CSS 214

ﬁ@fmwa Tl 2 ¢

Ak

[

Solving Sparse Linear Systems with Spafse Backward Error

by
M. Arioli*, J. W. Demmel**, 1. S. Duff

ABSTRACT

When solving sparse linear systems, it is desirable to produce the solution of a
nearby sparse problem with the same sparsity structure. This kind of backward stability
helps guarantee, for example, that one has solved a problem with the same physical
conmectivity as the original problem. Theorems of Qettli, Prager and Skeel show that
one step of iterative refinement, even with single precision accumulation of residuals,
guarantees such a small backward error if the final matrix is not too ill-conditioned and
the solution components do not vary too much in magnitude. We incorporate these
results into the stopping criterion of the iterative refinement step of a direct sparse
matrix solver and verify by numerical experiments that the algorithm frequently stops
after one step of iterative refinement with a componentwise relative backward error at
the level of the machine precision. Furthermore, calculating this stopping criterion is
very inexpensive. We also discuss a condition estimator corresponding to this new
backward error which provides an error estimate for the computed solution. This error
estimate is generally tighter than estimates provided by standard condition estimators.
We also consider the effects of using a drop tolerance during the LU decomposition.

* This author was visiting Harwell and was funded by a grant from the Italian National
Council of Research (CNR). Istituto di Elaborazione dell’Informazione — CNR, via S.
Maria 46, 56100 Pisa, Italy.

** Computer Science Department, Courant Institute of Mathematical Sciences, 251 Mercer |
Street, New York, NY 10012, USA

Computer Science and Systems Division,
Harwell Laboratory,

Didcot,

Oxon OX11 ORA.

February 1988.

CONTENTS

1 Introduction........coeeeiiiraiennnen, ettt eeeietetaienreeatataeeetnaen e aereearranas 1
2 Backward error and conditioning .. 4

2.1 Condition MUIMDET ..c.vueniiiriiti ettt ettt e et ee e e eeeaeaeeanaaeennns 4

2.2 BaCKWAard €ITOT ...ovviiiiniiiiiieiit ittt ettt st e et e e e e cmean e ra e nnenae 5
3 Different models of floating-point arithmetic ooviiieiiiiiiiiiiii e, 8
4 An estimator fOr Ky (A,D) «evueeiiiiiii 10
5 Numerical eXPerimMENtSi.ieiiiiutieirtiie ettt tren et et aenanenrnaneaenraenens 11
6 CONCIUSIONS ... ettt et ettt e e e e e e e e e e e e 18
REEIBIICES ..vntiiiit ittt et ettt et et e e et e e et et e eaens 19
APPENDIX Tables of results of numerical Xperimentscveeeuirieniunineienennenennann. 21

1 Introduction

When solving systems of n linear equations Ax=b by means of Gaussian elimination with
pivoting, a classical analysis, (Wilkinson 1961), shows that we should expect to get the exact
solution % of a slightly different linear system (A+ J8A)x=b+ b where A and &b are both
small with respect to A and b. By small we mean small in norm, ie. |dA] <kellAll and
Iobll <kelb]] where || .| is a matrix norm, £ is the machine precision (that is, the greatest
positive number such that fI(1 + £), the floating-point representation of (1 + £), equals 1) and & is
the product of the pivot growth factor and a modestly growing function of the dimension 2. This -
classical view permits any entry of §A or &b to be equally large, and in particular A+5A may be
dense even if A is quite sparse. This is unsatisfactory because zero entries of A may represent
nonexistent physical connections in a system being modelled, and so may be known exactly.

A more satisfying approach to backward error than merely bounding || A || and || §b| would

permit the user to specify scaling factors e; 20 and f; 20 for each entry of A and 6b, and would
compute the smallest @=0 such that

15a|<we,; , 15b,]< of; . (1)

By setting some e ; to zero, we can insist that, if @<ee, the corresponding a; are known exactly.
For example, if e;= {aij] and f;=|b,], @ bounds the relative perturbation in each component of A
and b needed to make X an exact solution, and, in particular, §A and &b have the same sparsity
structures as A and b. We will call this @ the componentwise relative backward error. It is
important to use this different error estimate when considering these restricted perturbations, since
Gear (1975) has shown that the conventional error bounds are not appropriate in this case. It turns
out that the backward error @ is quite easy to compute, and in fact costs as little as two
matrix-vector multiplications.

In the following, if u and v are vectors of entries u; and v; and Q and P are matrices of entries
q; and P [u] is the vector of entries | u [, [Q] is the matrix of entries | ¢
all i, and Q <P means q;<py foralliandj

ijl' u<vmeans 4;<v; for

Theorem 1: [Oettli and Prager 1964] . The smallest o satisfying (1) is given by

|Ax-bl;

In this expression, 0/0 should be interpreted as 0 and /0 ({#0) as infinity. @=-qe implies that no
w satisfying (1) exists. In particular, the smallest componentwise relative perturbation of A and b
that makes % an exact solution is

|AX-b];

Thus, this theorem gives an a posteriori measure of the backward error that is cheap to compute.

Gaussian elimination with pivoting does not guarantee that the backward error @ will be small

for all possible E and f. However, a theorem of Skeel (1980) shows that as long as A is not too
- ill-conditioned, and as long as the quantities (JA|[X[); in the denominator of (3) do not vary too
much in magnitude, then one step of iterative refinement is enough to guarantee that @ will be
small for the componentwise relative backward error in (3). This is true even if the residual
r=AX-b is computed in the same arithmetic precision as used for the Gaussian elimination. The
actual conditions under which the following theorem is true are quite complicated, and we refer
for details to Skeel (1980, Theorem 5.1)

Theorem 2: [Skeel 1980] Let £ be the machine precision, and let the arithmetic be such that the .
floating-point result fI(@a0b) of the operation a¢b,(0e {+,-,%x,/}) satisfies
a0 b)=(adb)(1+€), with || < & There is a function { A,b), typically behaving as O (n), such that
when the product of kK(A)= [[|A] IA”1 [l and o(A,x)=max(JA][x]);/min(fA|[x]); is less than

(RA,b) £)™!, and there is no overflow or underflow, the following iterative refinement algorithm
will converge after one update of x:
Solve Ax=b using Gaussian elimination, obtaining solution X and saving the LU factors;
Compute the residual r=A X—b (using arithmetic of machine precision &);

while o=max|r;|/ (Al X}+b]);>(a+1)e do

begin
Solve Ad=r for d using the saved LU factors of A;
Update Xx=%~d;

end;

This theorem may also be extended to take into account underflow and the possibility that, for lack
of a guard digit in the hardware, we can only assert that

SUatb)=a(l+e yEb(1+e,),
where |e;|< ¢, (Demmel 1984).

For sparse systems, it is also possible to improve the stopping criterion of Theorem 2 by
changing n to 7, the maximum number of nonzero entries in one row of A.

Note that this theorem contradicts the usual advice that iterative refinement is not worth doing
unless the residual r = A%-b is computed using arithmetic of machine precision £2. Note also that
the theorem does not say that the refined solution will be more accurate, just that it reflects the
structure of the original problem more closely than the unrefined solution. If each of the nonzero
entries of the original A is uncertain in its least significant bit and if o= ¢, then one could say that
one has computed the solution as accurately as the data warrants, since the answer is exact for a
problem indistinguishable from the problem one really wanted to solve.

To use Theorem 2 as the basis of a practical scheme for solving sparse linear systems, some

2

modifications are necessary. In particular, when solving sparse linear systems where both A and b
are sparse (or b has components of widely varying magnitude), it often happens that the quantity
o(A,x) in Theorem 2 is huge, and convergence does not occur. Therefore, we must make another
choice for f, taking less account of the smaller components b ;. This can be done quite easily using
a modification of Theorem 1, and is discussed in’Section 2.2,

There is a new condition number corresponding to the new definition of backward error in (1).
In the case of E=]A] and f=|b|, this condition number is just || IA"1||A]]l. This new condition
number is no larger than the traditional condition number || Al I TAl. In fact, it may be much -
smaller than || ATl I WA if the rows of A are badly scaled. Thus, combining the componentwise
relative backward error with the new condition number, we obtain bounds for the real error which
are independent of row scaling. We discuss this further in Section 2.1.

It has become common to use inexpensive estimators for the usual condition number
TA™ || 1A]l to estimate a bound for the error in the computed solution of Ax=Db (Cline et al.
1979, Higham 1987a, Dongarra et al. 1979). In Section 4, we present an inexpensive and accurate
condition estimator for the new condition number || IA‘IHA] I (and its variations). The new
condition estimator is based on recent work by Hager (1984) and Higham (1987).

Finally, we tested our algorithm and associated condition estimator in a modified version of the
sparse linear system solver MA28 (Duff 1977) from the Harwell Subroutine Library, which uses
the pivotal strategy of Markowitz (1957) and a relative pivot test

la®|>umaxja @
ke ok g

on the elements a ,g.‘) of the /-th pivot row. Here u (the threshold parameter) is a preassigned factor,
usually set to 0.1. MA28 can also drop entries of L and U that fall below a ‘drop tolerance’ in
order to further decrease fill-in. The L and U factors are used to solve Ax=b for x by forward and
back substitution in the usual way, followed by some steps of iterative refinement. We report on
the details of the experiments in Section 5. Our conclusion is that a stopping criterion like the one
in Theorem 2 (but suitably modified as discussed in Section 5) is a reliable and inexpensive
stopping criterion for iterative refinement, often stopping after one or no update of x. When drop
tolerances are used and we have convergence, the rate of convergence degrades slightly but is still
quite good. The new condition estimator of Section 4 also proves to be inexpensive to calculate
and is an accurate estimate on our test matrices, usually providing good accuracy for the cost of a
few forward and back substitutions with the LU factors of A.

The rest of this paper is organized as follows. Section 2 discusses the componentwise backward
error further and also the conditioning of Ax=b with respect to this backward error measure.
Section 3 examines how the statement of Theorem 2 must change when either the floating-point
arithmetic has no guard digit (such as on the CRAY) or underflow occurs. Section 4 presents a
condition estimator corresponding to componentwise relative backward error. Section 5 discusses
the numerical experiments. Section 6 has conclusions.

3

/7 2 Backward error and conditioning

2.1 Condition number

The condition number of a problem is the least upper bound of the ratio of the norm of
perturbation in the solution to the norm of the perturbation in the input data, in the Iimit as the
perturbation in the input data goes to zero. To compute it, we need a nomm for the perturbation Ax
in the solution as well as a norm for the perturbations AA and Ab in the input data. The norm for
the input data will depend on E and f as described above: | (4 A,Ab) |l g ¢ is defined as the smallest
@ such that |4 A]< wE and |Ab| < of. For the norm of the output, we choose the usual sup norm
[%l. =max]x;|, in order to cater for zero components in x. With this notation we can write

i

Kg,¢(A,b)=lim su 14x] 7 1x]. 4
S T(AAAD) [¢y
4b—0

where x+4x=(A+A4A) "} (b+A4Db). Following Skeel (1979), this may be easily evaluated as

1A E x+HA™ £l

kg r(Asb)= ixi 3
For example, if we choose E=|A| and f=|b| for the componentwise relative error,
HAT A XA b).
i (401 = =T ‘ ©
Sometimes it is convenient to have a condition number which is independent of the right-hand side
b. Since
AT 1Al Il AT Al X1,
[KD e
R S FY P @

and [JA7Y]1A] L/ Ixlo = [A"ll |Alll.., we get the simpler condition number
KA (A)= AT 1AL . 2 0.5 Ky (ASD) - @®)

The purpose of the condition number is, of course, to provide error bounds: if A is perturbed by
4 A< w|A] and b by |Ab|< @b, and if @ is small enough, then x will be perturbed by no more
than about @ Kialb) (A,b). More rigorously, Skeel (1979) shows that, for @ defined as in (3),

6xl., @ KAl bl (A,b)

X = Tory (3 ®

Similarly, if we define

xg(A)=IATE]., , (10)

we have, for @ defined as in (2),

S A,b ,
18%1. _ @xp(Ab) an
Xl ~ 1@ xg(A)

It is easy to see that the problem is no more badly conditioned with respect to the
componentwise relative backward error measure than with respect to the usual normed backward
error measure. This is because '

k(A)= 1A . 1AL, 2 HAT HAIL. = K (A) - (12)

It is possible for K5 (A) to be much smaller than k(A). For example, we can make x(A)
arbitrarily large by multiplying one of the rows of A by a large enough constant. However, kj, (A)
is independent of the row scaling of A.

2.2 Backward error

As stated in the introduction, it is in practice necessary to modify the choice f=|b| of the
componentwise relative backward error. This need arises because of the factor ¢(A,x) in Theorem
2; when o (A x) is large, convergence of the backward error @ in equation (3) to the roundoff level
is not guaranteed. Take, for example, A sparse and irreducible, and x sparse such that some
b; =§a j%j are zero because each a ijxj=0. Since A™! is structurally full (Duff, Erisman, Gear,

and Reid 1985), x will be structurally full as well, so that a computed component %, can be zero
only through exact cancellation. In practice, this means that all components of the computed
solution X will be nonzero, with the entries which should be zero containing roundoff error of
unpredictable sign. Therefore both r;=(A%-b); and (JA||x}+b]); may be small but of similar
orders of magnitude, so that @ stays large even after some steps of iterative refinement.

Ideally, we would like to choose f to satisfy the following four criteria;

(i) the backward error @ (in (2)) usually converges to machine precision after one step of
iterative refinement,

(i) wfis“small” comparedto b,
(iii) the resulting error bound in (11) is as small as possible, and
(iv) wis row-scaling independent.

We have experimented with two choices for £ which come close to meeting these four criteria;
this will be bome out by the numerical experiments in Section 5. It tumns out we must sacrifice the
sparsity structure of b in order to guarantee a small backward error bound @ (criterion (i)). A
trivial way to do this is to set E=0 and f=|r]/ £é=]|AX-b|/ & whence §A=0, db=r and w=¢&. Of
course this is unsatisfactory because db=r may be much larger in norm than b if the system is
ill-conditioned, violating criterion (ii). Our approach is to keep E=|A| and choose f; larger than
|b;| only if it is necessary to keep @ small.

We will choose f in an a posteriori way, letting it depend on the computation as follows: Let

w=|A] [x[+|b| be the vector of denominators in equation (3). We then choose a threshold z; for
- each w,, so that when w;>7; we can use the usual scaling factor f; =|b;]. Otherwise, when w; < 7;,
we choose a larger f;. Correspondingly, we divide the equations of Ax=Db into two categories,
those where w;>7;, and those where w; < 7;. We may assume without loss of generality that the
leading m equations of A x=b, which we denote by ADxD =pD belong to the first category,
and the remaining n—m equations, APx@ =b(2), belong to the second. As stated above, we will
let 0 =|b®| in the first category. There are several possibilities for 7;, but in practice the
following one has worked well: 7;=1000n&(J| A; I, I1%ll..+b;D, where A; is the ith row of A.
Note that 7; is about 1000 times larger than the maximum possible roundoff error committed in
computing w;, and w; can only be less than 7; if each product a iji i is tiny. We performed other
runs to check the sensitivity of this choice and found that a change of say a factor of ten (to 100)
could occasionally change the number of iterations and the error estimate but usually not by much.
We note, however, that this can be viewed as a local choice and could be varied while performing

iterative refinement, possibly increasing it in order to decrease @.

Given the vector T of the thresholds 7;, we can choose £ in at least two ways. The first way
that we consider is as follows. We let £ =]A@|e || k||, where e is the column vector of all ones.
This corresponds to the usual normwise backward error, and so the components r; of the residual
are almost guaranteed to be small compared to these f,-(z), insofar as Gaussian elimination alone
guarantees a small residual in the norm sense. Since we have not modified the definition of E, we

are further guaranteed a solution X which preserves the sparsity structure of A.

There is a difficulty with this choice of f, however: we are no longer guaranteed that || db|, is
small compared to [[bl[,. This can only happen when A is very ill-conditioned, since
TAD || %1/ IIb]l., is a lower bound on the condition number | A™ |, A]l., of A. We have
constructed artificial examples where this happens, but not observed it in practice. There is also
the possibility that large components in f will make the condition number Kia| ¢(A,b) too large and
so make the error estimate @ Kiar(A,b) too pessimistic, but note that this condition number is still
bounded by 2 x; a(A). We may avoid this possibility as follows. Given the two backward errors

_ | AD 5 p® 'j

=max——-———— ,i=1,2, (13
i (AP RO,

i
the residual satisfies

% Wix m
= (lA(”x—-b‘DI)S (@, (ADzHD D]) i

IAPx-bP|) "\ 0, (AP IRHAP e | R1..)

and, to first order, the error is bounded by

6%, ATl _ NA™ .,

Xl Ik, - %, |
1, (1A RHDD) - 0
IA‘I(o i a7 AP @) | (15)
= T%0. 0 B

=0 Ko +0) Ky, -

The advantage of this formulation is that components of f @ may be very large compared to the -
components of b®, causing @, to be very small and Ko, 10 be correspondingly large but without
affecting @, or x,, . This formulation is tested in the numerical experiments in Section 5.

A second possible choice for f@ is to use f? = ||b||_ e. This choice of f® assures us that a
small backward error indeed means || db|l_ /| b}l will be small, but gives us less assurance that
the backward error will converge to machine precision. We have not seen it fail in practice. As
with the other choice of f, we can bound the error using two backWard errors defined as in (13) and
the sum of their products with two condition numbers as in (15). Section 5 also reports on
numerical experience with this backward error measure.

Both the previous choices for f® can violate one of the criteria (ii) or (iv). The choice
@ =[A(2)l e || x|, guarantees that w;, i=1,2, are row-scaling independent (criterion (iv)), while
it can violate criterion (ii). The choice £@ = Ibll.. e satisfies criterion (ii), but the corresponding
®, is row-scaling dependent. Both, as we shall see, satisfy criteria (i) and (iii).

We also see that the bound depends on the accuracy with which we can compute the residual r
and the backwards error @in (2). How much can roundoff contaminate the computed @, especially
when r=Ax-b is computed by an arithmetic with machine precision £? A standard error analysis
shows that the error in the computed r, dr, is bounded by (y+1v)e(lA| IX]+b]), where 7 is the
maximum number of nonzero entries in a row of A. When E=]A| and f=|b|, this means that the
computed @ cannot differ from the true @ by more than about £(y+1)e which will be within the
tolerance of our sparse modification of Skeel’s stopping criterion in Theorem 2. Since the
computed @ is almost certainly at least about ¥ &, the final error bound @ x; (A,b), can be low
by no more than a factor of 2. The same is true for @; , i=1,2.

At this point, one might ask what choice of E and f minimizes the resulting error estimate (11).
It is easy to see that any choice of E and f such that E|xHf is a multiple of |r|, say E=0 and f=]r|,
yields the minimum product ® Kg(A,b)= A7l / IIx]l,. Since the true error is
loxll./Ixllo=1 Alr I/ Ixll.., we see that the bound is as tight as ignoring signs in r allows.
For this special choice of E and f, we should also add (y+1) €(|A] [X[+b}) to |r| since roundoff may
lower the computed value of |r] by the same amount The choice E=0 and
f=|r]+(y+1) €(JA] |X}+Db]) yields a new error bound of

7

I 8%, _ 1A~ IIrl L.,
Ixl. = T,

Thus we see that the condition number K\ALb) (A,b) plays a central role independent of the notion
of backward error, just because it reflects the possible roundoff errors in the computed residual.
Furthermore, after only a few steps of iterative refinement Theorem 2 guarantees that, to first
order, the bound (9) will be about the same as the bound (16). In our experiments we have seen
that, usually, the estimates of the real error given by (9) and (15) have the same order of accuracy
as the estimates obtained by the bound (16).

H PH1)ER 1 (ASD). (16)

Note that if we set e;=All, and f;=[Ib]l,,, the baékward error of x with respect to E and f is
givenby [AX-b|l,/(IAll, I%ll;+Ib].). It is also easy to sce that '

TA . TAN Ixl,+1A™ L, Ib.
Ixl..

which is within a factof of 2n of | A7l I.. 1A].. Thus, this choice of E and f, which permits
equally large perturbations in all entries of A and b, gives essentially the same backward error and
condition number as the usual normed backward error.

Kge(Ab)=

an

We note, in conclusion, that Skeel’s original motivation (Skeel 1979) was to analyze the effects
of row and column scaling of A on the accuracy and the stability of the LU factorization. He
concluded that the optimal way to scale depended on the solution: the columns should be scaled
(thus scaling the solution components) so that the components of the scaléd solution are all equal
in magnitude, and the rows should be scaled so each component of |A|]x| (x is the solution) is,
equal in magnitude. This is unfortunately hard to use in practice since it requires much information
about the solution. Fortunately, one step of iterative refinement tends to overcome the effects of
bad row scaling, as we have seen.

3 Different models of floating-point arithmetic

Theorem 2 assumed that arithmetic was implemented rather cleanly, i.e. that the ﬂoating-poirit
result fI(a0d) of the operation a0 b, (0 e {+,—,%,/}) satisfies

Aadb)=(adb)(1+e) (18)

with |e] < g, where £1is called the machine precision. This model eliminates both the possibility of
underflow as well as machines like the CRAYs, where for lack of a guard digit in the hardware we
can only assert that

Sl(ath)=a(l+e | Jtb(1+e,) 19

where [e;|< & Thus, when a and b are very close and we are subtracting, this model permits a large
relative error in the computed difference. For example, on any CRAY or many CDC machines, the

computed difference of 2° and the next smaller floating-point number is wrong by a factor of 2
(see, Kahan 1981).

Despite this difficulty, it is possible to carry through the proof of Theorem 2 using the weaker
model (19) instead of (18) and arrive at essentially the same conclusion: one step of iterative
refinement, even without computing the residual using'an'thmetic of machine precision £, is
enough to guarantee a small componentwise relative backward error as long as the matrix is not
too ill-conditioned and o(A,x) is not too large. One might expect problems in bounding the error
in the computed residual fI(A%-b), since the result might be off by a factor of 2, but in the analysis
this potential error is dominated by the error in computing AX, so the proof goes through.
Similarly, the error in updating x—d is swamped by larger errors.

The other exception to the model in (18) is underflow. The extension of error analysis to include
underflow is discussed in some detail by Demmel (1984), and we just summarize the results here.
In place of (18) we use the model "

a0 b)=(adb)(I+er+v (20)

where |e|< £ as before, and v represents the underflow error. Let A be the underflow threshold, that
is the smallest positive, normalized floating-point number. Then, on machines where computed
quantities which would be smaller than A are replaced by zero, |v| is bounded by A. On machines
with IEEE standard floating-point arithmetic (see IEEE 1985, IEEE 1987), gradual underflow
lowers the bound on |v| to &l

The statement of Thecrem 2 must be modified as follows to account for underflow. For gradual
underflow, we can say the following: if the inputs A and b and the output X are normalized (that is,
exceed A in magnitude), and if the residuals are computed by an arithmetic of machine precision
either € or €2, then gradual underflow can only degrade performance to the level of the residual
computation using the arithmetic of machine precision & For conventional underflow, the norms
of A, b and % must exceed A/ £ for this statement to be true.

The use of extended range and precision in intermediate computations does not change these
conclusions. Assuming r and d are stored in the same format as A, b and X, underflows in r and d

have the same potential effects on performance as they did when they were not computed in
extended format.

We have not yet considered the effect of underflow on the rate of convergence of the iteration.
There are matrices for which the iteration converges only if underflows do not occur, but the
matrices are so ill-conditioned as to make the computed solution untrustworthy anyway. As long
as some entry of A is large enough (A for gradual underflow and A/ € for conventional underflow)
then underflows will have an effect on the convergence rate comparable to roundoff.

) tﬁy& ’ S“(ﬁ; gﬁ
//
ﬁﬁ” ff 4 An estimator for x;, 1, (A,b)

Ve ‘ In order to estimate the accuracy of a computed solution of Ax=Db, two ingredients are needed:
| a bound on the backward error (however it is measured) and a condition number with respect to
the choice of backward error. As discussed in Section 2.2, the product of the two previous
quantities provides an approximate upper bound on the relative error in the computed solution.

In the case of the conventional normwise backward error, the condition number is essentially
given by x(A)= || A7l .. 1All..There has been much work on such estimators for x(A) in recent
years (for example Cline ez al. 1979, see Higham 1987a for a complete list of references), and
cheap, reliable estimators are available in standard software packages such as LINPACK
(Dongarra et al. 1979). It is natural to seek an analogous estimator for KAy (AsD).

From (5) we see that the quantity we need to estimate is
HATEXHAT), = AT (E XD ... 2y

In place of the true solution x, we may use its computed approximation X. In the case of
componentwise relative backward error, we may also just use the simpler condition number
Kia| (A) which requires us to estimate

HAT AL = 1A AT ell., 22)

where e is the vector of all ones. Either way, we need to be able to estimate

A tigl.. (23)

where g is a nonnegative vector which is easy to compute (in the above examples it costs just one
matrix-vector multiply).

Let G=diag(g,....§,)- Then g=Ge and
A gl = 11AT Gell = 1IAIGlell. = 1A' Glll.= |AT'G... (24)

| A7lG l. can be estimated by the algorithm of Hager (1984) and Higham (1987), which
estimates the 1-norm (or infinity-norm) of a n X n matrix given the ability to multiply a vector by
both the matrix and its transpose. We can multiply any vector z by the operator A™'G by
multiplying z by the diagonal matrix G, and then solving A y=G z using the LU factorization of
A. Multiplying by (A1G)T is equally easy.

Our estimate of condition numbers K| Al,sbl(A’b) includes a dependence on the calculated
solution. We also performed runs for different solutions (for example, xiz-iz, i=l,..,n) and

found little sensitivity. Note that the experiments in Set 1 in Section 5 give us results close to the
upper bound of twice k).

10

Fd ‘ 5 Numerical experiments

f We tested the stopping criteria, the backward errors (13) and the error bound (15) by modifying
; the sparse linear system solver MAZ28 in the Harwell Subroutine Library (Duff 1977). As we
mentioned in Section 1, MA28 can drop entries of L and U that fall below a tolerance (called
drop tol in our tables) in order to further decrease fill-in (drop tol=0 corresponds to standard
Gaussian elimination). The resulting L. and U factors are then used to solve Ax=b for x by

forward and back substitution in the usual way, followed by some steps of iterative refinement.

All tests were done on an IBM 3084. In single precision, the machine precision, &, is
1673 =107, In double precision, it is 1613 =2x1076.

All our runs are on a common set of test matrices from the Harwell-Boeing test set (Duff,
Grimes, and Lewis 1987). Their names, number of nonzero entries and condition numbers x(A)
and x A,(A) are given in Table 1. The name of each matrix includes its dimensions, for example
GRE115 is 115 by 115. Two matrices are identified as GRE216. Both of these have the same
structure, but they have quite different numerical values. We also ran our tests on some other
matrices from the set and obtained results broadly comparable with these displayed.

For each run, we chose the value of the solution x and then we computed the right-hand side b
by multiplying the solution by the test matrix. All matrices have also been scaled before
computing the right-hand side, thus obtaining two test problems for each matrix. The scaling is
computed using the Harwell routine MC19, which makes the nonzeros of the scaled matrix near to
unity by minimizing the sum of the squares of logarithms of the moduli of the nonzeros (Curtis
and Reid 1972). This scaling does not guarantee that x(A) and Kia, (A) must decrease (see Table 1)
although on many matrices the effect is very beneficial, particularly for the classical condition
number. This is particularly so for the second GRE216 example, where, before the scaling, the

matrix was essentially singular. Note in general that many of the matrices are poorly conditioned,
particularly before scaling.

In all the runs, the standard normwise backward error

el
Al Ixl.+Ibl.’

n= @)

the condition number x(A) and the error bound 7 x(A) were computed and compared to the other
backward errors, condition numbers and error bounds.

We ran our tests with different choices for the vectors T and f defined in Section 2.2 and
different right-hand sides b. According to these different choices, we group the experiments into 3
sets. We also include some runs using drop tolerances (set 4).

The main data for our numerical experiments are presented in Tables A1-A15 in the Appendix.
In this section, we display summaries of these results.

11

Nonzeros Before scaling After scaling

@A) K (A) x(A) LNIGY
GRE115 421 0.93D+02 0.86D+02 - 0.69D+04 0.13D+03
GRE185 975 0.38D+06 0.15D+06 0.39D+06 0.14D+06
GRE216 812 0.28D+03 0.22D+03 0.20D+03 0.18D+03
GRE216 812 0.83D+15 0.29D+14 - 0.56D+08 0.85D+07
GRE343 1310 0.47D+03 0.37D+03 0.30D+03 0.26D+03
GRE512 1976 0.46D+03 0.37D+03 0.40D+03 0.36D+03
GRE1107 5664 0.18D+09 0.98D+08 0.77D+10 0.24D+09
WEST67 294 0.91D+03 0.31D+03 0.30D+03 0.13D+03
WEST132 413 0.11D+13 0.80D+07 0.94D+04 0.21D+04
WEST156 362 0.12D+32 0.38D+09 091D+12 0.15D+09
WEST167 506 0.69D+11 0.52D+06 0.46D+04 0.12D+04
WEST381 2134 0.53D+07 0.38D+05 0.38D+06 0.53D+04
WEST479 1888 0.49D+12 0.37D+07 0.27D+06 0.20D+05
WEST497 1721 0.38D+12 0.13D+07 0.42D+07 0.63D+04
WEST655 2808 0.49D+12 0.37D+07 0.42D+06 0.36D+05
WEST989 3518 0.13D+13 0.10D+-08 0.58D+06 0.52D+05
WEST1505 5414 0.14D+13 0.10D+08 0.67D+08 0.21D+07
WEST2021 7310 0.28D+13 0.21D+08 0.86D+06 0.10D+06

Table 1. Condition numbers before and after scaling.

In all cases, the stopping criterion was

Stop if @ < & or @ does not decrease by at least a factor of 2 .

All the runs used IBM double precision, except for the experiments in single and mixed precision
in set 1. This stopping criterion differs from that used in Theorem 2 (@ <(n+1) &). The value in
Theorem 2 can be too large, especially for very large and sparse matrices, and the iterative
refinement could stop too early. Generally, our stopping criterion terminates the iterative
refinement with a value of @ less than &. If the convergence is slow (for example, using double
precision, the second GRE216 matrix in Table A7 stops after 4 iterations with
0=0.4x10"" =2 ¢), our stopping criterion recognizes this early. However, the final value of @ is
still of order & Somewhat surprisingly we find there is no advantage in including a factor (y+1) in
our stopping criterion. Indeed, its inclusion would often result in no iterations, and there are only
few occasions in sets 1 to 3 where the @< gcriterion is not met. Note that, in the runs in sets 2 to 4,
@ is replaced by @, + ®, (as in equations (13)~(15)). If we used a similar condition on 77, in most
of the examples we did not perform any steps of iterative refinement because the first solution
satisfied the stopping criterion, but, before scaling, the estimation of the error I oxll./Ilxll., given
by 17 x(A) was very poor because of the very large value of x(A).

We discuss the experiments for each of our four sets of values in turn. In all the following tables,
the row corresponding to “Num. iter.” gives the number of steps performed by the iterative
refinement algorithm and the row corresponding to “Num. cases” gives the number of examples
for which the iterative refinement performed that number of iterations. By “Error” we denote the

12

max-norm of the difference between the computed solution and the actual solution used to
- generate the right-hand side, divided by the max-nomm of the actual solution.

In the following, we denote by @@ and by x@, i=12, j=12,34, the componentwise
backward errors defined by (13) and the corresponding condition numbers defined by (15). The
superscript identifies the set of tests.

Set 1:

For these tests we chose 7;=0, so that all equations belonged to category 1. Thus the backwards |
error was given by col(l) as defined in (13), the condition number Kt(le) and the error bound by
of? k) as defined in (15). Because all the equations belong to category 1, k§) = iz b (A,b),
and a),fl) =0. The right-hand sides b were chosen so that the true solution x had all components
equal to 1. The drop tolerance was zero. These test were run in single precision, double precision,

and mixed precision (all single precision, except for double precision computation of residuals).
The Tables A1-AS5 in the Appendix are relative to Set 1.

min avr max
x(A) (Before scaling)
€1075(A) (Afier scaling) 19 41 19
K%’ (Before scaling)
LOgIO 155} N -0.38 1.4 6.5
Kony (After scaling)
Before scaling After scaling
min avr max min avr max
Log 1o(x(A)! xG3)) 026 36 2 | 02 oo 35

Table 2. Summary of results for the condition numbers of set 1.

In Table 2, summarizing the results in Table Al, we observe that the condition number xf, is
always less, for both scaled and unscaled matrices, than twice the classical condition number
K(A), as must be the case from the theory. In some examples, Kg,ll) is much better than x(A) (for
example, in the WEST156 example before scaling x{,) < 3.2 x 1072 x(A)). Moreover, Table 2
shows that the classical condition number x(A), without any form of scaling, is rather unreliable
as a measure of the ill-conditioning of the system. Table 3 (summarizing the results in Tables A2
and A3) reflects the previous considerations, so that the estimation @{" zcgl) of the error is
generally quite tight, while 77 x(A) can be too pessimistic before scaling. Note that it is possible
for our bound to be less tight than that from the classical theory but, when this happens in the
experiments, our bound is only 3 times greater than the classical one in the worst case.
Throughout, our estimate of condition numbers KlAl,lbi(A’b) includes a dependence on the
calculated solution. We also performed runs for different solutions (for example, x; = { 2, i=1,..,n)

13

Before scaling After scaling
Num, iter. 0 1 2 2 0 1 2 2
Num. cases 0 17 1 1 16 1
min avr max min avr max
Logo(m) -18 -16 ~16 -17 -16 ~16
Log (@) -16 -16 -16 -16 -16 -16
x(A)
Lo, m%—,,;; 0.78 47 2 0.93 20 4.1
(1 () '
Lol =2 048 15 25 | 04 14 33
19 Error
" N x(A)
10 {0 4 -032 32 20 -041 053 3.0
1

Table 3. Summary of results for set 1.

and found little sensitivity. Note that our choice of x in Set 1 gives us results close to the upper
bound of twice kj,;. In Tables A4 and AS, we report the results of the algorithm using single and
mixed precision. Unfortunately, the test matrices are in many cases so ill-conditioned that the
iterative refinement diverged, that is {" increased after some steps as in, for example, GRE1107
and the second GRE216 example in Table A4. In practice, IBM single precision is too poor to
produce good results, and the use of mixed precision does not help. Note, however, that our
algorithm stll terminates after only a few steps. In every case, we tried running the iterative
refinement for twenty steps and in no cases did we get much improvement over the results shown.
Our algorithm for computing the condition numbers encounters numerical difficulties partly
because of the ill-conditioning of these matrices and partly because we use threshold pivoting in
the LU factorization. We could have used iterative refinement in this computation, but this would
be at varance with our desire for a cheap estimator. Our feeling is that single precision
calculations are inappropriate here.

Set Z:

For these tests we chose 7;=1000n&(||A; Il.. X[l +b,]) and £P =|A@ e || X].., where e is the
column vector of all ones. This leads to the backward errors @2 and @S” defined in (13) and the
condition numbers Kfli) and chz) and error bound w{® K§i>+a)§2) ng) defined in (15). The
right-hand sides were chosen so that the true solution x had every fifth entry equal to 1
(xy=xg=x;;=...=1) and the rest zero. The drop tolerance was zero. These tests were done in
double precision only. Tables A6 to A8 show the results of runs on set 2. We present a summary of
these results in Tables 4 and 5.

We also ran all the test examples of set 2 replacing zero with 107 in x and obtained similar
results. It is necessary to emphasize that, in most of the examples of set 2, the standard @

14

min avr : max
x(A) (Before scaling) '
Logyg x(A) (After sealing) -1.9 4.1 19
K,(,,z) (Before scaling)
Logm-——-—‘—-——————‘-—-——————-— -0.37 13 7.0
xg,) (After scaling)
x'g) (Before scaling)
L0g 1 ——Zrmreereren -0.43 1.6 6.1
k@ (After scaling)
F2
Before scaling After scaling
min avr max min avr max
Log o(xc(4)/ k57 045 43 3 026 15 3.8
Log 1o(x(A)/ xJ) 052 43 23 030 1.8 52

Table 4. Summary of results for the condition numbers for set 2.

computed by (3) was very large (sometimes of order 1), so that we would get no useful
information if we use a very large value for 7;. Notice that, in all our runs, @{? is very small
compared with a)fz) , in agreement with our cornments after equation (15).

It may appear that our error estimate is sometimes poor, but the relatively good solution
obtained is really fortuitous as can be seen by the results in the Appendix using the same matrix
but with a different right-hand side (the examples shown by the GRE1107 results in Tables A3 and
A8 and by the second GREZ216 results in Tables A2 and A7).

Before scaling After scaling
Num. iter. 0 1 2 2 0 1 2z 2
Num. cases 1 13 4 2 12 4
min avr max min avr max
Logo(m) -23 -17 ~16 -17 -17 -16
Log o (0®) -16 -16 -15 -16 -16 -15
Logg(@{®) 32 27 -19 -31 -28 -19
Log... TK(A)
T —— 0.65 4.5 19 0.97 22 4.0
@B k@ 1 0@ P }
Log 1 2 0.58 17 43 0.50 1.6 2.7
1o Error
Log 1 x(A)
0 x@ + 0@ x@ -017 28 16 -023 063 2.4
1 @2

Table 5. Summary of results for set 2.

15-

Set 3:

For these tests we chose 7,=1000n&([|A; ll.. 1%l +b,]) just as in Set 2, and P =|[b]_e,
where e is the column vector of all ones. This leads to backward errors @ and w{” defined in
(13) and the condition numbers x5 and x) and error bound &> x5+) defined in (15).
The right-hand sides were chosen so that the true solution x had every fifth entry equal to 1 and the
rest zero. The drop tolerance was zero. These tests were done in double precision only. The Tables
A9-A11 are relative to Set 3 of parameters, and we summarize these in Tables 6 and 7.

min avr max
K(A) (Before scaling)
€107, (A) (Afier sealing) ~1.9 4.1 19
KSX) (Before scaling)
Logwo————— -037 13 7.0
Ko, (After scaling)
x§,?2> (Before scaling)
Log jg—fy e -1.9 40 14
x)’ (After scaling)
@y
Before scaling After scaling
min avr max min avr max
Logo(x(A)/ x5)) 045 43 23 026 L5 3.8
Log o(x(A)/ k5D 0.10 0.97 6.4 0.38 0.86 2.6

f

Table 6. Summary of results for the condition numbers for set 3.

Before scaling After scaling
Num, iter. 0 1 22 0 . 1 2 2
Num. cases 1 13 4 2 12 4
min avr max min avr max
Logo(m) -23 -17 -16 -17 -17 -16
Log o (@) ~16 -16 -15 -16 -16 -15
Logg(@f) -30 -27 17 -31 28 -19
Log. KA
210 Frror 0.65 4.5 19 0.97 2.2 4.0
0)) 4)
i) KV K
Loggmm——t % % 0.58 22 7.9 0.50 1.6 27
10 Error
Log 17K(4)
100 ng + 0P Kg: -0.17 2.3 11 -0.23 0.63 2.4

Table 7. Summary of results for the set 3.
Comparing Tables 4 and 6 we observe that, while xgi’ and ng) are usually quite close, K‘SZ) can be

16

much larger than Ksl), (for example, see the WEST156 example before scaling, where ng) is 1016
times larger than &) and the error estimation can be pessimistic. Also note that, comparing line
7 of Tables 5 and 7, this choice of f does not give as good a bound as our choice for f in set 2,
although the difference is minimal after scaling.

Set 4:

For these tests we used nonzero drop tolerances (drop tol= 107° , drop tol= 10'3). We changed t;
from its eardier value to 7;=1000n(e+droptol)(IIA; .. |l x|l.Hb;l) and used
@ =1AP|e| %], where e is the column vector of all ones. The entries of b and x were chosen as
in Set 3. Double precision was used. Tables A12-Al5 are the results of runs using this set of
parameters, and the results are summarized in Table 8.

drop tol. = 10~* drop tol. = 1072
Num. iter. 0 1 2 2 0 1 2 2
Num. cases 2 6 10 2 1 15
min avr max min avr max
Log o(m -18 -16 ~16 ~18 -15 4.6
Log 1o(a’§4)) —o0 ~o0 ~17 —oo —o0 —o
Log p(@$) -16 -16 -15 -16 -15 23
Log. LKA
10 Frror 0.66 23 3.7 0.90 2.1 4.6
()) L @) @
o kW Lol
Loggm——t 2 "% 0.66 1.6 2.8 0.64 1.6 3.8
10 Error
g nx(A)
105® s of) <0 -0.14 064 2.5 -095 045 2.9

Table 8. Summary of results for set 4. The —o entries correspond to values of @{® = 0.

Note that, in this set, we nearly always have cal(“) = (. This corresponds to putting all of the error
into b, that is A =0 and b = A X —b, obtaining the situation which was discussed at the
beginning of Section 2.2. In this case, f does not depend on b explicitly, but our bounds are still
good. Note again that our stopping criterion terminates after only a few iterations if the iteration

diverges. We checked this divergence by forcing more iterations and observed either oscillation or
divergence.

We observed, contrary to Zlatev (1986), that little gain in sparsity was obtained (see for example
Table Al5), while even moderate values of drop tolerance caused divergence of the iterative
refinement. A drop tolerance strategy appears to work well only on very structured sparse matrices
such as those resulting from discretizations of partial differential equations. We confirmed this
with a few test runs. See, for example, the results in Table 9.

17

drop tol 0 107 107t

Fill-in 23619 16085 4697
Num. iter. 2 14 16
Error 032D-14 0.25D-14 0.29D-01

Table 9. Fill-in, numbers of iterations and error for the five point operator on a 30 X 30 grid,
" using x;=1,i=1,...,n and different values of drop zol.

Finally, Duff, Erisman, and Reid (1986, page 276) described an example of Gear (1975) where
the error matrix for minimizing the Frobenius norm of the error becomes arbitrarily large if the
perturbations are constrained to the original pattemn. On this example, after one step of iterative
refinement, using as a starting point the solution

(6-0)/
S A 1/6 1015
X= 1/6 , 0=107",
(6—-0)/ 6
we can guarantee that the error matrix E has the same pattern as the original matrix. That is
1 16 11
010l 0 O} _
1 0 01

with @ < 1071 , §=107%. It is interesting to notice that x(A)=1+1/§and k (A)=4.

6 Conclusions

We have shown that, when the iterative refinement is converging, it is possible and inexpensive
to guarantee solutions of sparse linear systems which are exact solutions of a nearby system whose
matrix has the same sparsity structure. Thus we have answered the open problem posed by Duff,
Erisman and Reid (1986, page 276) conceming obtaining bounded perturbations while
maintaining sparsity. If the equations arise from the discretization of a partial differential equation,
then a componentwise tiny error should indicate that the solution obtained is that of a
neighbouring partial differential equation, a conclusion that would not be available if classical
ermor bounds were being used.

We have extended work of Skeel (1980) and Demmel (1984) to include the possibility of having
sparse right-hand sides and solutions vectors and have shown that, although we can not always
guarantee the solution to a nearby problem whose right-hand side sparsity is the same, we can
develop suitable bounds for perturbations in the right-hand side.

We discuss methods of inexpensively and accurately calculating a condition number appropriate
to this tighter backward error. This condition number is not bigger than that of Wilkinson and can

18

indeed be much smaller, particularly if the matrix is badly row-scaled. For example, in set 1, the
average of the logarithms of the ratio of the classical condition number before and after scaling is
4.1, while for the Skeel condition number the corresponding value is 1.4.

We have incorporated our backward error estimator in the iterative refinement step of a direct
sparse matrix solver and find that we often require zero or one step of iterative refinement to
guarantee that the computed solution is the solution of a nearby system with the same sparsity
structure as the original matrix. We also observe that we do not require any extra precision in
calculating residuals, thus confirming remarks made by Skeel (1980). Additionally, when .
combined with our condition number estimator, a good estimate of the actual error is obtained.
Furthermore, when iterative refinement diverges, our stopping criterion recognizes this early.

We observed, contrary to Zlatev (1986), that little gain in sparsity was obtained while even
moderate values of drop tolerance caused divergence of the iterative refinement. A drop tolerance
strategy appears to work well only on very structured sparse matrices such as those resulting from
discretizations of partial differential equations.

In this paper, we have been using iterative refinement to improve the solution obtained using an
LU factorization. We have also considered the case when our LU factorization can be quite
inaccurate (set 4). In this case, one could use other techniques including SOR and CG and it is a
open question as to how far our analysis could be continued to cover these cases.

Acknowledgement
We would like thank John Reid for reading a draft of this paper and making some helpful

remarks.

References

Cline, A.K., Moler, C.B., Stewart, G. W. and Wilkinson J.H. (1979). An estimate for the
condition number of a matrix. SIAM J. Numer. Anal. 16 , 368-375.

Curtis A.R. and Reid, J. K. (1972). On the automatic scaling of matrices for Gaussian elimination.
J. Inst. Maths. Applics. 10, 118-124.

Demmel, J. W. (1984). Underflow and the Reliability of Numerical Software, STAM J. Sci. Stat.
Comput. 5, 887-919.

Dongarra, J.J., Bunch, J.R., Moler, C. B. and Stewart, G.. W, (1979). LINPACK User’s Guide.
SIAM, Philadelphia, 1979.

Duff, 1. S. (1977). MA28 — a set of Fortran subroutines for sparse unsymmetric linear equations.
Report AERE R8730, HMSO, London.

Duff, 1.S., Erisman, A.M., Gear, C. W,, and Reid, J. K. (1985). Some remarks on inverses of
sparse matrices. Report CSS 171, CSS Division, Harwell Laboratory, England.

Duff, I.S., Erisman, A.M., and Reid, J. K. (1986). Direct methods for sparse matrices. Oxford
University Press, London.

19

Duff, I. S, Grimes, R. G., Lewis, J. G. (1987). Sparse matrix test problems. Report CSS 191, CSS
Division, Harwell Laboratory, England. - ' '

Gear, C. W. (1975). Numerical errors in sparse linear equations. Report UIUCDCS-F-75-885,
’ Department of Computer Science, University of Illinois at Urbana-Champaign, Olinois.

Hager, W. W. (1984). Condition estimators, SIAM J. Sci. Stat. Comput. 5, 311-316.

Higham, N.J. (1987a). A survey of condition number estimation for triangular matrices. STAM
Review 29, 575-596.

Higham, N. J. (1987b). Fortran codes for estimatihg the one-norm of a real or complex matrix,
with applications to condition estimatior.. Numerical Analysis Report No. 135, University of
Manchester, England.

IEEE (1985). Standard for Binary Floating Point Arithmetic. ANSIIEEE Std 754-1985, IEEE,
New York.

IEEE (1987). Radix and Format Independent Sténdand for Floating Point Arithmetic. ANSI/IEEE
Std 854-1987, IEEE, New York.

Kahan, W. (1981). Why Do We Need a Floating Point Arithmetic Standard? IEEE Floating Point
Subcommittee Working Document P754/81-2.8.

Markowitz, H.M. (1957). The elimination form of the inverse and its application to linear
programming. Management Sci. 3, 255-269.

Oettli, W. and Prager, W. (1964). Compatibility of approximate solution of linear equations with
given error bounds for coefficients and right-hand sides. Numer. Math. 6, 405-409.

Skeel, R. D. (1979). Scaling for numerical stability in Gaussian elimination. J. ACM 26, 494-526.

Skeel, R.D. (1980). Iterative refinement implies numerical stability for Gaussian elimination.
Math. Comp. 35, 817-832.

Wilkinson, J. H. (1961). Error analysis of direct methods of matrix inversion. J. ACM 8, 281-330.

Zlatev, Z., Wasniewski, J. and Schaumburg, K. (1986). Condition number estimators in a sparse
matrix software. SIAM J. Sci. Stat. Comput. 7, 1175-1189.

20

APPENDIX Tables of results of numerical experiments

In all the following tables, the column corresponding to “Num. iter.” gives the number of steps performed
by the iterative refinement algorithm. By “Error” we denote the max-norm of the difference between the
computed solution and the actual solution used to generate the right-hand side, divided by the max-norm of
the actual solution.

Before scaling After scaling
x(A) x§) x(A) xg)
GRE115 093D+02 0.17D+03 0.69D+04 0.26D+03
GRE185 038D+06 0.30D+06 039D+06 0.29D+06
GRE216 028D+03 0.44D+03 . 020D+03 0.35D+03
GRE216 0.83D+15 0.58D+14 056D+08 0.17D+08
GRE343 047D+03 0.74D+03 030D+03 0.51D+03

GRES12 0.46D+03 0.73D+03 0.40D+03 0.72D+03
GRE1107 0.18D+09 0.200+09 0.77D+10 0.48D+09
WEST67 0.91D+03 0.15D+03 0.30D+03 0.16D+03
WEST132 0.11D+13 0.12D+08 0.94D+04 0.33D+04
WEST156 0.12D+32 0.38D+09 0.91D+12 0.30D+09
WEST167 0.69D+11 0.80D+06 0.46D+04 0.18D+04
WEST381 0.53D+07 0.75D+05 0.38D+06 0.835D+04
WEST479 0.49D+12 0.57D+07 0.27D+06 0.25D+05
WEST497 038D+12 0.20D+07 0.42D+07 0.12D+05
WESTé655 0.49D+12 0.57D+07 0.42D+06 0.41D+05
WEST989 0.13D+13 0.16D+08 0.58D+06 0.70D+05
WEST1505 0.14D+13 0.16D+08 0.67D+08 0.35D+07
WEST2021 0.28D+13 0.32D+08 0.86D+06 0.12D+06

Table Al. Set 1. Condition numbers before and after scaling.

WEST497
WEST655

0.77D-16 0.29D-04 0.11D-15 022D-09 023D-10
0.19D-16 0.94D-05 021D-15 0.12D-08 0.54D-10
WEST989 095D-16 0.13D-03 0.13D-15 0.21D-08 0.17D-09
WEST1505 0.93D-16 0.13D-03 0.16D-15 0.26D-08 0.17D<09
WEST2021 1 0.98D-16 0.27D-03 0.16D-15 0.52D-08 0.88D-10

Table A2. Set 1. x;=1,i=l,...,n, double precision before scaling.

Num. iter. n nx(A) a)lm a){‘) st) Error
GRE115 1 0.52D-16 0.48D-14 0.59D-16 0.10D-13 0.79D-15
GRE185 1 0.12D-15 047D-10 0.16D-15 0.48D-10 0.16D-12
GRE216 1 0.67D-16 0.19D-13 0.67D-16 0.29D-13 0.26D-15
GRE216 1 0.73D-16 061D01 0.11D-15 0.64D-02 021D-02
GRE343 1 0.10D-15 047D-13 0.10D-15 0.74D-13 0.50D-15
GRES12 1 0.83D-16 0.38D-13 0.83D-16 0.61D-13 0.26D-15
GRE1107 1 0.93D-16 0.17D-07 0.11D-15 0.22D-07 0.74D-10
WEST67 1 0.49D-16 0.45D-13 0.89D-16 0.13D-13 0.24D-14
WEST132 1 0.93D-17 098D-05 0.15D-15 0.18D-08 0.18D-09
WEST156 1 0.77D-18 0.90D+13 0.11D-15 0.42D-07 0.38D-09
WEST167 1 0.80D-16 0.55D-05 0.12D-15 0.95D-10 0.48D-11
WEST381 2 0.45D-16 0.24D-09 0.16D-15 0.12D-10 0.23D-11
WEST479 1 0.19D-16 0.94D-05 0.17D-15 0.96D-09 0.42D-10

1

1

1

1

Num. iter. n 7 x(A) ol ol xgl’ Error

GRE115
GRE185
GRE216
GRE216
GRE343
GRE512
GRE1107

1 0.64E-16 0.44E-12 0.83E-16 0.22E-13 0.42E-14
1 0.62E-16 0.24E-10 0.64E-16 0.18E-10 0.54E-13
1 0.54E-16 0.11E-13 0.79E-16 0.28E-13 0.13E-14
1 0.89E-16 0.50E-08 0.93E-16 0.16E-08 0.17E-09
1 0.76E-16 0.23E-13 0.88E-16 0.45E-13 0.10E-14
1 0.76E-16 0.31E-13 0.93E-16 0.66E-13 0.27E-14
1 0.39E-16 030E-06 0.10E-15 048E-07 0.25E-10
WEST67 1 0.35E-16 0.11E-13 0.14E-15 021E-13 0.89E-15
WEST132 1 028E-16 0.26E-12 098E-16 033E-12 0.73E-14
WEST156 0 0.57E-16 0.52E-04 0.16E-15 048E-07 0.98E-08

1

1

1

1

1

1

1

1

WEST167 0.29E-16 0.13E-12 0.11E-15 020E-12 0.44E-14
WEST381 0.15E-15 0.58E-10 0.17E-15 0.15E-11 0.56E-12
WEST479 035E-16 0.94E-11 022E-15 0.56E-11 0.12E-12
WEST497 0.17E-16 0.70E-10 0.11E-15 0.13E-11 0.26E-12
WEST6E55 0.52B-16 0.2E-10 0.19E-15 0.80E-11 0.19E-12
WEST989 0.25E-16 0.15E-10 0.12E-15 0.80E-11 0.33E-12
WEST1505 050E-16 0.34E-08 0.17E-15 0.60E-09 0.82E-10
WEST2021 0.50E-16 0.43E-10 0.18E-15 022E-10 0.19E-12

Table A3. Set 1. x;=1,#=1,.,n, double precision after scaling.

Num. iter. n nx(A) o o) xgl) Error
GRE!L15
GRE185
GRE216
GRE216
GRE343
GRES12

1 0.1SE-06 0.10E-02 0.29E-06 0.77E-04 0.13E-04
2 0.33E-06 0.I3E+00 0.33E-06 095E-01 0.40E-02
1 036E-06 0.73E-04 0.39E-06 0.14E-03 0.43E-05
2 059E-06 033E+02 0.83E-06 0.11E+02 043E-01
1 0.39E-06 0.11E-03 0.42E-06 O0.17E-03 0.29E-05
1 0.74E-06 030E-03 0.74E-06 042E-03 0.15E-04
GRE1107 4 0.18E-05 0.13E+04 0.11E-03 0.13E+03 0.86E+00
WEST67 1 0.15E-06 045E-04 0.46E-06 0.19E05 097E-05
WEST132 1 0.18E-06 0.17E02 0.47E-06 041E-04 0.82E-04
WESTI156 0 0.22E-07 0.20E+05 0.54E-06 0.42E+01 0.95E+00
WEST167 1 0.84E-07 038E-03 0.41E06 O0.19E-04 0.40E-04
WEST381 1 0.48E-07 0.19E-01 0.51E-06 0Q.11E-03 0.23E-02
WEST479 1 0.22E-06 0.61E-01 0.95E-06 0.62E-03 0.83E-03
WEST497 1 0.12E-06 0.49E+00 0.50E-06 0.15E-03 0.17E-02
WEST655 1 0.74E-07 031E-01 0.73E-06 0.78E-03 0.77E-03
WEST989 1 0.11E-06 0.63E-01 0.49E-06 0.89E-03 0.72E-03
WEST1505 i 0.11E-06 0.73E+01 0.70E-06 0.63E-01 0.10E+00
WEST2021 1 0.11E-06 093E-01 0.72E-06 0.22E-02 0.56E-03

Table A4. Set 1. x;=1,i=1,..,n, single precision after scaling.

22

Num. iter. n nx(A) ol o k) Error
GRE115
GRE185
GRE216
GRE216
GRE343

1 0.20E-06 0.14E-02 0.40E-06 0.10E-03 0.57E-05

2 0.26E-06 0.10E+00 0.58E-06 O0.17E+00 0Q.16E-02

1 0.33E-06 0.66E-04 0.72E-06 0.25E-03 031E-05

4 0.16E-06 0.89E+01 0.11E05 O.14E+02 0.62E-01

1 0.33E-06 097E-04 0.72E06 . 0.27E-03 0.26E-05
GRES12 2 0.25E-06 0.10E-03 0.60E-06 031E-03 0.72E-05
GRE1107 4 0.17E-05 0.12E+04 020E-03 0.24E+03 0.84E+00
WESTS7 1 020E-06 0.60E-04 0.51E-06 0.21E05 0.86E-05

1

1

1

1

1

1

1

1

1

1

WESTI132 0.15E-06 0.14E-02 0.75E-06 0.66E-04 0.13E-03
WEST156 0.11E-07 098E+04 . 0.59E-06 0.46E+01 0.18E+01
WEST167 0.12E-06 053E-03 0.58E-06 0.28E-04 0.16E-04
WEST381 0.17E-06 0.67E-01 0.73E-06 0.16E-03 031E-03
WEST479 0.77E-07 021E-01 0.63E-06 041E-03 0.24E-03
WEST497 0.12E-06 0.51E+00 0.67E-06 0.20E-03 0.21E-03
WEST655 0.74E-07 031E-01 0.82E-06 0.89E-03 0.69E-03
WEST989 094E-07 0.55E-01 0.88E-06 0.16E-02 0.65E-03
WEST1505 0.12E-06 0.80E+01 0.79E-06 0.71E-01 0.12E+00
WEST2021 0.99E-07 0.86E-01 0.80E-06 0.25E-02 0.15E-03

Table AS. Set 1. x;=1,i=l,...,n, mixed precision after scaling.

Before scaling After scaling
K(A) D xG) K(A) K)

GREI115 0.93D+02 033D+02 0.23D+02 0.69D+04 0.58D+02 0.56D+02
GRE185 0.38D+06 0.50D+05 0.54D+05 0.39D+06 0.46D+05 0.52D+05
GRE216 0.28D+03 0.90D+02 0.832D402 0.20D+03 0.11D+03 0.10D+03
GRE216 0.83D+15 037D+14 0.48D+13 0.56D+08 0.35D+07 037D+07
GRE343 0.47D+03 0.16D+03 0.13D+03 0.30D+03 0.10D+03 0.11D+03
GRE512 0.46D+03 0.14D+03 0.14D+03 0.40D+03 0.14D+03 0.14D+03
GRE1107 0.18D+09 0.40D+08 031D+08 0.77D+10 0.91D+08 0.83D+08
WEST67 0.91D+03 054D+02 0.78D+02 030D+03 0.51D+02 0.41D+02
WEST132 0.11D+13 0.26D+07 0.25D+07 0.94D+04 0.61D+03 0.83D+03
WESTIS6 0.12D+32 0.12D+09 0.13D+09 0.91D+12 0.28D+C9 0.54D+07
WEST167 0.69D+11 045D+05 0.35D+06 0.46D+04 0.86D+03 0.40D+03
WEST381 0.53D+07 0.16D+05 0.63D+04 0.38D+06 0.23D+04 0.13D+04
WEST479 0.49D+12 0.12D+06 0.22D+07 0.27D+06 0.57D+04 0.34D+04
WEST497 0.38D+12 0.75D+06 0.33D+06 0.42D+07 0.73D+03 0.54D+04
WEST655 0.49D+12 0.66D+06 0.14D+07 0.42D+06 0.12D+05 0.32D+04
WEST989 0.13D+13 0.45D+07 047D+07 0.58D+06 0.21D+05 - 0.11D+05
WEST1505 0.14D+13 0.49D+07 0.53D+07 0.67D+08 0.27D+07 0.17D+05
WEST2021 0.28D+13 0.50D+07 0.89D+07 0.86D+06 0.42D+05 0.11D+05

Table A6. Set 2. Condition numbers before and after scaling.

Num. n nx(A) @ of o xQ+ Enor
;) (2
Her. a)£) K‘(”:

GRE115 0.35D-16 0.32D-14 0.84D-16 0.89D-28 0.27D-14 0.71D-15

GRE185 0.94D-16 035D-10 0.19D-15 0.24D-25 0.94D-11 0.14D-12
GRE216 0.12D-16 034D-14 0.56D-16 0.64D-27 0.50D-14 0.13D-15
GRE216 0.51D-16 0.42D-01 0.41D-15 025D-26 0.15D-01 0.76D-06
GRE343 0.14D-16 065D-14 056D-16 0.74D-26 0.90D-14 0.11D-15
GRES12 0.25D-16 0.11D-13 0.83D-16 027D-25 0.12D-13 0.19D-15
GRE1107 0.42D-16 0.78D-08 020D-15 0.58D-24 0.82D-08 0.83D-10
WEST67 0.42D-16 038D-13 0.16D-15 027D-30 0.88D-14 0.12D-14
WEST132 0.24D-16 025D-04 0.13D-15 0.80D-28 034D-09 0.16D-10

WEST167 0.28D-17 0.19D-06 0.20D-15 0.25D-18 0.92D-11 0.37D-12
WEST3381 0.78D-17 0.41D-10 0.15D-15 0.40D-29 024D-11 0.29D-12
WEST479 0.33D-19 0.16D-07 0.33D-15 0.14D-28 0.39D-10 0.91D-12
WEST497 0.12D-17 0.44D-06 0.16D-15 0.28D-28 0.12D-09 0.30D-11
WEST655 0.88D-19 0.43D-07 0.26D-15 0.15D-25 0.17D-09 0.29D-11
WEST989 0.14D-16 0.19D-04 0.14D-15 0.29D-27 0.61D-09 0.26D-10
WEST1505 0.23D-16 031D-04 0.20D-15 0.67D-27 0.99D-09 0.46D-10
WEST2021 0.15D-16 0.52D-04 0.22D-15 0.32D-27 0.11D-08 0.24D-10

Table A7. Set2. x;=1, i=1,6,.., elsex;=0, before scaling.

1
1
1
4
1
1
2
1
1
WEST156 1 012D-22 0.14D+09 086D-16 0.15D-31 0.10D-07 0.10D-10
0
1
3
1
3
1
1
1

Num. n 7 x(A) o® of) o xQ+ Error
iter. a)gz) Kg‘z)

GRE115
GRE185
GREZ216
GRE216
GRE343
GRE512
GRE1107

1 032E-17 022E-13 (096E-16 036E-27 0.56E-14 0.29E-15
1 064E-16 025E-10 0Q.11E-15 041E-24 0.52E-11 0.57E-13
2 060E-16 0.12E-13 0.15E-15 0.10E-28 0.16E-13 0.81E-15
1 0.2E-15 068E-08 (.14E-15 094E-25 0.50E-09 0.77E-10
1 O060E-16 0.18E-13 022E-15 048E-26 0.23E-13 0.67E-15
1 0.86E-16 035E-13 022E-15 0.25E-25 031E-13 0.67E-15
3 077E-16 059E-06 C.20E-14 0.18E-22 0.18E-06 0.10E-08
WEST67 1 040E-16 0.12E-13 0.16E-15 028E-30 0.79E-14 0.13E-14
WEST132 1 0.17E-16 0.16E-12 0.17E-15 0.78E-31 O0.11E-12 0.54E-14
WEST156 0 061E-17 056E-05 0.10E-15 0.14E-29 0.30E-07 0.32E-08
WEST167 0 021E-16 094E-13 0.18E-15 0.50E-19 0.16E-12 0.24E-14
WEST381 1 0.35E-16 0.13E-10 0.12E-15 057E-29 0.27E-12 0.86E-13
WEST479 2 037E-17 0.10E-11 0.16E-15 033E-30 0.90E-12 0.28E-13
WEST497 1 052E-17 022E-10 0.11E-15 0.13E30 0.81E-13 0.22E-14
WEST655 2 0.13E-16 055E-11 0.19E-15 0.60E-29 0.22E-11 0.61E-14
WEST989 1 0.32E-16 0.19E-10 0.20E-15 0.63E-29 043E-11 0.48E-13
WEST1505 1 0.J32E-16 021E-08 0.20E-15 036E-28 054E-09 097E-11
WEST2021 1 032E-16 027E-10 020E-15 095E29 0.8S5E-11 0.18E-13

Table A8. Set2. x;=1, i=1,6,., elsex;=0, after scaling.

24

Before scaling After scaling
x(A) x§§3 ngz) x(A) xS xS
GRE115 0.93D+02 0.33D+02 0.38D+02 0.69D+04 0.58D+02 0.29D+04
GRE185 0.38D+06 0.50D+05 0.93D+05 0.39D+06 0.46D+05 0.92D+05
GRE216 0.28D+03 0.90D+02 0.84D+02 020D+03 0.11D+03 0.82D+02
GRE216 0.83D+15 037D+14 0.18D+15 0.56D+08 0.35D+07 0.19D+08
GRE343 0.47D+03 0.16D+03 0.10D+03 030D+03 0.10D+03 0.85D+02
GRES12 0.46D+03 0.14D+03 0.14D+03 0.40D+03 0.14D+03 0.12D+03
GRE1107 0.18D+09 040D+08 042D+08 0.77D+10 0.91D+08 0.21D+10
WEST67 0.91D+03 054D+02 0.45D+02 030D+03 051D+02 0.24D+02
WEST132 0.11D+13 026D+07 039D+11 0.94D+04 0.61D+03 0.27D+04
WESTI156 0.12D+32 0.12D+09 0.44D+25 0.91D+12 028D+09 0.23D+11
WESTI67 0.69D+11 045D+05 0.68D+09 0.46D+04 0.86D+03 0.15D+04
WEST38] 0.53D+07 0.16D+05 0.29D+07 038D+06 023D+04 0.30D+05
WEST479 0.49D+12 0.12D+06 0.28D+12 0.27D+06 0.57D+04 0.28D+05
WEST497 038D+12 0.75D+06 0.10D+12 0.42D+07 0.73D+03 0.85D+06
WEST655 0.49D+12 0.66D+06 0.18D+12 0.42D+06 0.12D+05 0.20D+05
WEST989 0.13D+13 0.45D+07 0.73D+12 0.58D+06 0.21D+05 0.11D+06
WEST1505 0.14D+13 0.49D+07 0.11D+13 0.67D+08 027D+07 0.17D+06
WEST2021 0.28D+13 0.50D+07 0.14D+13 0.86D+06 0.42D+05 0.12D+06

Table A9. Set 3. Condition numbers before and after scaling.

Numn. n 7 x(A) o o P xfz + Error

iter. o O
GRE115 1 035D-16 032D-14 0.84D-16 0.89D-28 027D-14 0.71D-15
GRE185 1 094D-16 0.35D-10 0.19D-15 0.24D-25 0.94D-11 0.14D-12
GRE216 1 012D-16 034D-14 0.56D-16 0.64D-27 0.50D-14 0.13D-15
GRE216 4 051D-16 042D-01 041D-15 025D-26 0.15D-01 0.76D-06
GRE343 1 0.14D-16 0.65D-14 0.56D-16 0.12D-25 0.90D-14 0.11D-15
GRES512 1 025D-16 0.11D-13 0.83D-16 034D-25 0.12D-13 0.19D-15
GRE1107 2 042D-16 0.78D-08 020D-15 0.58D-24 0.82D-08 0.83D-10
WEST67 1 042D-16 0.38D-13 0.16D-15 0.50D-30 0.88D-14 0.12D-14
WEST132 1 024D-16 0.25D-04 0.13D-15 0.80D-28 034D-09 0.16D-10
WESTI1S56 1 0.12D-22 0.14D+09 0.86D-16 0.17D-27 0.75D-03 0.10D-10
WEST167 0 028D-17 0.19D-06 0.20D-15 0.18D-16 0.12D07 037D-12
WEST381 1 078D-17 0.41D-10 0.15D-15 0.40D-29 0.24D-11 0.29D-12
WEST479 3 033D-19 0.16D-07 033D-15 0.14D-28 0.39D-10 0.91D-12
WEST497 1 012D-17 0.44D-06 0.16D-15 0.28D-28 0.12D-09 030D-11
WEST655 3 0.88D-19 0.43D-07 0.26D-15 0.15D-25 0.17D-09 0.29D-11
WEST989 1 014D-16 0.19D-04 0.14D-15 0.29D-27 061D-09 026D-10

1

WEST1505 0.23D-16 031D-04 0.20D-15 0.67D-27 0.99D-09 0.46D-10
WEST2021 1 019D-16 052D-04 022D-15 032D-27 0.11D-08 0.24D-10

Table A10. Set 3. x;=1, i=1,6,.., elsex; =0, before scaling.

Num. n 7 x(A) of of) o xl+ Emor
iter. o

GREI115 0.32E-17 022E-13 096E-16 0.36E-27 0.56E-14 0.29E-15

WEST479
WEST497
WEST655
WEST989
WEST1505
WEST2021

0.37E-17 0.10E-11 0.16E-15 0.33E-30 0.90E-12 0.28E-13
0.52E-17 0.22E-10 0.11E-15 O0.I3E-30 0.81E-13 0.22E-14
0.13E-16 . 0.55E-11 0.19E-15 0.60E-29 022E-11 06lE-14
0.32E-16 0.19E-10 020E-15 0.63E-29 0.43E-11 048E-13
0.32E-16 021E-08 0.20E-15 036E-28 0.54E-09 0.97E-11
0.32E-16 027E-10 020E-15 095E-29 0.85E-11 0.I18E-13

Table All.Set3. x;=1, i=1,6,.., elsex;=0, after scaling.

1
GRE185 1 064E-16 025E-10 (0.11E-15 0.41E-24 0.52E-11 0.57E-13
GRE216 2 060E-16 0.12E-13 0.15E-15 0.12E-28 0.16E-13 081E-I5
GRE216 1 0.12E-15 0.68E-08 O0.14E-15 0.94E-25 0.50E-09 0.77E-10
GRE343 1 O060E-16 0.18E-13 022E-15 0.71E-26 023E-13 067E-15
GRES512 1 O086E-16 035E-13 022E-15 031E-25 0.31E-13 0.67E-15
GRE1107 3 OQO77E-16 0.59E-06 0.20E-14 0.18E-22 0.18E-06 O0.10E-08
WEST67 1 040E-16 0.12E-13 C.16E-15 0.57E-30 0.79E-14 0.13E-14
WEST132 1 0.17E-16 0.16E-12 0.I7E-15 0.78E-31 0.11E-12 0.54E-14
WESTI56 0 O061E-17 056E-05 0.10E-15 0.14E-29 030E-07 032E-08
WEST167 0 021E-16 0.94E-13 0.18E-15 0.50E-19 0.16E-12 024E-14
WEST381 1 0.35E-16 0.13E-10 0.12E-15 0.57E-29 0.27E-12 0.86E-13

2

1

2

1

1

1

droptol =107% droptol =103
4 4 4 4
x(A) xf,,z xf,,z) xf,,l) Kf,,z)

GRE115 0.69E+04 Q.00E+00 0.12E+03 0.00E+00 0.12E+03
GREI185 0.39E+06 0.00E+00 0.17E+06 0.00E+00 0.14E+06
GRE216 0.20E+03 0.00E+00 021E+03 0.00E+00 0.21E+03
GRE216 0.84E+08 0.C0E+00 0.15E+08 0.00E+CO 0.10E+07
GRE343 0.30E+03 0.00E+00 031E+03 0.00E+00 0.26E+03
GRES512 0.40E+03 0.00E+00 0.43E+03 0.00E+00 0.37E+03
GRE1107 0.63E+10 0.00E+00 0.23E+09 0.00E+00 0.55E+07
WEST67 0.30E+03 0.29E+01 0.16E+03 0.00E+00 0.14E+03
WEST132 0.94E+04 0.00E+00 0.24E+04 0.00E+00 ' 0.22E+04
WEST156 0.91E+12 0.00E+00 0.29E+09 0.00E+00 0.16E+06
WEST167 046E+04 0.00E+00 0.16E+04 0.00E+00 0.13E+04
WEST381 038E+06 0.C0E+00 0.65E+04 0.00E+00 0.54E+04
WEST479 0.27E+06 0.00E+00 0.23E+05 0.00E+00 0.20E+05
WEST497 0.42E+07 0.00E+00 0.65E+04 0.00E+00 0.63E+04
WEST655 0.42E+06 0.00E+00 0.43E+05 0.00E+00 0.37E+05
WEST989 0.58E+06 0.00E+00 0.63E+05 0.00E+00 0.53E+05
WEST1505 0.67E+08 O0.00E+00 03SE+07 0.00E+00 0Q.21E+07
WEST2021 0.86E+06 0.00E+00 0.12E+06 0.00E+00 0.10E+06

Table Al2. Set 4. Condition numbers after scaling for droptol.=10" and
drop tol.= 1073,

26

Numn. n 17 x(A) o of o x{)+ Emor
i 4y (4
iter. o £

GREI115 2 0.99E-18 = 0.68E-14 0.00E+00 O0.69E-16 0.85E-14 0.15E-14

GRE185 3 0.S55E-16 0.22E-10 0.00E+00 0.50E-16 0.83E-11 0.80E-13
GRE216 1 O090E-16 0.18E-13 0.00E+00 0.83E-16 0.18E-13 O0.88E-15
GRE216 29 0.10E-15 0.84E-08 0.00E+00 0.50E-15 0.77E-08 0.63E-10
GRE343 1 090E-16 027E-13 0.00E+00 0.83E-16 0.26E-13 0.81E-15
GRES12 1 0.86E-16 035E-13 0.00E+00 0.11E-15 0.48E-13 0.68E-15

GRE1107 15 0.62E-16 039E-06 0.00E+00 0.19E-15 0.44E-07 027E-09

< WEST67 0.50E-16 0.15E-13 0.13E-16 061E-16 0.10E-13 0.85E-15
: WEST132 0.36E-16 033E-12 0.00E+00 0.67E-16 0.16E-12 0.46E-14
WEST156 0.61E-17 0.56E-05 0.00E+00 0.54E-16 0.16E-07 0.32E-08
WEST167 0.21E-16 094E-13 0.00E+00 0.67E-16 0.11E-12 0.24E-14

WEST479 0.26E-16 0.71E-11 0.0CE+00 0.57E-16 0.13E-11 0.55E-13
WEST497 0.58E-17 0.25E-10 0.00E+00 0.55E-16 0.36E-12 047E-14
WEST655 0.55E-16 0.23E-10 0.00E+00 091E-16 039E-11 0.22E-13
WEST989 0.13E-15 0.7SE-10 0.00E+00 0.19E-15 0.12E-10 0.18E-13
WEST1505 0.64E-16 0.43E-08 0.00E+00 0.10E-15 035E-09 0.10E-10
WEST2021 2 095E-16 0.82E-10 0.00E+00 0.13E-15 0.16E-10 0.59E-13

1
2
0
0
WEST381 2 0.23E-16 0.89E-11 0.00E+00 0.54E-16 036E-12 0.78E-13
3
1
2
1
2

Table Al13. Set4. x;=1, i=1,6,.., elsex;=0, after scaling and drop tol.= 1075,
Num. n 17 %(A) o of o xg?+ Error
iter. 0154) K‘(:z)
GRE115 4 0.35E-17 0.24E-13 0.00E+00 0.48E-16 0.59E-14 0.80E-15
GRE185 15 0.46E-16 0.15E-10 0.00E+00 0.61E-16 0.87E-11 0.14E-12
GRE216 1 0.65E-16 0.13E-13 0.00E+00 0.74E-16 0.16E-13 0.11E-14
GRE216 3 0.26E-04 0.15E+03 0.00E+00 0.11E-02 0.12E+04 0.22E+01
GRE343 3 0.66E-16 0.20E-13 0.00E+CQ0 0.87E-16 0.23E-13 0.72E-15
GRE512 4 (0.63E-16 0.26E-13 0.00E+00 0.89E-16 0.32E-13 0.79E-15
GRE1107 3 0.64E-05 0.10E+04 0.00E+00 0.16E-02 0.90E+04 0.13E+01
WEST67 2 037E-16 0.11E-13 0.00E+00 0.45E-16 0.61E-14 0.14E-14
WEST132 3 0.25E-16 0.23E-12 0.00E+00 0.52E-16 0.11E-12 0.21E-14
WEST156 0 0.59E-18 0.73E-08 0.00E+00 0.54E-16 0.87E-11 0.18E-12
WEST167 0 0.21E-16 0.94E-13 0.00E+00 0.67E-16 0.84E-13 0.24E-14
WEST381 4 0.17E-16 0.67E-11 0.00E+00 0.53E-16 0.29E-12 0.33E-13
WEST479 7 0.34E-17 0.91E-12 0.00E+00 0.55E-16 0.11E-11 0.51E-13
WEST497 4 0.30E-17 0.13E-10 0.00E+00 0.58E-16 0.36E-12 0.36E-14
WEST655 5 Q.28E-16 0.12E-10 0.00E+00 0.65E-16 0.24E-11 0.55E-13
WEST98% 5 0.32E-16 0.19E-10 0.00E+00 0.64E-16 0.34E-11 0.11E-12

WESTI505 10 0.32E-16 0.20E-08 0.00E+00 090E-16 0.19E-09 0.23E-10
WEST2021 5 032E-16 027E-10 0.00E+00 0.94E-16 0.98E-11 0.72E-13

Table Al4. Setd. x;=1, i=16,., elsex;=0, after scaling and drop tol.= 107>,

27

GREL115
GRE185
GRE216
GRE216
GRE343
GRES12
GRE1107
WEST67
WESTI132
WESTI156
WEST167
WEST381
WEST479
WESTA497
WEST655
WEST989
WEST1505
WEST2021

Nonzeros

421
975
812
812
1310
1976
5664
294
413
362
506
2134
1888
1721
2808
3518
5414
7310

drop tol=0.0
647

3173

2544

2767

5334

11535
47603

267

89 |

27
9%
2057
1121
279
2092
1156
2032
2539

Fill-in
droptol=10"%
651
2028
2263
2580
4391
11020
45255
202
87
20
96
1867
982
263
1791
1139
1934
2466

droptol=107?
605
2929
2262
2180
4890
11007
41181
204
83

15

92
1711
790
252
1709
1135
1821
2410

Table AlS. Set 4. Number of nonzero entries in the original matrices and fill-in for

drop tol.=0.0, drop tol.= 107> and droptol.= 107 after scaling.

28

