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Abstract

Background and objectives: The COVID-19 pandemic raised awareness of the complexities of the patient, the dis-
ease, and the practice of medicine. The impact of these reaches beyond healthcare (e.g., supply chains, politics, 
socioeconomic factors) to include nations, individuals, and molecules. In personalized medicine, “accurate diag-
nosis” is critical as it affects patient management, clinical trial recruitment, regulatory approval, and reimburse-
ment policies for payers. Conventional statistics evaluate hypothesis-driven reductionist practices in medicine, 
e.g., the use of “scores” combining individual measurements, and are often limited by the data:variables ratio. 
True personalization (N of 1) is not practical but better stratification of diseases and patients can improve diag-
noses. This work describes our approach and tests its ability to identify patient complexity and clinical markers in 
the trial of a candidate HFpEF drug better than prior methods.

Methods: This study evaluated discovery or data-driven approaches, by applying community detection (CD), for-
going statistical significance to identify unknown relationships. We reanalyzed data from the I-PRESERVE study of 
heart failure with preserved-ejection fraction, where subgroup analysis was unsuccessful. We initially performed 
unipartite CD analysis and evolved to address the complexity in real-world data using a bipartite model. The 
mathematically grounded modularity metric enabled greater confidence in community assignments.

Results: This reanalysis with CD revealed novel patient subgroups with stronger supporting rationale for group 
assignments, pointing to further refined and targeted studies.

Conclusions: We believe that generalization of the CD approach to higher-dimensional data can lead to a “next 
generation of phenotyping” that encompasses the temporal progression of the patient.
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Introduction

The COVID-19 pandemic has raised awareness of the complex na-
ture of the disease’s impacts beyond healthcare to global networks 
(e.g., economies, supply chains, politics, socioeconomic factors) 
in a hierarchy that ranges from nations to individuals to molecules 
(e.g., vaccines, antibodies, viruses). Humans tend to deal with such 
complexity by applying reductionistic approaches to cut the prob-
lem into pieces that can be better conceptualized and managed. 
While this makes the approach more tractable, it can limit the abil-
ity for solutions to generalize to real-world problems. The need to 
rapidly digest, evaluate and create policy/recommendations based 
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on the increasing amount of data being generated in COVID-19 
studies is constantly challenged by the lack of specificity that re-
sults from reductionist labeling. The seemingly simple classifica-
tion of fully vaccinated, partially vaccinated, and non-vaccinated 
typifies this issue.

Algorithmic modeling has developed rapidly and can be used 
both on large complex data sets and on smaller, more quantitative 
data sets.1 With the current emphasis on the capture and analysis 
of big data, one of the great challenges is the ability to compare or 
integrate diverse data types.2 In this study, we choose a network-
community-based approach that is founded on an algorithmic 
model. We implemented and have been exploring the use of com-
munity detection algorithms3–5 that can be applied in two ways: (1) 
identify a target outcome and determine what factors are associ-
ated with predicting whether a population will attain that outcome; 
and (2) identify communities with common characteristics and 
evaluate their respective outcomes to facilitate better patient man-
agement, drug development, and more effective reimbursement 
policies. In Figure 1, we highlight the difference between these 
two approaches in the example of heart failure with preserved ejec-
tion fraction (HFpEF).

In the United States, heart failure affects approximately 6.2 mil-
lion individuals, with a prevalence of 2.4–2.6%, and appeared on 
∼14% of all death certificates in 2018.6 Heart failure is consid-
ered to be a “complex clinical syndrome” characterized by high 
comorbidity burdens.7 Many of the patients exhibit non-specific 
symptoms, which makes it difficult to identify heart failure and 
distinguish it from other conditions. Thus, many patients may have 
undiagnosed heart failure, or even when diagnosed, other undiag-
nosed concomitant conditions, such as diabetes which is common 
in patients with acute heart failure, may confound the heart failure 
diagnosis. It is important to identify these patients and provide ac-
cess to appropriate treatment to reduce mortality, improve health-
care, and reduce costs derived from undiagnosed/misdiagnosed 
diseases.8 Partly due to this difficulty of a clear diagnosis, there 
currently are no drugs approved for use for HFpEF. The diagnosis 
and management of HFpEF remain challenging for the physician, 

drug developers, payers, and ultimately for the patient.
The National Heart and Lung Institute (NHLI) Working Group 

on Research Priorities for HFpEF identified deep phenotyping as 
a critical need to address real-world complexity.9 Our thesis is that 
community detection methods may support HFpEF risk stratifica-
tion, which would be doubly promising because they are expected 
to be greatly accelerated by early quantum computers. This work 
aims to describe our approach and test its ability to identify patient 
complexity levels and related clinical markers in the trial of a can-
didate HFpEF drug better than prior methods.

Methods and materials

Study design

This study re-analyzes the data from the Irbesartan in Patients with 
Heart Failure and Preserved Ejection Fraction (I-PRESERVE) 
clinical trial (where the initial analysis detected no subpopulation 
benefiting from the drug), recognizing that the graph representing 
the patients and medical variables is inherently bipartite and hence 
the community detection performed on it should reflect that bipar-
titeness. The data consists of 11 medical variables with a total of 34 
categorical values (see Supplementary File 1). The community-de-
tection implementation is also believed to provide better answers 
due to higher compute intensity, with the added benefit of further 
improved effectiveness from early quantum computers.

Data

This study was carried out using the baseline data derived from the 
Irbesartan in Patients with Heart Failure and Preserved Ejection 
Fraction (I-PRESERVE) clinical trial involving more than 5,000 
patients, which began in 2002 and extended over 5 years.10,11 The 
data were obtained by contacting the I-PRESERVE study authors. 

Fig. 1. Defining Next-generation Phenotyping for Disease Stratification. 
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Initial trial results showed no benefit over placebo and subsequent 
multiple subgroup analyses were attempted using traditional statis-
tical clustering approaches with minimal success.12

Clinical guidelines for heart failure

The development of guidelines, commonly by committees based 
on data from randomized clinical trials, typically reveals limita-
tions both in the assignment of specific diagnoses and their subse-
quent use in determining appropriate treatment. The development 
of guidelines for a specific condition ideally includes the recogni-
tion of the real-world complexity of the patient and disease with 
the need to differentiate accurately among both disease and patient 
sub-groups.

The challenge in the diagnosis of preserved-ejection-fraction 
heart failure (HFpEF) reflects that of applying clinical guidelines to 
address a syndromic condition. A gap exists between current clini-
cal practice applied to real-world patients and strict adherence to 
either European Society for Cardiology (ESC)13 or AHA14 guide-
lines, which themselves undergo independent, periodic updating. 
It should be noted that such guidelines are intended to provide 
informed guidance to clinicians and full compliance is not man-
dated (nor expected). For example, the threshold level for LVEF as 
preserved varies among groups and reflects the observation, e.g., 
in the Framingham study, of limited ability to assign a specific 

threshold, especially because of the potential that an individual pa-
tient’s value may have changed due to pre-treatment between the 
time of initial diagnosis and enrollment into the I-PRESERVE trial 
and the more general observation that some patients with LVEF 
<45% may have HFpEF.15

Inclusion/exclusion criteria for I-PRESERVE

The inclusion and exclusion criteria for the I-PRESERVE study 
can be found at www.clinicaltrials.gov and was listed in Table 1.

Sparseness of real-world (Clinical Trial) data

The current trend/discussion in data analysis, in healthcare and 
many other domains, focuses on access to and analysis of big data, 
but it has been long known that there is a constant tension between 
quantity and quality of data.16 Many current analytic methods, e.g., 
machine learning and deep learning, are dependent on access to 
large data sets; this reflects their emphasis on correlative vs causal 
analysis. For many applications, correlative analysis can provide 
critical guidance and optimal results but in medicine, unknown bi-
ases that may be present in the data may limit the utility of such 
analyses and even result in incorrect results and interpretation. 
The reality of real-world clinical data is its sparseness, i.e., meas-

Table 1.  Inclusion/Exclusion Criteria for I-PRESERVE

Inclusion Criteria Exclusion Criteria

a. At least 60 years of age a. Previous intolerance to an angiotensin-receptor blocker

b. Heart failure symptoms b. Alternative probable cause of the patient’s 
symptoms (e.g., significant pulmonary disease)

c. Left ventricular ejection fraction of at least 45% c. Any previous left ventricular ejection fraction below 40%

d. Required patients to have been hospitalized for 
heart failure during the previous 6 months

d. History of the acute coronary syndrome, coronary 
revascularization, or stroke within the previous 3 months

e. Current New York Heart Association (NYHA) class 
II, III, or IV symptoms with corroborative evidence

e. Substantial valvular abnormalities

f. If they had not been hospitalized, they 
were required to have ongoing class III or IV 
symptoms with corroborative evidence, e.g.

f. Hypertrophic or restrictive cardiomyopathy

  i. Pulmonary congestion on radiography g. Pericardial disease; cor pulmonale or other 
cause of isolated right heart failure

  ii. Left ventricular hypertrophy or left  
  atrial enlargement on echocardiography

h. Systolic blood pressure of less than 100 
mm Hg or more than 160 mm Hg

  iii. Left ventricular hypertrophy or left  
  bundle-branch block on electrocardiography

i. Diastolic blood pressure of more than 95 mm 
Hg despite antihypertensive therapy

g. Treatment with an angiotensin-converting enzyme 
(ACE) inhibitor was permitted only when such 
therapy was considered essential for an indication 
other than uncomplicated hypertension

j. Other systemic diseases limit life expectancy to less than 3 years

k. Substantial laboratory abnormalities (such as a hemoglobin level 
of less than 11 g per deciliter, creatinine level of more than 2.5 mg 
per deciliter [221 Î mol per liter], or liver-function abnormalities)

l. Characteristics that might interfere with 
compliance with the study protocol

Information from www.clinicaltrials.gov.
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urement of limited numbers of medical variables and rarely in a 
continuous manner over time. The anticipated transition to digital 
medicine will help address this issue but will require significant 
evolution of clinical practice, physician compliance, and patient 
adherence so will develop slowly over time despite increasing ac-
cess to technology. Analytic methods, therefore, will be confronted 
with sparse data sets for some time and need to be pragmatic in 
their approach. Clinical trials provide a more controlled environ-
ment for the collection of data than typical clinical data, e.g., elec-
tronic health records (EHR), because of requirements to follow 
specific protocols, but even these exhibits significant sparseness 
in data collection. Table 2 documents the number of patients for 
whom data was gathered, at each time point in the I-PRESERVE 
data. We observe, i.e., at Month 18, that for almost all measure-
ments more than half the patients do not have data. In general, 
high-density data collection is expensive and typically not under-
taken without the ability to show value for the effort. In this study, 
we show how community detection can show increasing value for 
data integration, even in an incremental manner.

The data presented in Table 2 reflect that collected in I-PRE-
SERVE based on the protocol and case report forms. One goal of 
the analysis is to enable ease of integration of the results into cur-
rent clinical practice. To facilitate this, the data was further mapped 
into conventional clinical panels used in the diagnosis and patient 
management. Note that this results in some observations being pre-
sent in more than one panel, e.g., Alanine Aminotransferase (ALT, 
also known as Serum Glutamic Pyruvic Transaminase, SGPT) as 
shown in Table 3.

Current practice

Humans tend to deal with the complexity of many real-world data 
by applying reductionistic approaches to cut a problem into pieces 
that can be better conceptualized and managed.17 While this makes 
the approach more tractable, it can limit the ability for solutions to 
generalize to real-world problems. The application of reduction-
ism in biology has been shown to be self-limiting.17,18 This is of 
particular concern when applied to diseases and disease manage-
ment as the limitations of “naming” (classifying) a condition can 
have a significant impact on treatment decisions, payer reimburse-
ment, and drug development, all resulting in sub-optimal patient 
management.

The power of algorithmic modeling has caused researchers to 
want to combine or integrate diverse types of data, and the novelty 
of these combinations has further led to a desire to examine data 
using different algorithms. For example, for data sets that do not 
necessarily present readily definable clusters, the application of 
different clustering methodologies may result in variable results 
which may make any interpretation dependent upon the methodol-
ogy used.2

In the United States, heart failure affects approximately 6.2 mil-
lion individuals, with a prevalence of 2.4–2.6%, and appeared on 
∼14% of all death certificates in 2018. Globally it is estimated that 
64.3 million people are living with heart failure or ∼1–2% of the 
general population. In the US, the cost of care for heart failure, 
including direct and indirect costs, is estimated at $43.6B per year 
and projected to increase to $69.7B by 2030 with ∼70% of these 
costs going to medical care.6

Heart failure is commonly classified in terms of the Left Ven-
tricular Ejection Fraction (LVEF) into three classes: heart failure 
with reduced (HFrEF; LVEF <40%, previously known as systolic 
heart failure), mid-range (HFmEF; LVEF 40–49%), or preserved 
ejection fraction (HFpEF; previously known as diastolic heart fail-

ure, LVEF ≥50%).19 These thresholds may vary among studies and 
sometimes mid-range is further divided into 40–45% and 45–50%. 
The actual observed distribution reveals the challenge in defin-
ing separable boundaries using only LVEF as the major classifier 
(or label). The data in Table 420 display the association between 
simple LVEF classifications, gender, and the causes of death from 
cardiovascular diseases (CVD), distributed into the coronary heart 
(CHD) and other diseases.

Actual diagnostic guidelines, however, include additional fac-
tors and clinical/medical variables, e.g., comorbidities and levels 
of N-terminal pro-B-type natriuretic peptide, to establish the diag-
nosis and highlight the complexity of disease presentation. As not-
ed above, the reductionist classification of the disease, based solely 
on LVEF, does not adequately stratify the disease and patients and 
hence enables more personalized diagnosis and management and/
or development of more effective drugs.

Patients who currently present or have prior symptoms of heart 
failure are classified as HFpEF. The American College of Cardi-
ology (ACC)/American Heart Association (AHA) classifies these 
patients in stages C and D, while those patients in stage B are con-
sidered to be at risk for developing HFpEF. Additionally, HFpEF 
must be distinguished from valvular disease, pericardial disease, 
and cardiac amyloidosis. Currently, approximately 50% of heart 
failure is HFpEF with a higher prevalence among older patients 
and females. Moreover, HFpEF diagnosis has increased by 45% 
over the last two decades.

The other 50% of heart failure is classified as HFrEF. Simi-
lar clinical manifestations appear in HFrEF and HFpEF including 
peak oxygen uptake (VO2) and neurohumoral activation. Many 
comorbidities are common between HFrEF and HFpEF including 
hypertension, atrial fibrillation, diabetes mellitus, metabolic syn-
drome, obesity, chronic obstructive pulmonary disease (COPD), 
chronic kidney disease, and anemia.

Angiotensin-converting enzyme inhibitors (ACEIs), angioten-
sin receptor blockers (ARBs), beta-blockers, mineralocorticoid 
receptor antagonists (MRAs), and diuretics form the basis of first-
line pharmacological management of left ventricular heart failure 
with reduced ejection fraction (i.e., HFrEF). However, until 2021, 
no drugs had been approved for use in HFpEF although there were 
17 active clinical trials involving 14 unique agents and testing 14 
endpoints, involving 10 distinct classes of mechanism of action, 
and thus there was great interest in finding an effective drug. In 
2021, based on analysis of the PARAGON-HF trial,21 sacubitril/
valsartan (Entresto™, Novartis) received a broad heart failure in-
dication that reached into the normal range of ejection fraction. It 
was noted that most benefits remained in the HFrEF population 
despite missing its primary endpoint. Significance was shown in 
subgroup analysis involving patients with an ejection fraction at or 
below the median of 57%. (Note: More recently, a sodium-glucose 
cotransporter-2 (SGLT2) inhibitor (Farxiga™) has shown a posi-
tive effect in HFpEF patients in the Emperor-Preserved study.22)

The main tests that comprise the initial HFpEF diagnosis re-
main Doppler echocardiography and serum natriuretic peptide lev-
els. Further diagnostic scoring of patients currently utilizes two 
scores, H2FPEF and HFA-PEFF, which include some degree of 
subjectivity in the evaluation and interpretation.23 H2FPEF in-
cludes evaluation of body mass index, hypertension, atrial fibril-
lation, pulmonary hypertension, age, and filling pressure. HFA-
PEFF incorporates assessment of major and minor criteria within 
functional, morphological, and biomarker categories. In general, 
however, the use of multi-variable scores can obscure critical het-
erogeneity in patient groups. It has been noted that current HFpEF 
diagnoses are confounded by the presence of several significant 
subtypes.

https://doi.org/10.14218/ERHM.2022.00081
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Modularity-based community detection

The goal of this study was to classify or stratify patients using com-
munity detection algorithms that were objectively data-driven, i.e., 
which identified patient groups based on similarity of clinical pres-
entation. This was done differently from conventional subgroup 
analysis that would select a target characteristic, e.g., response to a 
specific therapy, and then identify the characteristics that were com-
mon among those patients. In addition, the community detection 
method requires no pre-determination of how many patient groups, 
how many medical variables were needed to define these groups, 
whether each group reflected different values of the same medical 
variables, or even if the same set of variables was used to define the 
individual groups based on their values. The community detection 
algorithms were evaluated using both unipartite and bipartite graphs.

Modularity-based community detection (mCD) was first de-
scribed and implemented by Newman and Girvan3 based on their 
insight that communities in a graph are best defined as “a statis-
tically surprising arrangement of edges”. Their analysis converted 
the general problem of finding communities into a graph-based con-
strained optimization problem, where the metric to be maximized is 
modularity, and there are constraints for every node to be in exactly 
one community. Modularity is defined as a difference of two terms: 
(1) the density of edges inside communities as compared to edges 
between them, minus (2) the same measure for the corresponding 
null model, i.e., a graph where each node has the same number of 
edges as the original graph, but the connected nodes are randomized.

Finding the globally optimal answer to a modularity maximi-
zation problem is NP-hard, meaning its computational cost on a 
classical computer grows exponentially with the number of nodes. 
Thus, many implementations, including Newman-Girvan’s, are 
greedy heuristic algorithms that make locally optimal decisions 
each iteration, with no guarantee they will be able to find the glob-
ally optimal solution. Quantum computers, whose quantum bits 
(qubits) work in the exponentially larger quantum problem space 
than bits of classical computers, are expected to be able to find 
globally optimal answers for many classes of NP-hard problems 
efficiently, and there is vigorous research into quantum algorithms 
even though practical hardware implementations for real-world 
sized problems are still years away.24 Researchers at Los Alamos 
National Laboratory (LANL) describe a quantum implementation 
for mCD in Negre et al.25 that targets the globally optimal answer, 
though real-world samplers are currently heuristic. If there are N 
nodes in the graph, searching for K communities requires N * K 
variables, or qubits if the problem is being solved on a quantum 
computer. In the case of the current study, N = (3,935 patients + 
34 medical variables) and K = 5, which requires ∼20,000 densely 
connected qubits. This is well beyond the capability of the largest 
available quantum annealing computer, the D-Wave Advantage™ 
system, with 5,600 sparsely connected qubits, and even further be-
yond the capability of the largest available gate-model quantum 

computer, the IBM Eagle processor, with 127 sparsely connected 
qubits. The effectiveness of early quantum computers in solving 
constrained optimization problems like mCD was discussed by 
Hen and Spedalieri26 and Hadfield et al.27

Note that our hypothesis consists of two primary tenets: that 
mCD will give better clustering than prior methods, and that quan-
tum computers will accelerate the performance of mCD. While we 
provide conceptual arguments supporting the latter, only the first 
of these is tested in this paper.

Community detection for unipartite and bipartite graphs

The simplest graphs are unipartite, i.e., they consist of only one type 
of node. An example would be to consider the atoms in a protein 
molecule as the nodes of a graph, with the strength of their connec-
tions equal to the pairwise atomic-level forces between them. mCD 
can identify a community of atoms for each amino acid in the pro-
tein. Unipartite graphs were what Newman and Girvan originally 
studied, and many software systems only consider this type of graph.

However, in the real world, many graphs are bipartite graphs, 
which are defined as having nodes of two types and edges that only 
join opposite types of nodes. Communities for unipartite graphs are 
often described informally as having high connectivity within com-
munities and lower connectivity between communities. That mental 
model does not hold for bipartite graphs, where there is, by defini-
tion, no connectivity between same-type nodes within a community, 
so we must depend more explicitly on the definition of modular-
ity. To bring the bipartite model to a concrete example, we view 
humans, not as atoms; they do not generate their own connections. 
They are connected by the events they attend, the papers they co-
author, the movies they act in, etc., and so they are typically found 
in bipartite graphs. One standard example studied in the literature is 
the Southern women graph documented by Davis et al.,28 consist-
ing of 18 women and the 14 events they attended in the 1930s. The 
women are connected to the events they attended, and the events are 
connected to the women that attended them. Figure 2 illustrates the 
best assignment of communities found by Liu and Murata29 for the 
Southern women graph. Each community (to the left and right of 
the vertical blue bar, respectively) contains both events (white nodes 
with black text) and women (black nodes with white text).

In the current study, there are two types of nodes – patients and 
medical variables – so it is also a bipartite graph. Medical variables 
do not connect directly to other medical variables and patients do 
not connect directly to other patients; they only connect indirectly 
through common medical data.

The null model for a unipartite graph is not correct for a bi-
partite graph, because it assumes any two nodes can be randomly 
connected by an edge, and so it connects nodes of the same bipar-
tite type in violation of the definition. Barber30 presents the cor-
rect null model for a bipartite graph, where nodes are randomly 
connected only to nodes of the opposite type. See Calderer and 

Table 4.  Distribution of left-ventricular-ejection-fraction classifications, gender, and disease

Cardiovascular Disease (CVD) Deaths

LVEF classification by gender CHD Stroke Other CVD Total

HFrEF male 45% 5% 27% 77%

HFrEF female 30% 14% 26% 70%

HFpEF male 11% 3% 25% 39%

HFpEF female 15% 11% 23% 49%
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Kuijjer31 and Ganji32 for more discussion of when unipartite or 
bipartite mCD is appropriate.

The current study did the initial mCD analysis33,34 using the 
Gephi implementation of the Louvain method.35 Gephi is an open-
source graph visualization tool,36 which uses a heuristic algorithm 
that is limited to the computational resources present where it is 
executing, usually a user’s laptop/desktop system. That limitation 
directly affects the quality of the community assignments it can 
find. Gephi calculates modularity only for unipartite graphs. We 
calculated bipartite modularity for the Gephi unipartite solution by 
running it through Qatalyst’s bipartite modularity calculation.

The Qatalyst quantum-acceleration platform, by Quantum 
Computing Inc., samples binary constrained optimization prob-
lems using classical and quantum processors, with quantum-ready 
heuristic formulations; the best results are currently obtained run-
ning purely classically, with no quantum contribution.37,38 Graph-
based mCD is readily expressed as a constrained optimization 
problem25 that Qatalyst can effectively sample. Qatalyst runs on 
AWS servers, with the compute-intense classical quadratic-uncon-
strained-binary-optimization (QUBO) sampler executing on thou-
sands of cores. The current study used Qatalyst for both unipartite 
and bipartite calculations.

Selection of data for analysis: framing the question

Understanding the complexities of data like those present in this 
study has led to much development and application of methods such 
as deep learning. Our focus on moving from correlative towards 
causal analysis and the ability to calculate real-world results has led 
us to enable the evaluation of specific models that are readily applied 
in current clinical practice. Several example models include:
1.	 Disease Model 1 (Patient Demographics and anamnesis): Age, 

Gender, BMI, Age at Diagnosis, Number of years post HF diag-
nosis (entry into the trial), Atrial Fibrillation by ECG, Left Bun-
dle branch block by ECG, Left Ventricular Hypertrophy by ECG, 
Peripheral Edema, Left Ventricular Ejection Fraction, Etiology;

2.	 Disease Model 2 (Clinical History): Age, Gender, BMI, Age at 
Diagnosis, Number of years post HF diagnosis (entry into the 
trial), History of COPD, History of Diabetes, History of Atrial 
Fibrillation, Heart Failure within previous 6 months, Jugular 
Venous Distension, Lung Sounds, Left ventricular hypertrophy 
or Left Atrial Enlargement, NY Heart Association Functional 

Classification;
3.	 Hematologic Profile (Clinical Data): Age, Gender, BMI, Al-

bumin, Hematocrit, Hemoglobin, Platelet Count, Leukocytes, 
Neutrophils (absolute), NT-proBNP;

4.	 Liver & Kidney Function. (Clinical Data): Age, Gender, BMI, 
ALT, Aspartate Aminotransferase (AST), Bilirubin (total), 
Blood Urea Nitrogen (BUN), Creatinine, Serum Potassium, Se-
rum Sodium, Creatinine Clearance (MDRD);

5.	 NT-proBNP (Clinical Data): At the time of initiation of I-PRE-
SERVE, levels of NT-proBNP were not incorporated into clini-
cal guidelines for the diagnosis of heart failure but were added 
in subsequent studies and are currently used as a threshold for 
diagnosis of heart failure;

6.	 Longitudinal/Temporal analysis (Clinical Data): Initial analy-
sis of patient progress during the study was planned to develop 
patient trajectories, e.g., patterns of progression both with treat-
ment and placebo, for purposes of comparative analysis. Longi-
tudinal/Temporal analysis was limited by data sparsity.
We choose to define a single model for liver function and kid-

ney function, based on evidence for co-existing liver and kidney 
pathology in patients with chronic liver disease. Chronic liver dis-
ease is associated with primary and secondary kidney disease and 
impacts markedly on survival.39 Moreover, we define the Hema-
tologic model including NT-proBNP data as most HFpEF patients 
have elevated NT-proBNP levels. The NT-proBNP concentrations 
were related to baseline characteristics generally associated with 
worse outcomes for HF patients.40

For example, the clinical data for both the Liver & Kidney panel 
and the Hematologic panel are provided (in Supporting Material) 
where the categorization was based on observed medical-variable 
ranges in patients and also includes gender-based differences. We 
initially developed categorical boundaries, i.e., cutpoints, for each 
medical variable based on current laboratory standards. These 
boundaries were further refined based on cardiologist input as po-
tentially relevant to the study population. These boundaries also 
reflect the expected differences between male and female patients, 
and where appropriate, reflected a high/normal/low classification. 
A result is several categories that defined individual nodes: for 
example, BMI is defined into 5 categories Underweight (<18.5; 
BMI-L), Normal weight (18.5–24.9; BMI-N), Overweight (25.0–
29.9; BMI-H-OV), Obese (30.0–34.9; BMI-H-OB), Morbidly 
obese (>35; BMI-H-OB*); ALT is defined by 3 categories for male 
(H high, N normal, L low), ALT-L <0, ALT-N between 0 and 55, 

Fig. 2. Liu and Murata community assignment for Southern women bipartite graph. 
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ALT-H: >55 and 3 categories for female, ALT-L <0, ALT-N be-
tween 0 and 40, ALT-H >40.

Benefits of community detection for this analysis

Despite some observations being present in more than one panel, 
e.g., ALT, the data was readily incorporated into this community-
detection analysis.

We believe that the use of the community detection method 
described in this report can effectively address critical issues in 
clinical medicine, going beyond correlation to approach causal-
ity. Perhaps the leading example of these issues is that the use of 
the panels outlined in Table 3 provides a convenient assessment 
of a patient’s status along with specific pathophysiologic domains 
through the highlighting of “outliers” from normal lab values:
1.	 The “normal” ranges for these medical variables may be de-

pendent on an individual’s clinical history, co-morbidities, diet, 
etc., and thus require “personalized” evaluation;

2.	 While individual outliers may suggest diagnostic and therapeu-
tic intervention, including lifestyle and/or medication, e.g., low 
hemoglobin suggesting anemia, it is not uncommon for multiple 
medical variables to be non-normal with the increased complex-
ity being less commonly observed and with reduced indications 
for management;

3.	 Temporal changes in an individual’s multiple medical variables 
may be much more informative of a patient’s status than single-
point-in-time measurements. Such temporal patterns may in-
volve clinical medical variables that never individually trigger 
an “abnormal” classification;

4.	 Higher level complexity in temporal measurements, i.e., pat-
terns involving more than one clinical variable, would be very 
difficult to detect but may be critical to define a more accurate 
diagnosis and staging of a specific condition.

Results

Unipartite analysis

Our first mCD-based analysis of the data viewed the problem as 
unipartite. The resulting communities via the Gephi implementa-
tion are described below in terms of disease characteristics’ associ-
ation and patient numerosity; the number of nodes always includes 

patients’ and characteristics’ nodes. With the unipartite Gephi im-
plementation, the best results were obtained for K = 5 communities 
with modularity = 0.061 (Fig. 3).

Pink community

This group is composed of 1,125 nodes (1,116 patients). It aggre-
gates Females aged 60–69, obese and morbidly obese (BMI-H-OB 
and BMI-H-OB*), showing several high serum values (Alanine 
Aminotransferase – ALT-H, Aspartate Aminotransferase – AST-
H, Sodium – SOD-H) and normal values of Potassium (K-N) and 
Bilirubin (BILI-N).

Cyan community

It is the biggest community, composed of 1,177 nodes (1,168 pa-
tients). It aggregates Males, Overweight (BMI-H-OV), aged 70–79, 
with mildly reduced kidney function (KIDFUN-MIL) characterized 
by low values of BILI and K (BILI-L, K-L) and normal values of 
Blood Urea Nitrogen (BUN-N), Creatinine (CREAT-N), and SOD.

Green community

It is composed of 393 nodes (390 patients). It aggregates patients 
with normal weight (BMI-N) and low values of SOD (SOD-L), 
and normal values of AST (AST-N).

Red community

Composed of 999 nodes (990 patients), it aggregates the oldest 
patients (≥80), underweight (BMI-L) with severely or moderately 
reduced kidney function (KIDFUN-SEV, KIDFUN-MOD), and 
several abnormal values: high values of Bilirubin, Blood Urea Ni-
trogen, Creatinine, and Potassium (BILI-H, BUN-H, CREAT-H, 
K-H) and low values of Alanine Aminotransferase (AST-L), with 
normal values of Alanine Aminotransferase (ALT-N).

Yellow community

This is the smallest community, composed of 276 nodes (272 

Fig. 3. Analysis of left-ventricular-ejection-fraction (LVEF) data, both for unipartite and bipartite, comparing GEPHI and Qatalyst. 
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patients). It aggregates the youngest patients (<60) with normal 
kidney function (KIDFUN-NOR), and low values of BUN and 
CREAT (BUN-L, CREAT-L).

To evaluate the clinical significance of these communities, 
we compared them using conventional survival analysis with the 
outcome of death/survival, neither of which had been included in 
the derivation of these communities. In terms of the quality of the 
patterns we can observe that the Red curve (representing the Red 
community) refers to the patients with shorter life expectancy; the 
Yellow curve (representing the Yellow community) shows the pa-
tients with higher life expectancy. This is coherent with the Liver 
& Kidney communities’ composition. Moreover, the performed 
log-rank test (Bonferroni adjustment for multiple comparisons) 
revealed statistical significance: a) the Green curve has statistical 
significance concerning the Yellow (p = 0.003); b) the Red curve 
concerning the Yellow, Cyan, and Pink curves (Red vs Yellow p < 
0.001; Red vs Cyan p < 0.001; Red vs Pink p < 0.001).

Using the same data, Qatalyst finds an optimal answer of K = 4 
communities with modularity = 0.144 and finds a slightly smaller 
modularity (=0.142) for K = 5 communities (greater modularity 
indicates stronger communities). These values are graphically rep-
resented in Figure 3. Looking at the Kaplan-Meier survival curves 
in Figure 4, the lines for two of the five communities (Cyan and 
Pink) almost completely overlap, lending weight to the finding of 
four communities as being globally optimal.

Table 5 explores the overlap between the 5-community solu-

tions found by Gephi and Qatalyst. Each entry is a pair of numbers 
(m, p), where m is the number of medical variables and p is the 
number of patients in the community: so, by example, (3,390) to 
the right of “Green (m, p)” indicates that in the Green community 
of the Gephi solution there are 3 medical variables and 390 pa-
tients. The outer values are the counts for the two solutions, hori-
zontal values come from the Qatalyst solution and vertical values 
come from the Gephi solution. The values in the box represent the 
overlap of patients between pairs of communities. The assignment 
of numbers to communities is arbitrary, so even if the same solu-
tion was found twice, the community numbers assigned could be 
different. In this case, we see that a majority of Gephi Community 
2 (the Red community) wound up as the majority of Qatalyst Com-
munity 5 (data in italic).

Bipartite analysis

Realizing that the data of the current study is inherently bipartite, 
with patients and medical variables comprising the two separate 
sets of entities, we performed the calculations again treating the 
graph as bipartite.

Qatalyst implements Barber’s bipartite modularity calculation, 
which gives the unipartite Gephi solution bipartite modularity that 
is substantially higher than its unipartite modularity, a result due 
solely to the different null models. Maximizing bipartite modular-

Table 5.  Comparison of unipartite communities found by Gephi and Qatalyst; (m, p), m = number of medical variables; p = number of patients

Qatalyst Com-
munities

Community 1  
(m, p)

Community 2  
(m, p)

Community 3  
(m, p)

Community 4  
(m, p)

Community 5  
(m, p)

Gephi Communities (3, 296) (11, 1,208) (2, 327) (8, 1,149) (10, 955)

Green (m, p) (3, 390) (0, 14) (0, 59) (1, 98) (1, 137) (1, 82)

Red (m, p) (9, 990) (0, 28) (0, 148) (0, 70) (1, 228) (8, 515)

Pink (m, p) (9, 1,116) (3, 182) (5, 473) (1, 78) (0, 210) (0, 173)

Yellow (m, p) (4, 272) (0, 5) (4, 231) (0, 8) (0, 23) (0, 5)

Cyan (m, p) (9, 1,168) (0, 67) (2, 297) (0, 73) (6, 551) (1, 180)

Fig. 4. Communities found among Liver & kidney panel – Kaplan-Meier survival curve and defining medical variables. The variable 
abbreviation description can be found at Supplementary File 1.
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ity, Qatalyst again finds a solution with notably higher modularity 
than Gephi, i.e., modularity = 0.146 for K = 4 communities, as 
shown in Figure 5, with different communities than it found when 
ignoring the bipartite structure. For Qatalyst, the modularity dif-
ference between K = 4 and K = 3/K = 5 is larger using the bipartite 
null model than the unipartite, but the differences are still small.

Comparing the community assignments in detail between Qata-
lyst results for bipartite K = 4 and unipartite K = 5 in Table 6, we 
see a strong overlap between bipartite Community 1 and unipar-
tite Community 5, as well as bipartite Community 3 and unipartite 
Community 2 (both in italic). Most of the small bipartite Commu-
nity 4 winds up in unipartite Community 1, but bipartite Commu-
nity 2 is redistributed across the unipartite communities.

Comparing the characteristics that describe the communities 
found between Qatalyst unipartite and bipartite approaches (see 
Fig. 5), we see that some communities have similar characteristics, 
such as the Orange unipartite and the Mustard bipartite communi-
ty, but there are still some significant differences between the two. 
The difference in the obtained results demonstrates the importance 
of using the correct null model for the type of mCD problem being 
solved.

Discussion

In this study, we have applied a novel approach to stratification 

of HFpEF patient data to objectively elucidate the HFpEF sub-
types using a hypothesis-free, data-driven approach and outlined 
the method and results.

In the last few decades, various technological and cultural 
changes have contributed to exposing the limitations of the hy-
pothesis-driven approach to knowledge discovery.41 First, all sci-
entific disciplines are nowadays required to tackle increasingly 
challenging, nonlinear problems and systems, some of which are 
very difficult, if not impossible, to model with theories based on 
first principles. Moreover, many newly interesting phenomena, for 
various reasons ranging from intrinsic randomness to inaccessibil-
ity for measurement, are characterized by a high level of uncertain-
ty, limiting the effectiveness of traditional statistical approaches. 
All this is in the context of an exponential increase in data avail-
ability and complex relations among different data collected on the 
same statistical unit, in particular, if it is the real-world patient. The 
imprecision of many common diagnostic categories implies the 
need of specifying inclusion/exclusion criteria in more detail for a 
clinical trial, along with scientific and commercial considerations. 
This leads to significantly differentiating the patient recruited for 
the trial from the real-world patient and limiting the ability to di-
rectly compare results among independent trials.42,43

The large amounts of data being captured in COVID-19 studies 
and the urgency of processing that data into information usable 
by laypeople have highlighted the lack of specificity that results 
from reductionist labeling. The seemingly simple classification of 

Fig. 5. Characteristics of communities found by Qatalyst, unipartite vs. bipartite. The variable abbreviation description can be found at Supplementary 
File 1.

Table 6.  Comparison of unipartite and bipartite communities found by Qatalyst; (m, p) m = number of medical variables; p = number of patients

Qatalyst Bipartite Community 1  
(m, p)

Community 2  
(m, p)

Community 3  
(m, p)

Community 4  
(m, p)

Unipartite (13, 1,208) (9, 1,479) (11, 1,187) (1, 61)

Community 1 (m, p) (3, 296) (2, 134) (0, 114) (0, 5) (1, 43)

Community 2 (m, p) (11, 1,208) (0, 44) (2, 269) (9, 895) (0, 0)

Community 3 (m, p) (2, 327) (1, 137) (1, 134) (0, 52) (0, 4)

Community 4 (m, p) (8, 1,149) (1, 51) (5, 895) (2, 193) (0, 10)

Community 5 (m, p) (10, 995) (9, 842) (1,67) (0, 42) (0, 4)
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fully vaccinated, partially vaccinated, and non-vaccinated typifies 
this issue. For the mRNA vaccines, Pfizer and Moderna, does this 
mean 2 shots? And do boosters create a 3-shot vaccination pro-
gram? Does this include a two-week post-shot period for the im-
mune response to develop? For non-mRNA vaccines, e.g., Johnson 
and Johnson, is it a 1-shot course or does it require a booster? And 
with a booster or multiple-shot protocols, how should the mixing 
of vaccines be considered as well as the length of time between 
shots? This complexity is further compounded when these events 
concern subjects in a frail state, even if temporary, as happens to 
women during pregnancy, i.e., during the pre-conception, gesta-
tion, or post-partum periods, as to their impact on the baby or the 
mother. While the application of simple classifications facilitates 
statistical significance to be evaluated for such groupings, as Rose 
stated,18 “…ideological reductionism manifests…confusion of sta-
tistical artifact with biological reality”. Traditionally, there are two 
considerations in the use of statistical modeling to derive subgroup 
conclusions from the data. One assumes that the data are generated 
by a given stochastic data model. The other uses algorithmic mod-
els and treats the data dependency as being unknown.

We have used community detection to emphasize the differ-
ence between model-driven analysis and data-driven analysis. In 
the former, data is evaluated as to how well it may fit an existing 
model or how to refine the model to fit the data. In the latter, we 
are using an objective analysis of the data to identify what models 
may exist within the data.

Because of our focus on driving towards causality versus cor-
relation and our intention to establish ease for clinical utility, we 
further incorporate clinical processes and pathways into the analy-
sis. We distinguish our application of community detection from 
conventional unsupervised learning methods as we are develop-
ing and implementing complex functional models, e.g., following 
clinical practice, to help identify and better manage potential gaps 
and biases that may exist in the data.

We note a fundamental problem in all analyses that attempt to 
identify “subgroups” of patients, namely that missing data may pre-
sent a challenge that big data alone cannot overcome. We have sev-
eral studies underway that focus on identifying symptoms that indi-
cate missing critical data, although they do not necessarily identify 
what specific data may be missing. In addition, parallel development 
of the comprehensive functional model enables the identification of 
data that may bias analytic results and their interpretation.

The integration of a functional model that includes the com-
plexity of disease processes, clinical practice, and the complex-
ity of a patient, e.g., lifestyle, environment, and genomics, is kept 
coherent by a knowledge graph that supports ongoing evolution 
as new concepts and relationships are identified, as well as a data 
model for functional integration of data from any source. The com-
munity detection algorithms described in this work operate on this 
knowledge graph.

Data enables an objective evaluation of its contents or any 
subset that may be selected to evaluate specific hypotheses. For 
example, communities can be identified that are based on data col-
lected from EHRs and be compared with communities based on 
claims data to highlight the difference in perspective of these two 
data sources and their ability to describe a patient and their dis-
ease. Such a comparison could provide significant value to both 
the clinical community for improving patient management and the 
payer community for improving reimbursement policies, with both 
efforts yielding better outcomes for the patient.

While the application of our community detection approach 
introduced in this study has been focused on healthcare and a spe-
cific disease, HFpEF, it should be apparent that it represents an 
expanded view of how to address complex systems both in medi-

cine and in many other fields. Community detection’s ability, with 
properly binned data, to discover and return the medical variables 
that define each community, rather than them being specified by 
an analyst, delivers a valuable unsupervised capability. The inte-
gration of community detection algorithms with a model of the 
true complexity of the problem space should be viewed as being 
potentially generalizable across many domains and not limited to 
medicine, although it can provide a unique opportunity to improve 
clinical care and patient outcomes across most diseases and condi-
tions.

Strengths and limitations

The potential clinical meaning underpinning the found communi-
ties has not been validated. Based on evidence for existing both 
liver and kidney pathology in patients with chronic liver disease, 
we defined the “Liver & Kidney data model” instead of two sepa-
rate ones, a “Liver data model” and a “Kidney data model”. More-
over, the absence of specific exam measurements suggested the 
combining of medical variables in a single data model. Specific 
exams for the Liver (Gamma Glutamyl Transferase, Glucose, ALP 
Alkaline phosphatase) were not present in the original data; other 
specific values for Kidney (Bicarbonate, Chloride, Urate) were ab-
sent too. Lastly, potential time-points for the longitudinal analysis 
were excluded because of many missing data among the different 
periods of the trial. By running frequencies on laboratory values 
collected in different periods (Baseline, Week 2 and 8; Month 6, 
10, 14, 18, 30, 42, 54, 66, 72) we found the highest frequencies at 
Baseline and Month 72. For this reason, longitudinal analysis was 
done considering two timepoints only, presenting weaknesses in 
the sustainability of the results.

Despite the limitations above, we found that community de-
tection techniques applied in this study are well suited to analyze 
complex phenomena involving large amounts of information; we 
had a significant number of subjects with associated data, approxi-
mately 4,000, and with many (complex) relationships to disease 
characteristics about these subjects. The application of community 
detection methods has identified critical aspects derived from over-
connected portions of the network; the assessment of the quality of 
the resulting aggregation involved consultation with clinicians and 
domain experts.

Future directions

We believe that the results of this study can be generalized for re-
defining the concept of phenotype to incorporate the patient’s pro-
gression through disease. We are currently applying this approach 
to several other diseases/conditions: multiple sclerosis, triple-neg-
ative breast cancer, and prematurity/infant-maternal morbidity and 
mortality. We believe that the next stage for refinement of diag-
nosis and both patient and disease stratification will require such 
evolution from current practice both for research and improved 
patient management and outcome.

Conclusions

This study has examined the application of community detection 
approaches to clinical trial data using algorithms applied to the 
I-PRESERVE study data. The resulting objective identification of 
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specific subgroups, without the need to initially establish the num-
ber of subgroups or number and identity of medical variables to 
include in the analysis, is a significant strength of this approach. 
In this manner, the data drives the analysis, and in the common 
situation where sparse data might be involved, is not limited in its 
ability to establish initial hypotheses about potential subgroups. 
The ability to incorporate disparate data without pre-selection also 
appears to potentially support a more integrative approach to clini-
cal data analysis that can be used to improve disease stratification. 
These characteristics have the potential to enhance both the analy-
sis of completed clinical trials, but of even greater significance, 
contribute to better clinical trial design and rates of success. The 
goal of this study was to review current limitations in disease strat-
ification based on the need to apply reductionist considerations to 
achieve statistical significance and the potential to establish a data-
driven, graph analytics approach that can lead to new study de-
signs and hypotheses. We are currently applying these approaches 
in several other conditions and exploring the use of these results to 
further stratify HFpEF in clinical studies and patient management.
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