1so easy to see mat 

(
A b)= IIA-

1 
1100 Il A 11.0 II x Il 1+IIA-

1
1I ... IIbIL. (17) 

K'E,f , U x 11.0 

whieh is within a factor of 2n of Il A-l 1100 Il A 1100' Thus, this ehoiee of E and f, which permits 

equally large perturbations in all entri es of A and b, gives essentially the same baekward error and 

condition number as the usuaI normed baekward error. 

We note, in conclusion, that Skeel's originaI motivation (Skee11979) was to anaIyze the effeets 

of row and column scaling of A on the accuracy and the stability of the LV factorization. He 

concluded tbat tbe optimal way to scale depended on the solution: the columns should be scaled 

(thus scaling the solution components) so that the components of the sealéd solution are all equal 

in magnitude, and the rows should be scaled so each component of IAllxl (x is the solution) is 

equal in magnitude. This is unfortunately hard to use in praetice since it requires mueh information 

about the solution. Fortunately, one step of iterative refmement tends te overcome the effects of 

bad row sealing, as we have seen. 

3 Different models of floating-point arithmetic 

Theorem 2 assumed that arithmetic was implemented rather cleanly, Le. that the floating-point 

resultfl(aOb) of the operation aO b,(O E {+ ,-,x,/}) satisfies 

fl(aO b) =(a O b)(1+e) (18) 

with lei ~ c, where E is called the machine precision. This model eliminates both the possibility of 

underflow as well as machines like the CRA Y s, where for lack of a guard digit in the hardware we 

can only assert that 

fl(a±b) = a(l +e l )±b(l +e 2) (19) 

where le d ::;; E. Thus, when a and b are very close and we are subtracting, this model permits a large 

relative errar in the computed differenee. For example, on any CRA Y or many CDC maehines, the 

computed differenee of 2/ and the next smaller floating-point number is wrong by a faetor of 2 

(see, Kahan 1981). 
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Despite this difficulty, it is possible to carry through the proof of Theorem 2 using the weaker 

model (19) instead of (18) and arrive at essentially the same conclusion: one step of iterative 

refi.nement, even without computing the residua! using arithmetic of machine precision E
2

, is 

enough to guarantee a small componentwise relative backward error as long as the matrix is not 

too ill-conditioned and a(A,x) is not too large. One might expect probIems in bounding the error 

in the computed residualfl(Ax-b), since the resnit might be off by a factor of 2, but in the ana!ysis 

this potential error is dominated by the error in computing Ai, so the proof goes through. 

Similarly, the error in updating x-d is swamped by larger errors. 

The other exception te the model in (18) is underflòw. The extension of error analysis to include 

underflow is discussed in some detail by Demmel (1984), and we just summarize the results here. 

pIace of (18) we use the model 

fl(a O b)={aO b)(l+e)+v (20) 

where lei::; E as before, and v represents the underflow error. Let A be the underflow threshold, that 

is the smallest positive, normalized floating-point number. Then, on machines where computed 

qumtities which would be smaller than A are replaced by zero, I vi is bounded by ;L On machines 

with IEEE standard floating-point arithmetic (see IEEE 1985, IEEE 1987), gradual underflow 

lowers the bound on Ivl to cl. 

The statement ofTheorem 2 must be modified as follows to account for underflow. For gradual 

underflow, we can say the following: ifthe inputs A and b and the output x are normalized (that is, 

exceed A in magnitude), and if the residuals are computed by an arithmetic of machine precision 

either E or E
2

, then gradual underflow can only degrade performance to the level of the residual 

computation using the arithmetic of machine precision e. For conventional underflow, the norms 

of A, b md i: must exceed AI E for this statement to be true. 

The use of extended range md precision in intermediate computations does not change these 

conclusions. Assuming r and d are stored in the same format as A, b and x, underflows in r md d 

have the same potenti al effects on performance as they did when they were not computed in 

extended formato 

We have not yet considered the effect of underflow on the rate of convergence of the iteration. 

There are matrices for which the iteration converges only if underflows do not occur, but the 

matrices are so ill-conditioned as to make the computed solution untrustworthy myway. As long 

as some entry of A is large enough CÀ. for graduai underflow and ,lI E for conventional underflow) 

then underflows will have an effect on the convergence rate comparable to roundoff. 
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4 An estimator for K"jA/./b/ (A,b) 

In order to estimate the accuracy of a computed solution ofAx = b, two ingredients are needed: 

a bound on the backward error (however it is measured) and a condition number with respect to 

the choice of backward error. As discussed in Section 2.2, the product of the two previous 

quantities provides an approximate upper bound on the relative error in the computed solution. 

In the case of the conventional nonnwise backward error, the condition number is essentially 

given by K(A)= il A-I Il ... Il A 1100' There has been much worlc on such estimators for K(A) in recent 

years ( for example Cline et al. 1979, see Higham 1987a for a complete list of references), and 

cheap, reliable estimators are available in standard software packages such as LINP ACK 

(Dongarra et al. 1979). 1t is natural to seek an analogous estimator for K"/A/./b/(A,b). 

From (5) we see that the quantity we need to estimate is 

Il lA -l,E lxl+IA -11 fII 00 = Il lA -11 (E Ixl+t) Il 00' (21) 

In p1ace of the true solution x, we may use its computed approximation X. In the case of 

componentwise relative backward error, we may also just use the simpler condition number 

K"IA/ (A) which requires us to estimate 

U lA-li IAI 110.= Il lA-II IAI e 1/ ... (22) 

where e is the vector of all ones. Either way, we need 10 be able to estimate 

IIIA-l lgL (23) 

where g is a nonnegative vector which is easy 10 compute (in the above examples it costs just one 

matrix-vector multiply). 

Let G=diag(gl, ... ,g,J. Then g=Ge and 

IIIA-IlglI .. = IIIA-li Geli .. = Il IA-IGI eli .. = IIIA-1GIL= Il A-l G Il ... (24) 

/I A-I Gli .. can be estimated by the algorithm of Hager (1984) and Higham (1987), which 

estimates the l-nonn (or infinity-nonn) of a n x n matrix given the ability to multiply a vector by 

both the matrix and its transpose. We can multiply any vector z by the operator A-l G by 

multiplying z by the diagonal matrix G, and then solving Ay= G z using the LV factorization of 

A. Multiplying by (A -1 Gl is equally easy. 

Our estimate of condition numbers K"/AI,/b/ (A ,b) includes a dependence on the calcu1ated 

solution. We also perfonned runs for different solutions ( for example, x i = i 2 , i=l, ... ,n ) and 

found little sensitivity. Note that the experiments in Set 1 in Section 5 give us results close to the 

upper bound of twice K"/A/' 
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5 Numerical experiments 

We tested the stopping criteria, the backward errors (13) and the error bound (15) by modifying 

the sparse linear system solver MA28 in the Harwell Subroutine Library (Duff 1977). As we 

mentioned in Section l, MA28 can drop entries of L and U that fali below a tolerance (calied 

drop tol in our tables) in order to further decrease fili-in (drop tol = O corresponds to standard 

Gaussian elimination). The resulting L and U factors are then used to salve Ax = b far x by 

forward and back substitution in the usual way, followed by some steps of iterative refrnement. 

Ali tests were done on an ffiM 3084. In single precision, the machine precision, e, is 

16-5 = 10-{). In double precision, it is 16-13 =2x1O-16 • 

Ali our runs are on a common se! of test matrices from the Harwell-Boeing test set (Duff, 

Grimes, and Lewis 1987). Their names, number of nonzero entries and condition numbers K(A) 

and KIAI(A) are given in Table 1. The name of each matrix includes its dimensions, for example 

GRE1l5 is 115 by 115. Two matrices are identified as GRE216. Both of these have the same 

structure, but they have quite different numerical values. We also ran our tests on some other 

matrices fiom the set and obtained results broadly comparable with these displayed. 

For each fUll, we chose the value of the solution x and then we computed the right-hand side b 

by multiplying the solution by the test matrix. Ali matrices have also been scaled before 

computing the right-hand side, thus obtaining two test problems for each matrix. The scaling is 

computed using tbe Harwell routine MC19, which makes tbe nonzeros oftbe scaled matrix near to 

unity by minimizing the sum of the squares of logarithms of the moduli of the nonzeros (Curtis 

and Reid 1972). This scaling do es not guarantee that K(A) and KIAI (A) must decrease (see Table 1) 

although on many matrices tbe effect is very beneficial, particularly for the classical condition 

number. This is particu1arly so for the second GRE216 ex ampIe, where, before the scaling, the 

matrix was essentialiy singillar. Note in generaI that many of the matrices are poorIy conditioned, 

particularly before scaling. 

In all tbe runs, the standard normwise backward error 

111"11"" (25) 
1]= Il A Il,,,, IIxll""+IIbll,,,,' 

the condition number K(A) and the error bound 1] K(A) were computed and compared to the other 

backward errors, candition numbers and error bounds. 

We ran our tests witb different choices for the vectors 1: and f defrned in Section 2.2 and 

different right-hand sides b. According to these different choices, we group the experiments into 3 

sets. We also include some runs using drop tolerances (set 4). 

The main data for our numerical experiments are presented in Tables AI-A15 in the Appendix. 

this section, we display summaries of these results. 
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Nonzeros Before scaling After scaling 

/(A) i{'1AI(A) /(A) /(\AI(A) 

GREl15 421 0.930+02 0.860+02 0.690+04 0.130+03 

GRE185 975 0.38D+06 0.150+06 0.39D+D6 0.140+06 

GRE216 812 0.280+03 0.220+03 0.200+03 0.180+03 

GRE216 812 0.830+15 0.290+14 0.560+08 0.850+07 

GRE343 1310 0.470+03 0.370+03 0.300+03 0.260+03 

GRES12 1976 0.460+03 0.370+03 0.400+03 0.360+03 

GRE 11 07 5664 0.180+09 0.980+08 0.770+10 0.240+09 

WEST67 294 0.910+03 0.310+03 0.300+03 0.130+03 

WESTl32 413 0.110+13 0.800+07 0.940+04 0.210+04 

WEST156 362 0.120+32 0380+09 0.910+12 0.150+09 

WEST167 506 0.690+11 0.520+06 0.460+04 0.120+04 

WEST381 2134 0.530+07 0.380+05 0.38D+D6 0.53D+04 

WEST479 1888 0.490+12 0.370+07 0.27D+D6 0.200+05 

WEST497 1721 0.380+12 0.130+07 0.420+07 0.630+04 

WEST655 2808 0.490+12 0~370+07 0.42D+D6 0.360+05 

WEST989 3518 0.130+13 0.100+08 0.58D+D6 0.520+05 

WEST1505 5414 0.140+13 0.100+08 0.670+08 0.210+07 

WESTI021 7310 0.280+13 0.210+08 0.86D+D6 0.100+06 

Table 1. Condition numbers before and after sealing. 

In ali eases, the stopping eriterion was 

Stop if m ::;; é or m does not decrease lJy at least a jactor oj 2 . 

Ali tbe runs used IBM double precision, except for the experiments in single and mixed precision 

in set 1. This stopping eriterion differs from that used in Theorem 2 (m::;; (n + 1 ) e). The value in 

Theorem 2 ean be too large, especialiy for very large and sparse matrices, and tbe iterative 

refinement could stop too early. Generaliy, oUT stopping eriterion tenninates tbe iterative 

refinement with a value of m less tban é. If tbe convergenee is slow (for example, using double 

precision, tbe second GRE216 matrix in Table A7 s10ps after 4 iterations witb 

m= 0.4 x 10-15 
"'" 2 c), our stopping criterion reeognizes this early. However, tbe final value of m is 

stili of order é. Somewhat surprisingly we find tbere is no advantage in including a faetor (y+ 1) in 

our stopping eriterion. Indeed, its inclusion would often result in no iterations, and there are only 

few occasions in sets 1 to 3 where tbe m::;; éeriterion is not met Note tbat, in the runs in sets 2 to 4, 

m is replaced by mI + m2 (as in equations (13)-(15) ). If we used a similar condition on 77, in most 

of the examples we did not perfonn any steps of iterative refinement because the first solution 

satisfied tbe stopping criterion, but, before scaling, tbe estimation of tbe errar Il OX Il 00/ Il x Il 00 given 

by 77 K"(A) was very poor because of tbe very large value of K"(A). 

We diseuss tbe experiments for eaeh of oUT four sets of values in turn. In ali tbe following tables, 

the row corresponding 10 "Num. iter." gives tbe number of steps perfonned by tbe iterative 

refinement algorithm and tbe row eorresponding to "Num. cases" gives the number of examples 

for which tbe iterative refinement performed tbat number of iterations. By "Errar" we denote the 
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max.-norro of me difference between me computed solution and me actual solution used to 

. generate me right-hand side, divided by me max.-nonn of me actual solution. 

In me following, we denote by mr') and by 1Cy}, i=1,2, j=1,2,3,4, me componentwise 
I 

backward ermrs defmed by (13) and me corresponding condition numbers defined by (15). The 

superscript identifies me set of tests. 

Set l: 

For mese tests we chose 't'i = 0, so mat all equations belonged to category 1. Thus me backwards 

ermr was given by m?) as defined in (13), the condition number 1C~} and me ermr bound by 
l 

m?) K~: as defined in (15). Because all the equations belong to category l, K~; = 1C1A1,lbl(A,b), 

and mil ) =0. The right-hand sides b were chosen so that the true solution x had all components 

equal to 1. The drop tolerance was zero. These test were run in single precision, double precision, 

and mixed precision (all single precision, except for double precision computation of residuals). 

The Tables AI-A5 in me Appendix are relative to Set 1. 

min avr max 
Lo I(A)(Before scalirtg} 

g IO I(A)( After scaling ) -1.9 4.1 19 

I(~} (Before scaling ) 
Log lo 

I -0.38 1.4 6.5 
I(~} (After scalirtg) 

I 

Before scaling After scaling 

min avr max min avr max 

Log (I(A)/I({I}) 
IO "'I -0.26 3.6 22 -0.26 0.91 3.5 

Table 2. Summary of results for the condition numbers of set l. 

In Table 2, summarizing me results in Table AL we observe that the condition number 1C~) is 
1 

always less, for both scaled and unscaled matrices, than twice the classical condition number 

K(A), as must be me case from the theory. In some examples, 1C~) is much better than 1C(A) (for 
l 

example, the W'EST156 example before scaling 1C~) < 3.2 X 10-23 K(A». Moreover, Table 2 
l 

shows that me classical condition number 1C(A), without any fonn of scaling, is rather unreliable 

as a measure of me ill-conditioning of the system. Table 3 (summarizing the results in Tables A2 

and A3) reflects the previous considerations, so that the estimation mp) 1C~) of the ermr is 
I 

generally qui te tight, while T7 1C(A) can be too pessimistic before scaling. Note that it is possible 

for our bound to be less tight than that from the classical theory but, when this happens in the 

experiments, our bound is only 3 times greater than the classical one in me worst case. 

Throughout, our estimate of condition numbers 1C1A1,lbl(A,b) includes a dependence on the 

calculated solution. We also performed runs for different solutions (for example, x i = i 2 , i=1 , ... ,n) 
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Before scaling After scaling 

Num.. iter. O l ~ 2 O l ~ 2 

Num.. cases O 17 l l 16 l 

I 
mm avr max min avr max 

Log 10(77) -18 -16 -16 -17 -16 -16 

Log IO(wf!» -16 -16 -16 -16 -16 -16 
Lo 77lt"(A) 

glO Error 0.78 4.7 22 0.93 2.0 4.1 

WCI) lt"(l) 
I "'I 

Log 10 Error 
0.48 1.5 25 0.43 1.4 3.3 

Log 10 
771(A) 

w(l) 1(1) -{).32 3.2 20 -{lA 1 0.53 3.0 
I "'1 

,_ ... ~-_ ...... ~_._-_ .. _~--_._ ... - , 
~ 

, 
- -_ ...... _- - -_. __ .... _- -

Table 3. Summary of results for set 1. 

and found little sensitivity. Note that our choice of x in Set 1 gives us results dose to the upper 

bound of twice 7("jAj. In Tables A4 and A5, we report the results of the algorithm using single and 

mixed precision. Unfortunately, the test matrlces are in many cases so ill-conditioned that the 

Ìterative refinement diverged, that is Cùf1) increased after some steps as in, for example, GREII07 

and the second GRE216 example in Table A4. In practice, IBM single precision is too poor to 

produce good results, and the use of mixed precision does not help. Note, however, that our 

algorithm still tenninates after only a few steps. In every case, we tried running the iterative 

refmement for twenty steps and in no cases did we get much improvement over the results shown. 

Our algorithm for computing the condition numbers encounters numerical difficulties partly 

because of the ill-conditioning of these matrlces and partly because we use threshold pivoting in 

the LU factorization. We could have used iterative refinement in this computation, but this would 

be at vari ance with onr desire for a cheap estimator. Our feeling is that single precision 

calculations are inappropriate here. 

Set2: 

For these tests we chose "Ci = 1000 n B( 1/ Ai. I/o, /I X /I .. +Ib iD and f(2) = lA (2)1 e Il X Il .. , where e is the 

column vector of all ones. This leads to the backward errors Cùi2) and Cùi2) defined in (13) and the 

condition numbers }('(2) and 7("(2) and eITOr bound CV(2) }('(2)+cv(2) 7("(2) defined in (15). The 
Wl w2 l Wl 2 w2 

right-hand sides were chosen so that the true solution x had every fifth entry equal to 1 

(x l =x 6 =x 11 = ... = 1) and the rest zero. The drop tolerance was zero. These tests were done in 

double precision only. Tables A6 to A8 show the results of runs on set 2. We present a summary of 

these results in Tables 4 and 5. 

We also ran all the test examples of set 2 replacing zero with 10-16 in x and obtained similar 

results. It is necessary to emphasize that, in most of the examples of set 2, the standard CV 
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min avr max 
Lo K:(A)( Before scaling) 

g lO K:(A)( After scaling) -1.9 4.1 19 

K:(2) (Before scaling) 
Log lO 

"'1 -{l.37 1.3 7.0 
K:~) (After scaling) 

I 

I("~) (Before scaling) 
Log 1o 

l -{l.43 1.6 6.1 
1'C~ (After scaling) 

Befere scaling After scaling 

min avr max min avr max 

LoglO(1'C(A)/7(~» 
I 0.45 4.3 23 0.26 1.5 3.8 

Log lo(7(A)/ /C~) 0.52 4.3 23 0.30 1.8 5.2 

Table 4. Summary of results for the condition numbers for set 2. 

computed by (3) was very large (sometimes of order 1), so that we would get no useful 

infonnation if we use a very large value for 1:i . Notice that, in ali our runs, cof) is very smali 

compared with co f) , in agreement with our comments after equation (15). 

It may appear that our errar estimate is sometimes poor, but the relatively good solution 

obtained is realiy fortuitous as can be seen by the results in the Appendix using the same matrix 

but with a different right-hand side (the examples shown by the GRE1107 results in Tables A3 and 

A8 and by the second GRE216 results in Tables A2 and A7). 

i 

Before scaling Afler scaling 

Num. iter. O l 2: 2 O l 2: 2 

Num. cases l 13 4 2 12 4 

min avr max min avr max 

Log 1O (rl) -23 -17 -16 -17 -17 -16 

Log lO «(t)f2» -16 -16 -15 -16 -16 -15 

Log lO «(t)i
2» -32 -27 -19 -31 -28 -19 

L TI I(A) 
og10 Error 0.65 4.5 19 0.97 2.2 4.0 

aP) 7(2) + (t)(2) 1(2) 

Log lO 
I "'I 2 "'2 0.58 1.7 4.3 0.50 1.6 2.7 

Error 

Log 10 
TI I(A) 

(t)(2) 1(2) + (t)(2) /((2) -{l. 17 2.8 16 -{l.23 0.63 2.4 
1 "'I 2 "'2 

Table 5. Summary of results for set 2. 
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Set 3: 

For these tests we chose 1:j = 1000 nE( Il Ai. to Ili: 1100 +lbjD just as in Set 2, and f(2) = "b 1100 e, 

where e is the column vector of all ones. This leads to backward errors Cùi
3

) and Cù4
3

) defined in 

(13) and the condition numbers K(3) and K(3) and error bound Cù (3) K(3)+Cù (3) K(3) defmed in (15). 
(j}1 (j}2 l (j}1 2 (j)! 

The right-hand sides were chosen so that the true solution x had every fifth entry equa! to l and the 

rest zero. The drop tolerance was zero. These tests were done in double precision only. The Tables 

A9-All are relative to Set 3 of parameters, and we summarize these in Tables 6 and 7. 

min avr ma.x 
Lo /C(A) (Before scaling) 

g IO /C(A)(After scaling) -1.9 4.1 19 

I(~) (Before scaling) 
Log lO 

I "().37 1.3 7.0 
I(~) (After scaling ) 

I 

/C~) (B efore scaling) 
Log lo 

2 -1.9 4.0 14 
/C~ (After scaling ) 

Befere scaling After scaling 

min avr ma.x min avr ma.x 

Log lO (/C(A) II(~» 
1 0.45 4.3 23 0.16 1.5 3.8 

Log IQ(IC(A) II(~) 0.10 0.97 6.4 0.38 0.86 2.6 

I Table 6. Summary of results for the condition numbers for set 3. 

Befere scaling After scaling 

Num.. iter. O 1 ~ 2 O 1 ~ 2 

Num.. cases 1 13 4 2 12 4 

min avr ma.x min avr ma.x 

Log w(r,) -23 -17 -16 -17 -17 -16 

Log IO «(j}f3» -16 -16 -15 -16 -16 -15 

wg I0«(j}i3» -30 -27 -17 -31 -28 -19 
w T7 /{'"(A) 

glo Error 0.65 4.5 19 0.97 2.2 4.0 

(j}(3) 1(3) + (j}(3) /{'"(3) 

wg IO l "'I 2 "'2 0.58 2.2 7.9 0.50 1.6 2.7 
Error 

w T7 /(A) 
g lO (j}(3) /(3) + (j}(3) /(3) ..().17 2.3 11 "().23 0.63 2.4 

1 '"I 2 "'2 
.~-~ ~~-_._._-~---~_.~. __ .... -

Table 7. Summary of results for the set 3. 

Comparing Tables 4 and 6 we observe that, while K;;) and K;;) are usually quite close, K~) can be 
1 2 2 
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much larger than }(~) , (for example, see the \VEST156 example before scaling, where }(~) is lO 16 
l 2 

times larger than }(~) ) and tbe error estimation can be pessimistico Also note tbat, comparing Une 
l 

7 of Tables 5 and 7, this choice of f does not give as good a bound as our choice for fin set 2, 

although the difference is minimal after scaling. 

Set4: 

For these tests we used nonzero drop tolerances (droptol= 10-5, drop tol= 10-3). We changed 1:j 

from its earlier value to 1:j=1000n(é'+droptol)(IIAi.1L IIxll..,+lbiD and used 

f(2) = lA (2) I e Il x /I 00' where e is the column vector of all ones. The entri es of b and x were chosen as 

in Set 3. Double precision was used. Tables A12-A15 are the results of runs using this set of 

parameters, and the results are summarized in Table 8. 

drop toI: = 10-5 drop tal. = 10-3 

Num.. iter. O l ~ 2 O l ~ 2 

Num.. cases 2 6 lO 2 l 15 

mm aVT max min avr max 

Log 10(17) -18 -16 -16 -18 -15 -4.6 

Log lO (Wf4» -<>O -00 -17 -00 -00 -00 

Log JO(Wi4» -16 -16 -15 -16 -15 -2.8 
Lo 17 I(A) 

glO Errar 0.66 2.3 3.7 0.90 2.1 4.6 

W(4) 1(4) + W (4) 1(4) 

Log io 
1 "'I 2 "'2 0.66 1.6 2.8 0.64 1.6 3.8 

Errar 

Log lo 
17 I(A) 

W(4) 1({4) + w(4) 1(4) -D.14 0.64 2.5 -0.95 0.45 2.9 
1 "'I 2 "'2 

Table 8. Summary of results far set 4. Tbe -00 entri es correspond to values of coi4) = O. 

Note that, in this set, we nearly always have CO}4) = O. This corresponds to putting all of tbe error 

into b, that is o A = O and ob = A x - b, obtaining tbe situation wruch was discussed at tbe 

beginning of Section 2.2. In this case, f does not depend on b explicitly, but our bounds are still 

good. Note again tbat our stopping criterion terminates after only a few iterations if the iteration 

diverges. We checked this divergence by forcing more iterations and observed eitber oscillation or 

divergence. 

We observed, contrary to Zlatev (1986), tbat little gain in sparsity was obtained (see for example 

Table A15), while even moderate values of drop tolerance caused divergence of tbe iterative 

refinement. A drop tolerance strategy appears to work well only on very structured sparse matrices 

such as those resulting from discretizations of parti al differenti al equations. We confirmed this 

witb a few test runS. See, for example, tbe results in Table 9. 
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drop tal O 10-2 10-1 

Fili-in 23619 16085 4697 

Num. iter. 2 14 16 

Error O.32D-14 O.25D-14 O.29D-01 

Table 9. Fili-in, numbers of iterations and ermr for the five point operator on a 30 x 30 grid, 

using x i = 1 ,i = 1, ... ,n and different values of drop tol. 

Fmally, Duff, Erisman, and Reid (1986, page 276) described an example ofGear (1975) where 

the ermr matrix for minimizing the Frobenius norro of the ermr becomes arbitrarily large if the 

perturbations are constrained to the origina! pattem. On this example, after one step of iterative 

refinement, using as a starting point the solution 

(

C 0- a)/ J 
A 11 o -15 
x= 11 o ' a= lO , 

(0- a)1 o 

we can guarantee that the error matrix E has the same pattem as the original matrix. That is 

(
1 1 1 l) 
O 101 O O 

E ~ m O O 101 O = m 1 A I , 
1 O O 1 

with m ~ 10-16 
, 0= 10-8

• It is interesting to notice that K(A)= 1 + 11 o and KIA1(A) =4. 

6 Condusions 

We have shown that, when the iterative refinement is converging, it is possible and inexpensive 

to guarantee solutions of sparse linear systems which are exact solu1lons of a nearby system whose 

matrix has the same sparsity structure. Thus we have answered the open problem posed by Duff, 

Erisman and Reid (1986. page 276) conceming obtaining bounded perturbations while 

maintaining sparsity. If the equations arise from the discretization of a partial differential equation, 

then a componentwise tiny error should indicate that the solution obtained is that of a 

neighbouring partial differenti al equation, a conclusion that would not be available if classical 

eITOr bounds were being used. 

We have extended work of Skeel (1980) and Demmel (1984) to include the possibility ofhaving 

sparse right-hand sides and solutions vectors and have shown that, although we can not always 

guarantee the solution to a nearby problem whose right-hand si de sparsity is the same, we can 

develop suitable bounds for perturbations in the right-hand side. 

We discuss methods of inexpensively and accurately calculating a condition number appropriate 

to this tighter backward ermr. This condition number is not bigger than that of Wilkinson and can 
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indeed be much smaller, particularly if the matrix is badly row-scaled. For example, in set 1, the 

average of the logarithms of the ratio of the classical condition number before and after scaling is 

4.1, while for the Skeel condition number the corresponding value is 1.4. 

We have incorporated our backward error estimator in the iterative refinement step of a dire et 

sparse matrix solver and find that we often require zero or one step of iterative refinement to 

guarantee that the computed solution is the solution of a nearby system with the same sparsity 

structure as the original matrix. We also observe that we do not require any extra precision in 

calculating residuals, thus confirming remarks made by Skeel (1980). Additionally, when 

combined with our condition number estimator, a good estimate of the actual error is obtained. 

Furthermore, when iterative refmement diverges, our stopping criterion recognizes this earIy. 

We observed, contrary to Zlatev (1986), that little gain in sparsity was obtained while even 

moderate values of drop tolerance caused divergence of the iteratlve refinement A drop tolerance 

strategy appears to work well only on very structured sparse matrices such as those resulting from 

discretizations of partial differential equations. 

In this paper, we have been using iterative refmement to improve the solution obtained using an 

LV factorization. We have also considered the case when our LV factorization can be quite 

inaccurate (set 4). In this case, one could use other techniques including SOR and CG and it is a 

open question as to how far our analysis could be continued to cover these cases. 
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APPENDIX Tables of results of numerical experiments 

In all tbe folIowing tables, tbe column corresponding lo "Num. iter." gives tbe number of steps performed 

by tbe iterative refmement algorithm. By "Error" we denote tbe max-norm of tbe difference between tbe 

computed soIution and tbe actual soludon used lo generate tbe right-hand side, divided by tbe max-norm of 

tbe actual soludon. 
Before scaling After scaling 

/C(A) /C(1) 
"'I 

/C(A) /C(1) 
"'I 

GRE115 0.930+02 0.170+03 0.69D+04 0.260+03 

GRE185 0.380+06 0.30D+06 0.390+06 0.290+06 

GRE216 0.280+03 0.440+03 0.200+03 0.350+03 

GRE216 0.830+15 0.580+14 0560+08 0.170+08 

GRE343 0.470+03 0.740+03 0.300+03 0510+03 

GRE512 0.460+03 0.73)::>+03 0.400+03 0.720+03 

GREll07 0.180+09 0.200+09 O.no+lO 0.480+09 

WEST67 0.910+03 0.150+03 0.300+03 0.160+03 

WEST132 0.110+13 0.120+08 0.940+04 0.330+04 

WEST156 0.120+32 0.380+09 0.910+12 0.300+09 

WEST167 0.690+11 0.800+06 0.46D+04 0.180+04 

WEST381 0530+07 0.750+05 0.380+06 0.850+04 

WEST479 0.490+12 0.570+07 0.270+06 0.250+05 

WEST497 0380+12 0.20D+07 0.420+07 0.120+05 

WEST655 0.490+12 O.57D+07 0.420+06 00410+05 

WEST989 0.130+13 0.16D+08 0580+06 0.700+05 

WESTI505 0.140+13 O.16D+08 0.670+08 0.350+07 

WEST2021 0.280+13 0.32I:l+08 0.86D+06 0.120+06 

Table Al. Set 1. Condition numbers before and after scaling. 

Num. iter. 11 11 K(A) m(1) 
1 

m(l) 1((1) 
1 "'I 

Error 

GRE115 0.520·16 0.48D-14 0.590-16 0.100-13 0.790-15 

GREl85 0.12D-15 OA7D-IO 0.16D-15 00480-10 0.160-12 

GRE216 0.67D-16 0.19D-13 0.670-16 0.29D-13 0.26D-15 

GRE216 0.73D-16 0.6ID-01 0.I1D-15 0.64D-02 0.2ID-02 

GRE343 0.lOD-15 OA7D-13 0.1OD-15 0.74D-13 0.50D-15 

GRES12 0.830-16 0.38D-13 0.83D-16 0.6ID-13 0.26D-15 

GREll07 0.93D-16 0.17D-07 0.IID-15 0.22D-07 0.74D-1O 

WEST67 0.49D-16 0.45D-13 0.89D-16 0.13D-13 0.24D-14 

WEST132 0.93D-17 0.98D-05 0.15D-15 0.18D-08 0.18D-09 

WEST156 0.77D-18 0.90D+13 0.I1D-15 OA2D-07 0.38D-09 

WEST167 0.800-16 0.55D-05 0.120-15 0.95D-1O OA8D-Il 

WEST381 2 00450-16 0.240-09 0.16D-15 0.120-10 0.23D-11 

WEST479 0.19D-16 0.94D-05 0.17D-15 0.960-09 OA2D-1O 

WEST497 0.77D-16 0.29D-04 0.IID-15 0.22D-09 0.23D-1O 

WEST655 0.19D-16 0.94D-05 0.2ID-15 0.120-08 054D-IO 

WEST989 0.950-16 O.13D-03 0.13D-15 0.2ID-08 0.17D-09 

WEST1505 0.93D-16 O.13D-03 0.16D-15 0.260-08 O.I7D-09 

WEST2021 1 0.98D-16 0.27D-03 0.16D-15 052D-08 0.88D-IO 

Table A2. Set l. X i = 1 ,i=l, ... ,n , double precision before scaling. 
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Num. iter. '1 '1/C(A) (!J(I) 
1 

(!J(1) /C(I) 
I "'1 

Error 

GRE115 0.64E-16 0.44E-12 0.83E-16 0.22E-13 0.42E-14 

GRE185 0.62E-16 O.24E-IO 0.64E-16 0.18E-IO 0.54E-13 

GRE216 0.54E-16 0.IlE-13 O.79E-16 0.28E-13 O.13E-14 

GRE216 O.89E-16 O.50E'{)8 O.93E-16 0.16E'{)8 O.17E.{)9 

GRE343 0.76E-16 0.23E-13 0.88E-16 O.45E-13 0.10E-14 

GRE512 O.76E-16 O.31E-13 0.93E-16 0.66E-13 0.27E-14 

GREll07 0.39E-16 0.30E.{)6 0.IOE-15 0.48E.{)7 0.25E-I0 

WEST67 0.35E-16 0.l1E-13 O.14E-15 0.21E-13 0.89E-15 

WEST132 O.28E-16 0.26E-12 0.98E-16 O.33E-12 O.73E-14 

WEST156 O O.57E-16 O.52E.{)4 0.16E-15 OA8E.{)7 0.98E'{)8 

WEST167 0.29E-16 0.BE-12 0.llE-15 0.20E-I2 0.44E-14 

WEST381 0.15E-15 0.58E-IO 0.17E-15 0.15E-1I 0.56E-12 

WEST479 0.35E-16 O.94E-l1 0.22E-15 0.56E-ll 0.12E-12 

WEST497 0.17E-16 O.70E-IO 0.l1E-15 0.13E-ll 0.26E-12 

WEST655 0.52E-16 O.22E-IO 0.19E-15 0.80E-Il 0.19E-12 

WEST989 0.25E-16 0.l5E-IO O.l2E-15 0.80E-1I 0.33E-12 

WESTl505 0.50E-16 O.34E'{)8 0.17E-15 O.60E.{)9 O.82E-IO 

WEST2021 1 0.50E-16 0A3E-IO 0.18E-15 0.22E-IO O.19E-12 

Table A3. Set 1. Xi == l, i==l, .. ,n, double precision after scaIing. 

Num. iter. TI T[ /C(A) (!J(1) 
l 

(!J(I) /C(I) 
1 "'1 

Error 

GREI15 O.ISE.{)6 O.lOE.{)2 0.29E.{)6 0.77E.{)4 0.18E'{)4 

GRE185 2 O.33E.{)6 0.13E+OO 0.33E.{)6 O.9SE'{)1 O.40E'{)2 

GRE216 0.36E.{)6 0.73E.{)4 O.39E'{)6 0.14E.{)3 O.43E.{)5 

GRE216 2 0.59E.{)6 0.33E+02 0.83E-06 0.11E+02 0.43E.{)1 

GRE343 0.39E.{)6 0.l1E'{)3 0.42E-06 O.17E.{)3 0.29E'{)5 

GRES12 0.74E.{)6 0.30E.{)3 0.74E.{)6 OA2E.{)3 0.15E'{)4 

GREII07 4 0.18E.{)5 O. 13 E+04 0.l1E'{)3 0.13E+03 0.86E+OO 

WEST67 O.l5E.{)6 OA5E.{)4 0.46E'{)6 O.l9E.{)5 0.97E'{)5 

WEST132 O.18E.{)6 0.17E.{)2 0.47E.{)6 OAIE.{)4 0.82E.{)4 

WEST156 O O.22E.{)7 0.20E+05 0.54E.{)6 0.42E+OI 0.95E+OO 

WEST167 0.84E.{)7 0.38E'{)3 0.41E-06 0.19E.{)4 0.40E.{)4 

WEST381 O.48E.{)7 O.19E'{)1 O.51E-06 O.llE.{)3 O.23E.{)2 

WEST479 0.22E.{)6 0.6IE'{)1 0.95E-06 0.62E.{)3 0.83E'{)3 

WEST497 0.12E.{)6 0.49E+OO 0.50E'{)6 O.lSE.{)3 0.17E'{)2 

WEST655 0.74E.{)7 0.3 I E.{) l 0.73E-06 0.78E.{)3 0.77E'{)3 

WEST989 O.llE-06 0.63E'{)1 0.49E-06 0.89E.{)3 0.72E'{)3 

WEST l 505 0.11E.{)6 0.73E+Ol 0.70E-06 0.63E'{)1 O.IOE+OO 

WEST2021 l O.llE.{)6 0.93E'{)1 O.72E-06 0.22E.{)2 0.56E.{)3 

Table A4. Set 1. Xi = 1 ,i== 1, ... ,n , single precision after scaling. 
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Num. iter. 11 I1 IC(A) CV(I) 
I 

cv(1) /C(I) 
I "'\ 

EIror 

GRE115 0.20E-06 0.14E-02 O.4OE-06 O.lOE-03 0.57E-05 

GRE185 2 0.26E-06 O.lOE+OO 0.58E-06 O.l7E+OO O.l6E-02 

GRE216 0.33E-06 O.66E-04 O.72E-06 O.25E-03 0.31E-05 

GRE216 4 0.16E-06 0.89E+Ol 0.llE-05 0.14E+02 0.62E-Ol 

GRE343 1 0.33E-06 0.97E-04 O.72E-06 0.27E-03 0.26E-05 

GRES12 2 0.25E-06 O.lOE-03 O.60E-06 0.31E-03 0.72E-05 

GREll07 4 0.17E-05 0.12E+04 0.20E-03 0.24E+03 0.84E+OO 

WEST67 l 0.20E-06 O.60E-04 0.51E-06 0.21E-05 0.86E-05 

WEST132 O.l5E-06 O.14E-02 O.75E-06 O.66E-04 O.13E-03 

WEST156 O.11E-07 O.98E+04 ,O.59E-06 O.46E+Ol O.18E+Ol 

WEST167 O.l2E-06 O.53E-03 O.58E-06 O.28E-04 O.16E-04 

WEST381 O.l7E-06 O.67E-Ol O.73E-06 O.l6E-03 O.31E-03 

WEST479 O.77E-07 O.21E-Ol O.63E-06 O.41E-03 0.24E-03 

WEST497 O.l2E-06 0.51E+OO O.67E-06 O.20E-03 0.21E-03 

WEST655 0.74E-07 0.31E-Ol O.82E-06 O.89E-03 0.69E-03 

WEST989 0.94E-07 0.55E-Ol 0.88E-06 0.16E-02 O.65E-03 

WEST1505 O.l2E-06 0.80E+Ol 0.79E-06 0.71E-Ol O.l2E+OO 

WESTI021 0.99E-07 0.86E-Ol O.80E-06 0.25E-02 O.l5E-03 

Table AS. Set 1. Xi = 1 , i=l, ... ,n, mixed precision after scaling. 

Before scaling After scaling 

I(A) ~2) 
4>1 

]('(2) 
"':l 

1«A) 1«2) 
"'I 

1«(2) 
"':l 

GRE1l5 0.930+02 0.330+02 0.230+02 0.690+04 0.580+02 0.56D+02 

GREJ85 0.380+06 0.500+05 0.540+05 0.390+06 0.460+05 0.520+05 

GRE216 0.280+03 0.900+02 0.82D+02 0.200+03 0.110+03 0.100+03 

GRE216 0.83D+15 0.370+14 0.480+13 0.560+08 0.35D+07 0.370+07 

GRE343 0.470+03 0.160+03 0.13D+03 0.300+03 0.100+03 0.110+03 

GRES12 0.460+03 0.140+03 0.14D+03 0.400+03 0.140+03 0.140+03 

GRElI07 0.180+09 0.400+08 0.3ID+08 0.770+10 0.9ID+08 0.830+08 

WEST67 0.910+03 O.54D+02 0.78D+02 0.300+03 0.510+02 0.410+02 

WEST132 0.110+13 0.260+07 0.250+07 0.940+04 0.610+03 0.830+03 

WEST156 0.120+32 0.120+09 0.130+09 0.9ID+12 0.280+09 0.540+07 

WEST167 0.690+11 0.450+05 0.350+06 0.460+04 0.860+03 0.400+03 

WEST381 0.530+07 0.160+05 0.630+04 0.380+06 0.230+04 O.13D+04 

WEST479 0.490+12 0.120+06 0.220+07 0.270+06 0.570+04 0.340+04 

WEST497 0.380+12 0.750+06 0.330+06 0.420+07 0.730+03 0.54D+04 

WEST655 0.490+12 0.660+06 0.140+07 0.420+06 0.120+05 0.320+04 

WEST989 0.130+13 0.45D+07 0.470+07 0.580+06 0.210+05 0.IID+05 

WEST1505 0.140+13 0.490+07 0.530+07 0.670+08 0.270+07 0.170+05 

WESTI021 0.280+ 13 0.500+07 0.890+07 0.860+06 0.420+05 0.110+05 

Table A6. Set 2. Condition numbers before and after scaling. 
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Num. TI TI I(A) 41(2) 
l 

41(2) 
l 

41(2) /("(2)+ 
l "'I 

Error 

Uer. 41(2) 1(2) 
l "'z 

GRE115 0.35D-16 0.320-14 0.840-16 0:890-28 0.270-14 0.710-15 

GREl85 0.940-16 0.350-10 0.190-15 0.24D-25 0.940-11 0.140-12 

GRE216 0.120-16 0.340-14 0.560-16 0.640-27 0.500-14 0.130-15 

GRE216 4 0.510-16 0.420-01 0.410-15 0.250-26 0.150-01 0.760-06 

GRE343 0.140-16 0.650-14 0.560-16 0.740-26 0.900-14 0.110-15 

GRES12 0.250-16 0.110-13 0.830-16 0.270-25 0.120-13 0.190-15 

GREl107 2 0,420-16 0.780-08 0.200-15 0.580-24 0.820-08 0.830-10 

WFST67 1 0,420-16 0.380-13 0.160-15 0.270-30 0.880-14 0.120-14 

WFSTl32 0.240-16 0.250-04 0.130-15 0.800-28 0.340-09 0.160-10 

WFSTl56 0.120-22 0.140+09 0.860-16 0.150-31 0.100-07 0.100-10 

WFSTl67 O 0.280-17 0.190-06 0.200-15 0.250-18 0.920-11 0.370-12 

WFST381 0.780-17 DAlO-lO 0.150-15 0.400-29 0.240-11 0.290-12 

WFST479 3 0.330-19 0.160-07 0.330-15 0.140-28 0.390-10 0.910-12 

WEST497 1 0.120-17 0.440-06 0.160-15 0.280-28 0.120-09 0.300-11 

WEST655 3 0.880-19 0.430-07 0.260-15 0.150-25 0.170-09 0.290-11 

WEST989 0.140-16 0.190-04 0.140-15 0.290-27 0.610-09 0.260-10 

WEST1505 0.230-16 0.310-04 0.200-15 0.670-27 0.990-09 0.460-10 

WEST2021 l 0.190-16 0.520-04 0.220-15 0.320-27 0.110-08 0.240-10 

Table A7. Set 2. x j = 1, i=1,6, .. , else x; =0, before scaling. 

Num. 17 TI I(A) w (2) 
l 

W (2) 
2 

w(2) 1('(2)+ 
l "'1 

Error 

iter. w(2) 1(2) 
2 0)2 

GREl15 0.32E-17 0.22E-13 O.96E-16 0.36E-27 0.56E-14 0.29E-15 

GRE185 0.64E-16 O.25E-lO O.llE-15 0,41E-24 0.52E-ll 0.57E-13 

GRE216 2 0.60E-16 0.12E-13 O.15E-15 0.lOE-28 0.16E-13 0.81E-15 

GRE216 0.12E-15 0.68E-D8 O.14E-15 0.94E-25 0.50E-09 O.77E-IO 

GRE343 0.60E-16 0.18E-13 O.22E-15 O,48E-26 0.23E-13 O.67E-15 

GRES12 0.86E-16 O.35E-13 O.22E-15 0.25E-25 0.31E-13 0.67E-15 

GREI107 3 0.77E-16 0.59E-06 O.20E-14 0.18E-22 0.18E-06 O.10E-08 

WEST67 O.4OE-16 O.12E-l3 O.16E-15 O.28E-30 O.79E-14 0.13E-14 

WEST132 0.17E-16 O.16E-12 0.17E-15 0.78E-31 O.l1E-12 0.54E-14 

WEST156 O 0.61E-17 0.56E-05 0.lOE-15 0.14E-29 O.30E-07 0.32E-08 

WEST167 O O.21E-16 0.94E-13 0.18E-15 O.50E-19 O.16E-12 O.24E-14 

WEST381 O.35E-16 O.13E-1O O.12E-15 O.57E-29 O.27E-12 O.86E-13 

WEST479 2 O.37E-17 O.IOE-lI O.16E-15 O.33E-30 O.90E-12 O.28E-13 

WEST497 O.52E-17 O.22E-1O 0.lIE-15 O.13E-30 0.81E-13 0.22E-14 

WEST655 2 0.13E-16 0.55E-lI O.l9E-15 0.60E-29 0.22E-1I 0.61E-14 

WEST989 l 0.32E-16 O.l9E-IO 0 . .20E-15 O.63E-29 0.43E-1I O.48E-13 

WEST1505 O.32E-16 O.21E-08 0.20E-15 O.36E-28 0.54E-09 0.97E-l1 

WEST2021 0.32E-16 O.27E-lO O.20E-15 O.95E-29 O.8SE-l1 O.l8E-13 

Table A8. Set 2. X j = 1, i=1,6, .. , else Xi =0, after scaling. 
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Before scaling After scaling 

1("(A) 1("(3) 
"I 

1("(3) 

"':t 
1("(A) 1("(3) 

"1 

1("(3) 
"'2 

GRE115 0.930+02 0.330+02 0.380+02 0.690+04 0.58D+02 0.290+04 

GRE185 0.380+06 0.500+05 0.930+05 0.390+06 0.460+05 0.920+05 

GRE216 0.280+03 0.900+02 0.840+02 0.200+03 0.110+03 0.820+02 

GRE216 0.830+15 0.37D+14 0.180+15 0.560+08 0.350+07 0.190+08 

GRE343 0.470+03 0.160+03 0.100+03 0.300+03 0.100+03 0.85D+02 

GRES12 0.460+03 0.140+03 0.140+03 0.«10+03 0.140+03 0.120+03 

GREll07 0.180+09 0.«10+08 0.420+08 0.770+10 0.910+08 0.210+10 

WEST67 0.910+03 0.540+02 0.450+02 0.300+03 0.510+02 0.240+02 

WEST132 0.110+13 0.260+07 0.390+11 0.940+04 0.610+03 0.270+04 

WEST156 0.12D+32 0.120+09 0.440+25 0.9l0+12 0.280+09 0.230+11 

WESTl67 0.690+11 0.450+05 0.680+09 0.460+04 0.860+03 0.150+04 

WEST381 0.530+07 0.160+05 0.29D+07 0.380+06 0.230+04 0.300+05 

WEST479 0.490+12 0.120+06 0.280+12 0.270+06 0.57D+04 0.280+05 

WEST497 0.380+12 0.75D+06 0.100+12 0.420+07 0.730+03 0.85D+06 

WEST655 0.490+12 0.660+06 0.180+12 0.420+06 0.120+05 0.200+05 

WEST989 0.130+13 0.450+07 0.730+12 0.580+06 0.210+05 0.110+06 

WEST1505 0.140+13 0.490+07 0.110+13 0.670+08 0.270+07 0.170+06 

WESTI021 0.280+ 13 0.500+07 0.140+13 0.860+06 0.420+05 0.12D+06 

Table A9. Set 3. Condition numbers before and after scaling. 

Num. 71 71 /((A) (l) (3) 
l 

(l) (3) 
2 

(l)(3) /(3)+ 
l "'I 

EITOr 

iter. (l)O) /((3) 
2 "'z 

GREl15 0.35D-16 0.32D-14 0.84D-16 0.89D-28 0.270-14 0.710-15 

GRE185 0.94D-16 0.350-10 0.19D-15 0.24D-25 0.94D-ll 0.14D-12 

GRE216 0.12D-16 0.34D-14 0.56D-16 O.64D-27 O.50D-14 0.13D-15 

GRE216 4 0.510-16 0.42D-Ol 0.410-15 O.25D-26 0.150-01 O.76D-06 

GRE343 1 0.14D-16 0.65D-14 0.56D-16 0.12D-25 0.90D-14 0.110-15 

GRES12 l 0.25D-16 0.110-13 0.83D-16 0.34D-25 0.12D-13 0.19D-15 

GREl107 2 0.42D-16 0.78D-08 0.20D-15 0.58D-24 0.82D-08 0.83D-I0 

WEST67 0.42D-16 0.38D-13 0.16D-15 0.50D-30 0.88D-14 O.l2D-14 

WEST132 0.24D-16 0.250-04 0.13D-15 0.80D-28 0.34D-09 0.16D-1O 

WEST156 l 0.12D-22 0.14D+09 0.86D-16 0.17D-27 0.750-03 O.lOD-lO 

WEST167 O 0.28D-17 O.l9D-06 0.20D-15 0.18D-16 O.l2D-07 0.37D-12 

WEST381 l 0.78D-17 0.410-10 0.15D-15 0.40D-29 0.24D-ll 0.29D-12 

WEST479 3 0.33D-19 0.160-07 0.33D-15 0.14D-28 0.39D-IO 0.910-12 

WEST497 I 0.12D-17 O.44D-06 0.16D-15 O.28D-28 0.12D-09 0.30D-ll 

WEST655 3 0.88D-19 0.43D-07 0.26D-15 O.15D-25 0.170-09 0.29D-ll 

WEST989 0.14D-16 0.19D-04 O.l4D-15 0.29D-27 0.610-09 0.26D-1O 

WEST1505 0.23D-16 0.310-04 0.20D-15 0.67D-27 0.99D-09 0.46D-1O 

WESTI021 0.19D-16 0.520-04 0.22D-15 0.32D-27 0.110-08 0.24D-1O 

Table AIO. Set 3. Xi = l, i=1,6, .. , else xi =0, before scaling. 
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Num. 1/ 1/ K(A) OP) 
I 

(I) (3) 
2 

(I}(3) K(3)+ 
I "'I 

Error 

iter. (l}O) K(3) 
2 "':! 

GRE115 O.32E-17 O.22E-13 O.96E-16 O.36E-27 O.56E-14 O.29E-15 

GRE185 O.64E-16 O.25E-IO O.llE-15 O.41E-24 O.52E-ll O.57E-13 

GRE216 2 O.60E-16 0.12E-13 O.15E-15 0.12E-28 O.16E-13 O.81E-15 

GRE216 O.12E-15 O.68E-08 O.14E-15 O.94E-25 O.50E-09 O.77E-1O 

GRE343 O.60E-16 O.18E-13 O.22E-15 O.71E-26 O.23E-13 O.67E-15 

GRES12 O.86E-16 O.35E-13 O.22E-15 0.3 l E-25 O.31E-13 O.67E-15 

GREII07 3 O.77E-16 O.59E-06 O.20E-14 O.18E-22 O.18E-06 O.lOE-08 

WEST67 O.40E-16 O.12E-13 O.16E-lS O.57E-30 O.79E-14 O.13E-14 

WEST132 O.17E-16 O.16E-12 O.17E-lS O.78E-31 O.11E-12 O.54E-14 

WEST156 O MIE-l7 O.56E-OS O.lOE-15 O.14E-29 O.30E-07 O.32E-08 

WEST167 O O.21E-16 0.94E-13 O.18E-lS O.50E-19 O.16E-12 O.24E-14 

WEST381 l O.3SE-16 O.13E-I0 O.l2E-lS O.57E-29 O.27E-12 O.86E-13 

WEST479 2 O.37E-17 O.lOE-ll O.16E-lS O.33E-30 O.90E-12 O.28E-13 

WEST497 l O.52E-17 O.22E-1O O.llE-15 0.13E-30 O.81E-13 O.22E-14 

WEST65S 2 O.13E-16 O.55E-ll O.19E-lS O.60E-29 O.22E-1I O.61E-14 

WEST989 l O.32E-16 O.19E-1O 0.20E-15 O.63E-29 O.43E-1I O.48E-13 

WEST1505 O.32E-16 021E-08 O.20E-15 O.36E-28 O.54E-09 O.97E-lI 

WEST2021 l O.32E-16 027E-1O O.20E-15 O.95E-29 O.85E-1I O.l8E-13 

Table AlI. Set 3. Xi= 1, i=1,6, .. , elsexj=O, after scaling. 

droptel=10-s drop tal = 10-3 

/('(A) /('(4) 
"'I 

K(4) 
012 

X'(4) 
"'I 

/('(4) 
"'2 

GRE115 O.69E+04 O.OOE+OO O.12E+03 O.OOE+OO O.12E+03 

GRE185 O.39E+06 O.OOE+OO O.I7E+06 O.OOE+OO O.14E+06 

GRE216 O.20E+03 O.OOE+OO O.21E+03 O.OOE+OO O.21E+03 

GRE216 O.84E+08 O.OOE+OO O.15E+08 O.OOE+OO O.10E+07 

GRE343 O.30E+03 O.OOE+OO O.31E+03 O.OOE+OO O.26E+03 

GRE512 O.40E+03 O.OOE+OO O.43E+03 O.OOE+OO O.37E+03 

GREll07 O.63E+1O O.OOE+OO O.23E+09 O.OOE+OO O.55E+07 

WEST67 O.30E+03 O.29E+Ol O.16E+03 O.OOE+OO O.14E+03 

WEST132 O.94E+04 O.OOE+OO O.24E+04 O.OOE+OO . O.22E+04 

WEST156 O.91E+12 O.OOE+OO O.29E+09 O.OOE+OO O.16E+06 

WEST167 O.46E+04 O.OOE+OO O.16E+04 O.OOE+OO O.13E+04 

WEST381 O.38E+06 O.OOE+OO O.65E+04 O.OOE+OO O.54E+04 

WEST479 O.27E+06 O.OOE+OO O.23E+OS O.OOE+OO O.20E+OS 

WEST497 O.42E+07 O.OOE+OO O.65E+04 O.OOE+OO O.63 E+04 

WEST655 O.42E+06 O.OOE+OO O.43E+OS O.OOE+OO O.37E+05 

WEST989 O.58E+06 O.OOE+OO O.63E+OS O.OOE+OO O.53E+05 

WESTlS05 O.67E+08 O.OOE+OO O.35E+07 O.OOE+OO O.21E+07 

WEST2021 O.86E+06 O.OOE+OO O.12E+06 O.OOE+OO O.10E+06 

Table All. Set 4. Condirion numbers after scaImg for drop tol.= 10-5 and 

drop tol.= 10-3 • 
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Num. 7] 11 /('(A) (l) (4) 
I 

(l) (4) 
2 

(l)(4) /('(4)+ 
I "'I 

Error 

iler. (l)(4) 1('(4) 
2 "'2 

GREl15 2 O.99E-18 O.68E-14 O.OOE+OO O.69E-16 O.8SE-14 O.15E-14 

GRE185 3 O.55E-16 O.22E-IO O.OOE+OO O.50E-16 O.83E-ll O.80E-13 

GRE216 1 O.90E-16 O.18E-13 O.OOE+OO O.83E-16 O.18E-13 O.88E-15 

GRE216 29 O.lOE-15 O.84E-08 O.OOE+OO O.50E-15 O.77E-08 O.63E-IO 

GRE343 O.90E-16 O.27E-13 O.OOE+OO O.83E-16 O.26E-13 O.81E-15 

GRES12 O.86E-16 O.3SE-13 O.OOE+OO O.llE-15 O.48E-13 O.68E-15 

GREll07 15 O.62E-16 O.39E-06 O.OOE+OO O.19E-15 O.44E-07 O.27E-09 

WEST67 l O.50E-16 O.ISE-13 O.13E-16 O.61E-16 O.IOE-13 O.85E-15 

WEST132 2 O.36E-16 O.33E-12 O.OOE+OO O.67E-16 O.16E-12 O.46E-14 

WEST156 O MIE-l7 O.56E.fj5 O.OOE+OO O.54E-16 O.I6E-07 O.32E-08 

WESTl67 O O.21E-16 O.94E-13 O.OOE+OO O.67E-16 O.l1E-12 O.24E-14 

WEST381 2 O.23E-16 O.89E-H O.OOE+OO O.54E-16 O.36E-12 O.78E-13 

WEST479 3 O.26E-16 O.71E-ll O.OOE+OO O.57E-16 O.13E-ll O.55E-13 

WEST497 1 O.58E-l7 O.25E-IO O.OOE+OO O.55E-16 O.36E-12 O.47E-14 

WEST655 2 O.55E-16 O.23E-1O O.OOE+OO O.91E-16 O.39E-ll O.22E-13 

WEST989 O.13E-15 O.7SE-IO O.OOE+OO O.19E-15 O.12E-1O O.18E-13 

WEST1505 2 O.64E-16 O.43E-08 O.OOE+OO O.IOE-15 O.3SE-09 O.IOE-IO 

WEST2021 2 O.95E-16 O.82E-IO O.OOE+OO O.13E-15 O.l6E-1O O.59E-13 

Table Al3. Set 4. Xi= 1, i=1,6, .. , elsexj =0, after scaling and drop tol.= 10-5 • 

Num. 7] 7] 1('(A) (l) (4) 
I 

(l) (4) 
2 

(l)(4) 1('(4)+ 
l "'1 

Error 

iter. (l)(4) 1('(4) 
2 "'2 

GRE1l5 4 O.35E-17 O.24E-13 O.OOE+OO O.48E-16 O.59E-14 O.80E-15 

GRE185 15 O.46E-16 O.ISE-1O O.OOE+OO O.6IE-16 O.87E-ll O.14E-12 

GRE216 O.65E-16 O.13E-13 O.OOE+OO O.74E-16 O.16E-13 O.lIE-14 

GRE216 3 O.26E.fj4 O.15E+03 O.OOE+OO O. 11 E-02 O.12E+04 O.22E+Ol 

GRE343 3 O.66E-I6 O.20E-I3 O.OOE+OO O.87E-I6 O.23E-13 O.72E-15 

GRES12 4 O.63E-16 O.26E-13 O.OOE+OO O.89E-16 O.32E-13 0.79E-15 

GREl107 3 O.64E.fj5 0.lOE+04 O.OOE+OO O.16E-02 O.90E+04 O.13E+OI 

WEST67 2 0.37E-16 O.lIE-13 O.OOE+OO O.45E-16 0.61E-14 0.14E-14 

WEST132 3 O.25E-16 0.23E-12 O.OOE+OO O.52E-16 Ò.IIE-12 0.2IE-14 

WESTl56 O O.59E-18 O.73E.fj8 O.OOE+OO O.54E-16 O.87E-ll O.18E-12 

WESTI67 O 0.21E-16 O.94E-13 O.OOE+OO O.67E-16 O.84E-13 O.24E-14 

WEST381 4 0.17E-16 o.67E-lI O.OOE+OO O.53E-16 0.29E-12 0.33E-13 

WEST479 7 0.34E-17 0.91E-12 O.OOE+OO 0.55E-16 0.1 lE-Il 0.51E-13 

WEST497 4 0.30E-17 0.13E-1O O.OOE+OO O.58E-16 0.36E-12 0.36E-14 

WEST655 5 0.28E-16 0.12E-1O O.OOE+OO O.65E-16 O.24E-Il 0.55E-13 

WEST989 5 0.32E-16 0.19E-1O O.OOE+OO O.64E-16 0.34E-Il 0.IIE-12 

WEST1505 lO 0.32E-16 O.20E-08 O.OOE+OO 0.90E-16 O.19E-09 0.23E-1O 

WEST2021 5 0.32E-16 0.27E-1O O.OOE+OO 0.94E-16 O.98E-Il O.72E-13 

Table A14. Set 4. X i = 1 , i =1,6, ... , else x i = 0, after scaling and drop tol. = 10-3 • 
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Nonzeros Fili-in 

droptol=O.O droptol= 10-5 droptol= 10-3 

GRE115 421 647 651 605 

GRE185 975 3173 3028 2929 

GRE216 812 2544 2263 2262 

GRE216 812 2767 2580 2180 

GRE343 1310 5334 4891 4890 

GRES12 1976 11535 11020 11007 

GREII07 5664 47603 45255 41181 

WEST67 294 267 202 204 

WEST132 413 89 87 83 

WEST156 362 27 20 15 

WESTl67 506 96 96 92 

WEST381 2134 2057 1867 1711 

WEST479 1888 1121 982 790 

WEST497 1721 279 263 252 

WEST655 2808 2092 1791 1709 

WEST989 3518 1156 1139 1135 

WEST1505 5414 2032 1934 1821 

WEST2021 7310 2539 2466 2410 

Table A15. Set 4. Number of nonzero entries in the originaI matrices and fili-in for 

droptol.=O.O, droptol.= 10-5 and droptol.= 10-3 after scaling. 
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