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Abstract

We propose a supervised machine learning approach to predict partnership formation

between universities. We focus on successful joint R&D projects funded by the Horizon

2020 programme in three research domains: Social Sciences and Humanities, Physical and

Engineering Sciences, and Life Sciences. We perform two related analyses: link formation

prediction, and feature importance detection. In predicting link formation, we consider two

settings: one including all features, both exogenous (pertaining to the node) and endoge-

nous (pertaining to the network); and one including only exogenous features (thus removing

the network attributes of the nodes). Using out-of-sample cross-validated accuracy, we

obtain 91% prediction accuracy when both types of attributes are used, and around 67%

when using only the exogenous ones. This proves that partnership predictive power is on

average 24% larger for universities already incumbent in the programme than for newcom-

ers (for which network attributes are clearly unknown). As for feature importance, by com-

puting super-learner average partial effects and elasticities, we find that the endogenous

attributes are the most relevant in affecting the probability to generate a link, and observe a

largely negative elasticity of the link probability to feature changes, fairly uniform across attri-

butes and domains.

Introduction

Link prediction is a key element to describe the evolution of complex networks. Depending on

the context of application, complex networks represent architectures characterized by highly

nonlinear interactions among entities such as neural, physical, and social actors. As the impor-

tance of networks expands, understanding networks’ evolution, change, and endogenous dynam-

ics is a key point. Therefore, developing efficient algorithms to study networks’ evolution

scenarios has become a challenging task, as it involves a large set of interlinked actors and factors.

Link prediction for prospective collaborations among entities belonging to a scientific envi-

ronment has attracted an increasing research interest [1, 2].

Based on past networks’ observation, this paper aims at contributing to the literature on

knowledge networks by carrying out an accurate prediction of prospective links that could
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potentially take place among diverse academic entities operating in a specific knowledge con-

text. More specifically, we consider project-based R&D collaborations taking place within the

Horizon 2020 research funding programme and falling within the three European Research

Council domains (or ERC classification): Social Sciences and Humanities (SSH), Physical and

Engineering Sciences (PE), and Life Sciences (LS).

These three networks pursuit specific and different modes of knowledge creation, as diverse

is their logic of activating collaborative research and the decision on how and with whom

knowledge has to be exchanged. The link prediction problem in a competitive environment, as

the Horizon 2020 programme, is therefore an entry point for examining the partnerships in

the three above-mentioned areas. We are aware that collaborations can have powerful effects

on scientific performance, and for this reason we aim at understanding the architecture and

characteristics of the three scientific fields, and which factors (endogenous and exogenous to

the network) may explain the link creation in one domain but not in the others.

Another motivation for conducting this research is in relation to the Horizon 2020 pro-

gramme. We know that the funding for this programme is set aside to encourage collaboration

through joint projects. In this regard, it is critical that the network is inclusive and accessible to

new participants. This study aims at understanding to what extent being or not being already

embedded in a certain network (i.e., being either an incumbent, or a new-comer) helps to pre-

dict future collaborations by assessing link prediction accuracy. We estimate link prediction

accuracy considering all the features together at first (that is, those that are both exogenous

and endogenous to the network), to then omitting the endogenous ones (that is, those features

that belong to the observed network).

Indeed, for newcomers (e.g. actors that were not part of the observed network), we only

know exogenous characteristics and not, for example, their centrality within the network

(which is an endogenous-to-the-network feature). By disentangling the contribution of endog-

enous and exogenous components, we are able to measure to what extent link prediction is

accurate for the incumbents as well as for the newcomers. As a result, link prediction among

Horizon 2020 actors is critical, particularly in the light of the Europe 2030 initiative. Related to

this, there is an ongoing debate in the literature about how such collaborations can increase

R&D productivity [3, 4].

By means of recent developments in machine learning predictive algorithms, in this paper

we attempt to estimate the probability that a university A collaborates with a university B by

considering their idiosyncratic attributes, as well as the past centrality and the sharing of com-

mon neighbors. For this purpose, we attempt to achieve a high prediction accuracy at a reason-

able computational cost.

This paper has a twofold objective: on the one hand, as a methodological contribution, it

supports the necessity to employ/compare different supervised machine learning algorithms

for link prediction; on the other hand, as a policy objective, it aims at providing decision-mak-

ers with a new perspective on how to assess the dynamics of the collaborations among the EU

academic organizations, thereby promoting effective integration of the actors belonging to the

European Research Area (ERA).

We look at the link prediction problem with the double lens of the network theory [5, 6] as

our theoretical background, and machine learning [7–9] as our data-driven approach.

Links’ creation takes place through different mechanisms. Some of these rely on the similar-

ity concept that is operationally based on nodes’ similar characteristics [10–12]; another fre-

quent mechanism described in the literature is the so-called “preferential attachment” [13, 14]:

two nodes have a higher probability to form a connection if they own common neighbors or

similar features [5, 10]. Some mechanisms are based on past topological structures, such as

cyclical forms, and hierarchical structures [15, 16], whereas others are based on node’s
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centrality as a measure affecting both the static and dynamic processes of a network formation

and development [17]. For a more comprehensive review on network link formation and pre-

diction, one can refer to Kerrache et al [18] and Lü and Zhou [19].

Most of the previous literature focuses on nodes and topological network characteristics. In

this paper, we take on a wider perspective. Indeed, as university collaboration networks in

joint research projects are composed of heterogeneous information, our assumption is that

their formation is driven by topological (information stemming from the graph adjacency

matrix), as well as non-topological node features (node attributes improving prediction

accuracy).

The paper is organized as follows. Section 2 provides a brief state-of-the-art of link predic-

tion in a knowledge network context. Section 3 describes the database and methodology and

presents our formulation of the link prediction. Section 4 sets out the results and their discus-

sion. Section 5 closes the paper.

A brief look at the extant literature

Most of the theoretical and applied studies in Network Science (NS) have focused on the

underlying patterns of the process-building of connections among nodes [20–24]. In the last

few years, a new wave of interest and research in the social network analysis has taken place by

focusing on link prediction. Link prediction is in fact of the utmost relevance in several knowl-

edge network sub-fields, including co-authorship networks [1, 2, 25], and future scientific

impact of scholars [26, 27].

In this paper, we look at a specific knowledge network, namely the network of European

universities that received funding in the three aforementioned ERC domains via the Horizon

2020 programme from 2014 to 2016. Focusing on three distinct domains allows us to identify

differences with respect to the driving factors of link creation in a project funding scheme. By

taking on an organizational perspective, we assume that academic participation in the Horizon

2020 programme is mainly driven by organizational factors, as well as the regional environ-

ment the universities lie on. Collaboration among academic organizations is an important

lever of knowledge diffusion and acquisition, as each university is a network’s node linked to

other nodes via joint projects.

In its focus, this study follows the steam of literature investigating structures and dynamics

of knowledge networks in competitive project funding. In recent years, increased competition

in the scientific ecosystem has led universities to act more and more strategically [28, 29]. As a

consequence, there has been increased emphasis on promoting the autonomy of universities

seeking funding streams different from the government core funds, such as project funding on

competitive scaling [29, 30]. The access to several funding resources, and a greater prestige

and reputation of the organization, lead to cumulative advantages sustained by preferential

attachment mechanisms and the creation of closed groups [31]. Link prediction for knowledge

networks is thus relevant, as it allows for the forecast of prospective collaborations among sci-

entists and their organizations.

These collaborations make it possible to facilitate financing strategies on the part of policy-

makers, providing support for further improving future relationships among scientists and

academic organizations. Unlike predicting the co-authorship network and the related impact

of scholar activities, predicting joint project collaborations at the university level is relatively

easier. Collaborations in joint projects, both at the scientist and organizational level, are in fact

lasting longer time, thus leading to generate rarer changes during the years than it happens

with co-authorship or citation networks [32]. Research on predicting joint project
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collaborations is still in its initial phase, and providing methods and techniques for predicting

collaborations seems a promising area of research.

Many university features play an important role in the collaboration behavior. The size of a

university is certainly relevant, as larger universities tend to attract more requests for collabo-

rations [33, 34]. With regard to a specific italian project funding, Zinilli [24] pointed out that

Betweenness centrality and geographical proximity are important drivers of collaboration for-

mation. Newman [35] shows that scientists have a higher probability to collaborate if they

have common neighbors. Abbasi et al [17] indicated the importance of centrality measures to

explain preferential attachment in a scientific collaborative publication network. They have

stressed the relevance of Betweenness centrality as predictor of the preferential attachment for

a new node. Likewise, similarity seems to play an important role in link prediction, as nodes

with similar features are likelier to get connected in the nearby future [11]. As result, global

similarity-based indexes such as the Katz Index [36] are often used for predicting links in large

networks [48]. Depending on the application, the importance of a vertex can have different

meanings and hence several network centrality measures have been used, for instance degree,

Closeness and Betweenness centrality. Analyzing citation networks by machine learning tech-

niques, Shibata et al. [37] concluded that the Jaccard coefficient, the Betweenness centrality,

and the cosine similarity are powerful factors affecting link prediction. This result is further

bolstered by the recent study conducted by Resce, Zinilli, and Cerulli [38], which focuses on

predicting linkages in coauthorships. In this research, we use the Jaccard, Katz Index (or cen-

trality), Closeness and Betweenness centrality coefficients as endogenous (i.e., network-

related) factors to explain network formation in the light of the previously cited literature. The

Jaccard coefficient represents the similarity of the neighborhoods of two vertices. The idea

behind neighborhood similarity as predictor of new link formation is that the presence of

many common adjacent nodes between two nodes indicates a higher chance of new connec-

tion’s formation between those two nodes. The Jaccard coefficient between node i and j, is

given by:

Jij ¼
jNðiÞ \ NðjÞj
jNðiÞ [ NðjÞj

ð1Þ

The Katz index measures the closeness of two nodes in this network as the weighted sum of

all pathways linking the two nodes, where the path weights collapse exponentially with path

length [48].

Ki;j ¼
X1

l¼1

alpathslði; jÞ ð2Þ

where pathsl(i, j) denotes the number of paths of length l connecting (i) and (j) in a specific

network.

Closeness centrality refers to the average shortest distance between any given two nodes.

Formally, we define Closeness centrality, Cij, between two nodes (i) and (j) in a network with

(N) nodes as follows:

Cij ¼
N
di;j

ð3Þ

Note that (di,j) is the shortest distance between the nodes (i) and (j).
The Betweenness centrality, Bij, is defined as the number of shortest paths passing through

(i, j) among those linking all node pairs (u, v) of the network. Betweenness stresses those links
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that facilitate information exchange among network members. More specifically:

Bij ¼
X

u;v2V

Biju;v
Bu;v

ð4Þ

where Bu,v is the number of shortest paths connecting (u, v), and Biju;v is the number of such

paths passing through (i, j).
As different studies have shown [e.g. 24, 31, 39], the collaboration in research projects could

be explained by different factors, either endogenous (related to the network structure), and

exogenous to the extant network (related to the node attributes). It is thus important to con-

sider the endogenous characteristics of a graph (among others, the Jaccard coefficient, Katz,

Closeness and the Betweenness centrality) along with the exogenous node attributes [18].

In what follows, we address three related questions: (i) to what extent can collaborations in

joint projects be accurately predicted using machine learning algorithms, by jointly and sepa-

rately considering endogenous and exogenous node characteristics? (ii) what is the role played

by node topological features vis-à-vis link prediction? (iii) what features, either endogenous or

exogenous to the network, have a larger impact in predicting new links, and in what direction

do they act?

Materials and methods

Problem formulation

The key point of this paper is to predict the formation of network connections. For this pur-

pose, it is important to combine factors that measure different aspects of the nodes into a single

data structure. The issue can be articulated as follows: given a node pair i and j, where i and j
may be (incumbents) or may not be (newcomers) part of the current network, we aim at pre-

dicting the probability of this pair to generate a relationship in the next future.

Suppose G(N, L) to be an undirected graph, with N a set of nodes (e.g. the universities

funded under Horizon 2020 between 2014 and 2016 in the three ERC domains), and L repre-

senting the link between nodes. Loop and multiple links among nodes are not considered in

this analysis. Our aim is to predict the link probability of a given node with respect to all the

other nodes of the graph. Given a snapshot of the network at time t, we seek to predict what

links are likely to be created (or, possibly, kept) in a future time t0. Fig 1 shows the observed

links at time t, and the link prediction at time t0, considering a new node F that did not belong

to the network at time t.

Fig 1. Representation of two graphs: Observed links at time t, and missing link prediction at time t0.

https://doi.org/10.1371/journal.pone.0290018.g001
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By means of popular machine learning algorithms, for each node in the network, we deter-

mine all the possible link probabilities with the other nodes. In the simplified example of the

figure, node F has zero link probabilities with all the other nodes, except for node B and D.

The link with node B has a 70% likelihood to occur, against a 30% of the link with node D. It is

thus likelier that university F will collaborate with university B in a new round of the research

funding programme herein analyzed. Of course, it is relevant to evaluate to what extent these

probabilities are accurately estimated. This is the aim of the first part of our study (first ques-

tion), where we set out the out-of-sample performance accuracy of such predictions using sev-

eral machine learning predictive algorithms. The accuracy is clearly conditional on the

features employed. As already said, in fact, the features can be endogenous to the nodes (e.g.,

Jaccard coefficient and Betweenness centrality), or exogenous to the nodes (e.g., the gross

domestic product of the region a node belongs to).

The distinction between endogenous and exogenous features is relevant as it entails a pre-

diction trade-off we aim at exploring in this paper (second question): indeed, if we use both

endogenous and exogenous features, we are unable to predict link probabilities for the so-

called newcomers in the programme, as these entities have no (past) information on network

endogenous measures, as they have never been part of the extant network. In this case, we are

obliged to rely only on those entities that are already part of the network, as for them we know

both endogenous and exogenous features. This is a limitation, but it lends larger predictive

power, as long as the endogenous features are highly correlated with link prediction (as a large

empirical evidence supports). In contrast, relying only on exogenous features allow us for esti-

mating link probabilities also for the newcomers, a task that may be of great interest for under-

standing future new configurations of the network. However, as in this case we are excluding

from the analysis features possibly highly conducive to predict new links, the statistical accu-

racy of the estimated probabilities could be poorer, undermining the forecasting quality of the

network evolution. Providing a measure of the accuracy reduction produced by excluding the

endogenous features is one of the contribution of this study.

Finally, this paper provides a more in-depth understanding of the role played by each single

feature in steering the probability of setting-up a link (third question). We carry out this analy-

sis by aggregating over all the learners employed (“super-learning”) the average partial effect
(APE) of each single feature. For a single feature xj, the APE is the derivative of the probability

to lie a link with respect to the feature xj itself, with all the other features kept fixed at their

sample mean. As machine learning algorithms are highly nonparametric, this derivative is a

highly nonlinear function of the level of the feature; exploring APE’s shape sheds light on the

relative importance of each feature in driving link probability. Interestingly, beside derivatives,

we also explore the pattern of the elasticities to catch the percentage change activated by a one

percentage change in every considered feature.

Data preprocessing and step-wise implementation

This paper presents a set of machine learning algorithms for predicting network links. Here,

we discuss the different steps we have undertaken for the data preprocessing. Originally, we

had a bipartite network (university by project), and the variables at university level. Then, we

transformed the network into a one-mode format. The one-mode projection means a network

containing all universities’ pairs. According to the ERC panels, we assigned each project to one

the following three research domains: Social Sciences and Humanities (SSH), Physical Sciences

and Engineering (PE) and Life Sciences (LS). Each project is assigned to a domain based on its

topic identifier, keywords, and abstract content. Each project has a topic identifier that allows

it to be assigned to an ERC domain. When the topic identifier for the project was ambiguous
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(no direct association), the project was assigned to a domain based on the content of its

abstract. A small number of projects (just over 2% of the total) is excluded from the study

because explicitly described as multidisciplinary, thus not having a clear attribution to a

research domain. Because of their primarily individual nature, we also exclude Marie Curie

and European Research Council projects. To prepare the dataset for running the machine

learning algorithms, we separate the target variable and the features, with the features trans-

formed into normally standardized variables. We only have one training dataset, and we mea-

sure learners’ goodness-of-fit via a 10-fold cross-validation out-of-sample accuracy. As

accuracy measure, we employ the complement of the error rate, that is, the out-of-sample pro-

portion of correct matches found between the actual and the predicted labels.

Accuracy ¼ 1 �
XN

i¼1

I½yi 6¼ L̂ðXiÞ� ð5Þ

where: N is the number of universities’ pairs; yi is the link binary variable for pair i (taking

value 1 if a link exists, and 0 otherwise); L̂ð�Þ is a generic learner (a classifier, in our case); Xi is

a vector of p features (either exogenous or endogenous); and I[�] is an indicator variable taking

value 1 if the statement into the squared parenthesis is true, and 0 otherwise. Eq (5) can be esti-

mated both in-sample (training accuracy), or out-of-sample (testing accuracy). As usual in

machine learning, testing accuracy will be retained as our reference goodness-of-fit, being

training accuracy plagued by overfitting).

Also, to take into account the large number of zeros within our link target variable, we car-

ried out random under-sampling.

For carrying out our analysis along the line mentioned above, we proceed according to the

following road-map:

1. We start using the EUPRO dataset (a dataset providing information on R&D projects, par-

ticipants and resulting networks of the EU FPs) to build the R&D project network from

2014 (when the Horizon 2020 programme has started) to 2016. In our network, the node is

the university, and the link indicates a collaboration on a joint project within the Horizon

2020 programme.

2. We classify projects according to the ERC panels, by assigning each project to a specific

research domain: Social Sciences and Humanities, Physical Sciences and Engineering, and

Life Sciences. The assignment is based on project keywords and on the content of the proj-

ect’s abstract. When a project is multidisciplinary, with no clear designation of its domain,

we exclude it from the analysis. In this way we are able to capture the specificity of each

ERC domain. Given their larger specificity, we do not consider ERC grants and Marie

Curie projects. To circumscribe our analysis to more homogeneous partnerships, we focus

on the three ERC domains separately.

3. We use the RISIS-ETER (database on European Higher Education Institutions) database to

extract university level variables and the geographical distance for each couple of universi-

ties, and combine EUPRO and RISIS-ETER information using the same node ID.

4. We use a proxy for university size based on the number of students belonging to a specific

ERC domain, and compute the Jaccard coefficient, the Katz score and Closeness and

Betweenness centrality for every node in every year.

5. We apply several supervised machine learning methods for predicting universities’ link

probabilities. As our link target outcome is a binary factor variable (taking value 1 if there is

a link, and 0 otherwise), we run several binary classification experiments.
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6. We compare the performance of the proposed learning algorithms by jointly considering—

for every learner—the average out-of-sample (or “test”) accuracy, and the standard devia-

tion obtained by a 10-fold cross-validation resampling procedure.

7. We further compute the accuracy achieved by comparing two specifications of our predic-

tive model, one embedding both exogenous and endogenous features, and one considering

only exogenous features. We thus calculate the accuracy gap.

8. For each learner, we then estimate the average partial effects (APE) function, i.e. the deriva-

tive of the conditional probability function with respect to one feature, with all the others

held fixed at their sample mean.

9. We aggregate all the derivatives obtained in the previous step by averaging over them, thus

obtaining a super-learning derivative estimate that we plot, compare, and comment for

every feature.

10. As a derivative measures, by definition, infinitesimal changes, we also calculate elasticities
to assess the percentage change of link probability induced by a given percentage change

in the considered feature.

The features employed for link prediction are:

• EXOGENOUS FEATURES

• Regional gross domestic product (PPS per inhabitant), measured at regional level from 2014

to 2016. Universities located in regions with a higher gross domestic product (GDP) are

likely to hold the necessary capacities and resources to acquire public funding for collabo-

rative projects [40].

• Core funding, indicating the overall government funding available for a university. It con-

sists mainly of basic government allocation. It can be considered both as a magnitude of

financial inputs in knowledge production, and as a “boost” to push universities to increas-

ingly raise funding (e.g., by participating to competitive projects) [41]. It is thus a lever to

help generating additional (external) funding.

• Citation score, measured by the “mean normalized citation score”, is the average

number of citations of a university’s publications, normalized by field differences and

publication year. This variable is a proxy of university reputation. Citations have been

widely used in the scientific literature to capture knowledge outputs [see, for example,

42].

• Number of students by ERC domain, considered as a proxy of university size re-scaled

within the three ERC domains.

• Inverse of the distance, considered as the Euclidean distance in terms of kilometers between

two uniersities. We used the inverse of geographical distance as a measure of proximity

between universities. The inverse of geographical distance can be interpreted as a measure

of closeness or connectedness between universities, where larger values indicate stronger

proximity.

• ENDOGENOUS FEATURES

• Jaccard coefficient, defined as the proportion of common neighbours in the total number

of neighbours. This index is maximum when neighbours are common to both nodes. In

co-authorship networks, the Jaccard coefficient catches the idea that nodes having
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common neighbors are likelier to connect with each other in the next future. In joint proj-

ect networks this occurrence is however not always true [43].

• Katz centrality is determined by summing up the contributions of all its neighbors and

their neighbors, with each contribution weighted by a factor of decay. Universities with

high Katz scores are those that not only have direct collaborations with other universities

but also have connections to other universities through their collaborative partners.

• Closeness centrality, like Betweenness centrality, is a distance-based measure, reflecting the

importance of nodes according to their connection distances in the network. It reflects

how easily or quickly a node can reach other nodes in terms of geodesic distance (the

shortest path between two nodes). Universities with high Closeness centrality scores are

considered more central as they have shorter average distances to other universities in the

network.

• Betweenness centrality, referring to the frequency that a university acts as a connection

between a pair of other universities. It is computed for all universities every year. A univer-

sity with higher Betweenness has a larger influence on the whole network and can deter-

mine the network’s ability to capture resources and information. Universities with high

Betweenness can benefit more from shorter paths towards a larger set of nodes as they are

strongly embedded within the network structure.

Optimal prediction via machine learning

We define a learner Lj as a mapping from the set [X, θj, λj, fj(�)] to an outcome y, where X is the

matrix of features, θj a vector of estimation parameters, λj a vector of tuning parameters, and

fj(�) an algorithm taking as inputs X, θj, and λj. Generally, applied empirical studies use a sin-

gleton fj(�) for modeling and predicting targeted outcomes, typically one member of the Gen-

eralized Linear Models (GLM) family (linear, probit or multinomial regressions are classical

examples). GLM are highly parametric and are not characterized by tuning parameters. Non-

parametric models, such as local-kernel, nearest-neighbor, or decision trees are on the con-

trary characterized by one or more hyper-parameters λj which may be optimally chosen to

minimize the so-called test prediction error, i.e. the out-of-sample predicting accuracy of the

learner.

Fig 2 presents the learning architecture herein proposed. This framework is made of three

linked learning processes: (i) the learning over the tuning parameter λ, (ii) the learning over

the algorithm f(�), and (iii) the learning over new additional information. The departure is in

point 1, from where we set off assuming the availability of a dataset [X, y].
The first learning process aims at selecting the optimal tuning parameter(s) for a given algo-

rithm fj(�). ML scholars typically do it using K-fold cross-validation, a resampling approach

estimating the out-of-sample performance of a learner by leaving one group of observations

out of the estimation, and then using prediction over these left-out observations to measure

predictive accuracy. This procedure is iteratively repeated for each fold, eventually obtaining K
test-accuracy (or, equivalently, test error) measures over which taking the average and the

standard deviation.

At the optimal λj, one can recover the largest possible prediction accuracy for the learner

fj(�). Further prediction improvements can be achieved only by learning from other learners,

namely, by exploring other fj(�), with j = 1, . . .,M (whereM is the number of learners at hand).

It is important to observe that the so-called training error, i.e. the in-sample predictive per-

formance of a learner, is a misleading measure of the actual model goodness-of-fit as plagued
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by the overfitting phenomenon: it may be the case that the training error decreases monotoni-

cally with the tuning parameter even if the out-of-sample performance of the learner is wors-

ening. In Fig 2, it corresponds to the light blue sequence of boxes leading to theMSETRAIN
which is in fact a dead-end node, as not informative for making correct decisions.

Conversely, the yellow sequence leads to theMSETEST, which is informative to take correct

decisions about the predicting quality of the current learner. At this node, the analyst can com-

pare the currentMSETEST with a benchmark one (possibly, pre-fixed), and conclude whether

to predict using the current learner, or explore alternative learners in the hope of increasing

predictive performance. If the level of the current prediction error is too high, the learning

architecture would suggest to explore other learners.

In the ML literature, learning over learners is calledmeta learning, and entails an explora-

tion of the out-of-sample performance of alternative algorithms fj(�) with the goal of identify-

ing one behaving better than the those already explored [44]. For each new fj(�), the learning

architecture finds an optimal tuning parameter and a new estimated accuracy (along with its

standard deviation). The analyst can either explore the entire bundle of alternatives and finally

pick-up the best one, or decide to select the first learner whose accuracy is larger than the

benchmark. Either cases are automatically run by this architecture.

The third final learning process concerns the availability of new information, via additional

data collection. This induces a reiteration of the initial process whose final outcome can lead to

choose a different algorithm and tuning parameter(s), depending on the nature of the incom-

ing information.

As final step, one may combine predictions of single optimal learners into one single super-

prediction (ensemble learning). What is the advantage of this procedure? An aggregation of dif-

ferent learners, by reducing prediction variance, can lead to a smaller predictive uncertainty,

thus improving overall prediction quality [45].

Results

We run a series of popular machine learning algorithms to predict future link formation

between universities. In particular, we compare the following learners: Tree, Random forest,

Fig 2. The meta-learning machine architecture.

https://doi.org/10.1371/journal.pone.0290018.g002
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Boosting, Regularized multinomial, Nearest neighbor, Neural network, Naïve Bayes, and Sup-

port vector machine.

We provide a brief description of these classification methods:

1. Tree. Decision tree algorithms are a type of supervised machine learning algorithm that par-

titions the input data based on a series of hierarchical decisions or rules. Each decision splits

the data into two branches (recursive binary splitting algorithm) until reaching leaf nodes.

Decision tree use the simple arithmetic mean to predict the target variable within each ter-

minal node.

2. Random forest. Random forest is an ensemble learning method that combines multiple

decision trees. Each tree is trained on a bootstrapped sample of the original data using a

random subset of the features used as splitting variables at each node. The final prediction

is obtained by aggregating the predictions of all individual trees, generally resulting in a

more robust and accurate prediction.

3. Boosting. Boosting is another ensemble learning technique that combines multiple trees to

create a strong predictive model. Boosting algorithms sequentially train models, with each

subsequent model focusing on the instances that the previous models misclassified. Each

boosted tree learns form the error and the final prediction is a weighted combination of the

predictions from all the trees.

4. Regularized multinomial. Regularized multinomial algorithms are used for multiclass classi-

fication problems. These algorithms apply regularization techniques, such as L1 or L2 regu-

larization, to prevent overfitting and improve generalization. They learn a set of coefficients

for each class and use them to predict the target variable. Estimation is made using maxi-

mum likelihood.

5. Nearest neighbor. The nearest neighbor algorithm is a simple yet effective method for classi-

fication and regression. It works by finding the k nearest neighbors to a given data point

and predicting the target variable based on the values of those neighbors (generally, a

weighted mean). The choice of neighbors and the method used to calculate proximity (e.g.,

Euclidean distance) may vary.

6. Neural network. Neural networks are powerful models inspired by the structure and func-

tioning of biological brains. They consist of interconnected nodes or artificial neurons orga-

nized in layers. Each neuron applies an activation function to its input, and the network

learns by adjusting the weights between neurons through a process called backpropagation.

Neural networks can be used for a wide range of tasks, including classification, regression,

and pattern recognition. In our application, we consider only 2-layer networks.

7. Naïve Bayes. Naïve Bayes algorithms are based on Bayes’ theorem and assume that the fea-

tures are conditionally independent in each class. They are commonly used for classifica-

tion tasks, calculating the probability of a data point belonging to each class based on the

feature values. Naïve Bayes algorithms are computationally fast and work well even with

high-dimensional data.

8. Support vector machine: Support vector machines (SVMs) are supervised learning models

used for classification as well as regression tasks. SVMs aim to find an optimal hyperplane

that separates the data into different classes or predicts a continuous target variable. They

maximize the margin between the closest data points of different classes, making them

robust to outliers. SVMs can also use kernel functions to handle nonlinear relationships

between features.
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For each method, the optimal tuning of hyper-parameters have been found via a 10-fold

cross-validation. Different ML methods have different tuning parameters, with methods like

Tree having one singleton parameter—i.e. the number of final layers (otherwise known as tree
depth), and methods like Boosting having three tuning parameters (namely: tree depth, learn-
ing rate, and number of sequential trees, or iterations). Learner-by-learner, Table 1 reports the

list of the relevant tuning parameters.

In this work we do not consider deep-learning predicting algorithms. In the social sciences

and business analytics data context, deep learning models have been proved to have predictive

accuracy generally comparable to other ML methods [46]. This depends on the fact that deep-

learning models improve prediction by exploiting some kind of ordering in the data. Convolu-

tional neural networks, for example, exploit hierarchical spatial ordering in predicting images,

while recurrent neural networks exploit sequential ordering to predict sequences (for example,

time series). These two types of ordering are not present in our data, as in many other typical

social sciences datasets [47]. For this reason, we preferred to stick to more comparable ML

models, although we also estimated a neural network although in its fully-connected 2-layer

structure course, there exists also a literature on link prediction based on deep-learning tech-

niques. For example, Pan, Shi, and Dokmanic [48] propose an algorithm for network link pre-

diction based on a random-walk pooling mechanism (called WalkPool) able to accurately

learn network topological heuristics. In another paper, Pan et al. [49] proposed a novel deep-

learning adversarial algorithm with two variants—adversarially regularized graph autoencoder

(ARGA) and adversarially regularized variational graph autoencoder (ARVGA). The experi-

mental results demonstrate the good performance of these algorithms on link prediction and

other tasks. See also Wang et al. [50].

For every considered machine learning algorithm, cross-validation results are set out in

Fig 3 for SSH, Fig 4 for PE and Fig 5 for LS. Here, we observe the pattern of the training- and

the test-accuracy by ERC domain as a function of the grid index, with each point of the grid

representing a specific configuration of the tuning parameters. As long as the grid index

increases, we have that all the tuning parameters increase thus entailing a trade-off between

prediction bias and variance. As expected, the training-accuracy sets out a monotonic

increasing pattern going asymptotically to one. This is the well-known overfitting phenome-

non characterizing in-sample prediction accuracy. To avoid overfitting, ML scholars suggest

looking at the test-accuracy instead. The test-accuracy—generated by cross-validation—rep-

resents the correct out-of-sample accuracy to look at, and its maximand is the optimal tuning

parameters’ configuration.

Once the optimal tuning parameters’ configuration is found, we use it to predict the proba-

bility of link formation. Table 2 sets out point accuracy results for SSH.

Table 1. List of the relevant tuning parameters by learner.

LEARNER λ1 λ2 λ3

Decision Tree Leaves – –

Support Vector Machine C Γ –

Regularized Multinomial Penalization – –

Random Forest Splitting features Bootstraps Tree–depth

Neural Network Hidden layers Neurons –

Nearest Neighbor Neighbors – –

Naïve Bayes – – –

Boosting Learning rate Iterations Tree–depth

https://doi.org/10.1371/journal.pone.0290018.t001
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Looking at the column reporting test-accuracy, it is immediate to see that for the SSH sector

every learner fits well our network data considering all exogenous and endogenous variables,

with Neural Network obtaining the best accuracy performance (92.9%). Except for the Nearest

neighbor (87%) and Naive Bayes (89%), all the other learners reach accuracy values higher

than 90%. For the PE domain, the Neural Network classifier achieves an accuracy of 89.4%

(see Table 3).

Finally, for the LS domain, the best accuracy performance was achieved again by the Neural

Network learner (91.5%) (see Table 4).

As well-known, assessing a learner’s predictive performance just on the basis of its point

average accuracy may be misleading, as the estimation of such accuracy may be in some cases

severely imprecise. For this reason, it is appropriate to jointly consider accuracy mean (as done

above) and standard deviation, thus obtaining an accuracy’s confidence interval. This is

reported in Fig 6 for SSH, Fig 7 for PE and Fig 8 for LS, where our learners are compared not

only over their average accuracy but also by taking into account estimation precision. Interval

estimation at 95% significance level shows that the predictive precision of our learners is rather

uneven compared to point estimation. For the different ERC domains the best performers in

terms of interval estimation are Random Forest (SSH) and Neural Networks (PE and LS), all

having a tighter distribution around their accuracy mean when compared to the other

learners.

Fig 3. Learners’ optimal tuning using 10-fold cross-validation for SSH.

https://doi.org/10.1371/journal.pone.0290018.g003
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Previous results hinge on a model specification including both exogenous and endogenous

features. As stressed earlier in this paper, however, a model embedding node endogenous fea-

tures can only predict link probabilities for nodes that already belong to the extant network. If

we are interested in investigating how brand-new links are formed considering nodes that

were not previously part of the network, we have to rely on a model specification incorporating

only exogenous features. Accuracy results regarding such a model are visible in Table 5 for

SSH, Table 6 for PE, and Table 7 for LS, where it is immediate to recognize a general reduction

in prediction accuracy for all the learners considered. Considering only exogenous variables

for SSH (Table 5) the best accuracy performances are given by the Support vector machine

(63.9%) and the Neural Network (63.4%).

For the PE sector, we obtain an accuracy of 72.3% (Random forest) when we treat only

exogenous features (Table 6).

For the LS sector, with only the exogenous variables in the model, the best performance is

given by Boosting (68.1%) (Table 7).

One of the objectives of this study was to evaluate the relative importance of endogenous

features in predicting the links in joint projects. The findings have revealed that, by excluding

the two network endogenous components, we lose approximately between 20% (PE and LS)

and 30% (SSH) of accuracy. A non-trivial result that enhances and emphasizes the role of

Fig 4. Learners’ optimal tuning using 10-fold cross-validation for PE.

https://doi.org/10.1371/journal.pone.0290018.g004
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network configurations in link prediction. This finding stresses the trade-off we were referring

to in the section titled “Problem formulation” entailing that, if we want to know more about

the evolution of a network structure by also incorporating newcomer nodes, we have to pay a

cost in terms of reduced prediction accuracy that in our case may be sizable.

Fig 5. Learners’ optimal tuning using 10-fold cross-validation for LS.

https://doi.org/10.1371/journal.pone.0290018.g005

Table 2. Point estimation of the training- and of the test-accuracy in predicting network link formation by learner.

ERC domain: SSH.

TRAIN ACCURACY TEST ACCURACY

Tree .925515 .9180858

Support vector machine .9436323 .9090089

Regularized multinomial .9257615 .9251406

Random forest .9506328 .9269076

Neural network .9346718 .9286702

Nearest neighbor 1 .8729601

Naive Bayes .9028075 .8984187

Mutinomial .9258791 .9248887

Boosting .924507 .9203522

https://doi.org/10.1371/journal.pone.0290018.t002
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Feature partial effects for link formation

In this section, we provide evidence about the role played by every single feature viewed as a

driver of the probability to create a link. In machine learning, feature importance measures are

generally obtained by computing the contribution of each feature to increase the test-accuracy

of a learner (or, equivalently, to reduce the test-error). This approach is no doubt informative,

but lacks an essential element, i.e. understanding which is the contribution of every single fea-

ture to the probability to produce a link. This has to do with the marginal effect (or partial

derivative) of a feature on the link probability. As supervised learning is statistically equivalent

to estimating the conditional mean of the target y given the vector of features X, defining and

computing an average partial (or marginal) effect (APE) is straightforward, with the formula

taking on this form:

APEðy; xjÞ ¼
@Eðyjxj; �X � jÞ

@xj
¼
@Probðy ¼ 1jxj; �X � jÞ

@xj
ð6Þ

where �X � j indicates all the features different from xj evaluated at their sample mean. Observe

that the second equality of Eq (6) derives from the fact that y is binary.

Eq (6) can be easily estimated on the sample, and a simple plot of Êðyjxj; �X � jÞ is sufficient to

identify the curvature of its derivative over xj. In this way, we can derive both the shape of the

probability to generate a link as a function of every xj given that all the other features are held

Table 3. Point estimation of the training- and of the test-accuracy in predicting network link formation by learner.

ERC domain: PE.

TRAIN ACCURACY TEST ACCURACY

Tree .9050687 .893847

Support vector machine .911601 .8739745

Regularized multinomial .8944232 .8884026

Random forest .9157441 .8924846

Neural network .8979616 .8941187

Nearest neighbor .8570737 .8375163

Naive Bayes .8016995 .8007404

Mutinomial .8945442 .8878584

Boosting .8947559 .8919418

https://doi.org/10.1371/journal.pone.0290018.t003

Table 4. Point estimation of the training- and of the test-accuracy in predicting network link formation by learner.

ERC domain: LS.

TRAIN ACCURACY TEST ACCURACY

Tree .9303819 .9021244

Support vector machine .93543 .8881393

Regularized multinomial .9197313 .9146194

Random forest .9380926 .9066119

Neural network .9221718 .9151169

Nearest neighbor 1 .8726791

Naive Bayes .8691407 .8701717

Mutinomial .9197312 .9146169

Boosting .9158487 .9066269

https://doi.org/10.1371/journal.pone.0290018.t004
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fixed at their mean, and the sign and size of the derivative. In practice, this allows us to gauge

whether the link probability increases (decreases) as xj increases (decreases) and to what

amount, and if there are different patterns in different regions of the support of xj. We consider

for this analysis the complete model specification (i.e., both network exogenous and endoge-

nous features).

The APE estimation can be carried out by every single learner, but results may be character-

ized by a large variability. In other to reduce estimation variance, we opt to rely on an aggrega-

tion (average value) of the derivatives obtained learner-by-learner. Aggregating learners’

estimates entails to estimate a “super-learner” generally having smaller variance at reasonable

costs in terms of reduced point estimate precision (bias).

The first domain under consideration is the SSH. Fig 9 sets out our estimates of Probðy ¼
1jxj; �X � jÞ for the SSH sector, that is, the conditional partial expectation of the probability to

have a link as a function of every single feature. Observe that, in order to aggregate the features

of the different nodes, we use their arithmetic mean.

The total core budget exhibits a decreasing pattern of Probðy ¼ 1jxj; �X � jÞ followed by a sta-

bilization phenomenon, as showed by Fig 10 where the APEs are plotted. We can summarize

this finding as follows: initially, if either (or both) universities have a low core funding, it is

more likely that they will collaborate in publicly funded research projects. However, as the

Fig 6. Point and interval prediction accuracy performance by learner for SSH.

https://doi.org/10.1371/journal.pone.0290018.g006
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core funding increases beyond a certain threshold, this probability decreases. This suggests a

non-linear relationship between core funding and collaboration probability, where lower levels

of core funding foster collaboration, but as the funding increases over a certain threshold, the

motivation for cooperation declines.

The mean citation score presents a U-shaped form: at low level of this index, universities

exhibit a high level of APE, that however decreases dramatically near the average of this fea-

ture, to then growing towards higher values. Universities having a lower scientific reputation

tend to connect together, as well as universities with a higher reputation tend to be more

prone to create a link. It is plausible to conclude that organizations tend to choose partners

that are similar with respect to their scientific reputation. In this context, the U-shaped pattern

indicates a similarity effect.

Universities located in more economically developed regions tend to have a lower probabil-

ity to lay links. When comparing the findings related to low core funding and low GDP per

capita, both demonstrate a similar trend in terms of collaboration probability in publicly

funded research projects. In both cases, higher levels of core funding or GDP per capita are

associated with a lower likelihood of universities engaging in joint projects. There is evidence

of dissimilarity effects in inter-university collaboration, emphasising the importance of bridg-

ing regional disparities and fostering collaboration as a means to enhance research and inno-

vation across the EU (these are to be taken however as mere speculations, as we are unable to

Fig 7. Point and interval prediction accuracy performance by learner for PE.

https://doi.org/10.1371/journal.pone.0290018.g007
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test such assumptions in this paper). The lower capacity of universities in poorer regions to

secure funding, as well as their relatively limited availability of skills and resources, can con-

tribute to the observed dissimilarity effects in inter-university collaboration.

The pattern exhibited by the Betweenness centrality displays a symmetric J-shaped form. At

lower level of the Betweenness, the Probðy ¼ 1jxj; �X � jÞ is higher. We then observe, again, a

Fig 8. Point and interval prediction accuracy performance by learner for LS.

https://doi.org/10.1371/journal.pone.0290018.g008

Table 5. Point estimation of the training- and of the test-accuracy in predicting network link formation by learner.

Only exogenous features considered. ERC domain: SSH.

TRAIN ACCURACY TEST ACCURACY

Tree .6632826 .6321011

Support vector machine .7409018 .6393574

Regularized multinomial .6265143 .6137518

Random forest .6690841 .6309015

Neural network .6747776 .634275

Nearest neighbor .687374 .6279877

Naive Bayes .6084446 .5977711

Mutinomial .6266755 .613509

Boosting .6411785 .6178417

https://doi.org/10.1371/journal.pone.0290018.t005
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strong drop at relatively high levels, leading to a long plateau at a higher level of Betweenness

where it reaches its minimum. This pattern suggests that when universities are poorly central

in the network (low Betweenness), i.e. its mediating role is negligible, small increases in its cen-

trality reduces the probability to generate links and, possibly, larger centrality. This effect gets

to an end rather soon and fades away along the plateau, until the probability of new links gets

locked in. Those nodes with higher Betweenness centrality often connect nodes found in dif-

ferent communities, and usually they are far from each other.

As for university size, we observe a quite clear pattern, as it seems to have a positive correla-

tion with the link formation. The probability of activating a link increases significantly when

universities get larger.

The pattern of the Jaccard coefficient is similar to that of the Betweenness centrality; these

two features move in the same direction. There may be complementarity effect in this pattern,

as well as for the Betweenness centrality. Complementarity is a crucial aspect in collaborations,

and is explained by the resource-based view of strategic alliances. Two universities with com-

mon neigbours are likelier to share the same scientific cluster, and probably have similar com-

petences. Pairs of universities with a higher Jaccard coefficient have a greater cognitive

proximity that can reduce the likelihood of receiving funding, in favor of a diversification of

the scientific competences. This result suggests that universities tend to create links with non-

neighboring universities (perhaps in different communities). Based on our experiments, we

observed that the Jaccard coefficient is a largely effective feature for link prediction. We can

observe, compared to the other features, that the range of probability is much higher (from 0

Table 6. Point estimation of the training- and of the test-accuracy in predicting network link formation by learner.

Only exogenous features considered. ERC domain: PE.

TRAIN ACCURACY TEST ACCURACY

Tree .7155144 .702152

Support vector machine .8480048 .7097012

Regularized multinomial .7164662 .7120321

Random forest .7206208 .723199

Neural network .7261605 .7135913

Nearest neighbor 1 .7086576

Naive Bayes .7126867 .7130731

Mutinomial .7160335 .7125517

Boosting .7190917 .7138463

https://doi.org/10.1371/journal.pone.0290018.t006

Table 7. Point estimation of the training- and of the test-accuracy in predicting network link formation by learner.

Only exogenous features considered. ERC domain: LS.

TRAIN ACCURACY TEST ACCURACY

Tree .6835182 .6384825

Support vector machine .9885519 .6778985

Regularized multinomial .6950736 .6712026

Random forest .6834646 .6774247

Neural network .6839997 .6745402

Nearest neighbor .7161513 .6625534

Naive Bayes .4677673 .4435177

Mutinomial .6952876 .6716857

Boosting .6826616 .6817517

https://doi.org/10.1371/journal.pone.0290018.t007
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to 0.85). In the context of predicting links between universities in the Horizon 2020 pro-

gramme, a higher Katz centrality score for a university implies that it has stronger connections

and influence within the network. Therefore, universities with higher Katz centrality scores

are more likely to have links or collaborations with other universities within their clusters or

communities. This analysis can provide valuable information for policymakers, it can aid in

identifying universities that may benefit from targeted support and resources to further

strengthen their connections and collaborations within the network. The “S” trend observed

in Closeness centrality suggests that certain universities within the network exhibit varying

degrees of proximity to other nodes. The Closeness centrality scores are relatively low in the

start of the trend, indicating that certain universities are quite distant and have a tendency to

link less. As the trend progresses, the Closeness centrality scores increase, signifying that the

universities become progressively more connected and accessible to others. It highlights the

emergence of key universities that act as information brokers, facilitating efficient communica-

tion and information diffusion within the network. Finally, the inverse of the distance (prox-

imity) exhibits an oscillating pattern with an initial phase showing a low probability of creating

a link between universities that are geographically distant. This is followed by a subsequent

increase, then a slight decrease, another rise, and a subsequent descent as the proximity

between the universities increases. Overall, understanding the relationship between geographic

distance and the probability of link formation provides valuable insights into the dynamics of

Fig 9. Conditional partial expectation of the probability to have a link for SSH.

https://doi.org/10.1371/journal.pone.0290018.g009
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collaboration in research networks. It highlights the importance of proximity in fostering col-

laborations, while also acknowledging that other factors beyond distance may influence the

likelihood of link formation between universities. Furthermore, it is crucial to consider the

nature of the network under analysis, especially in the case of international programmes like

Horizon 2020, which emphasize collaborations among institutions from different countries.

For Physical and Engineering Sciences (Fig 11) the pattern shows a lower predicting

responsiveness than in SSH, highlighting the limits of using the exogenous variables in the link

prediction. Furthermore, we notice here the presence of a greater prediction uncertainty than

in the SSH domain. APEs results for PE are showed by Fig 12.

PE, the general pattern of the total core budget displays a plateau in the initial half, indicat-

ing that the starting range has the lowest incidence of link creation. The examination of the

entire core budget shows an upward tendency in the second section of the distribution. The

citation score variable shows a lower probability to form links in second half. Universities in

areas with a lower GDP per-capita are likelier to collaborate in publicly funded research proj-

ects, after which the tendency begins to decline and ultimately stabilizes. Universities with

lower initial Betweenness centrality scores interact less. These couples are more likely to coop-

erate as the Betweenness centrality grows. In PE network, we show a lower predictive respon-

siveness as compared to SSH findings. The trend of university size is increasing around the

zero point. It is interesting to note, instead, that the Jaccard coefficient shows a very similar

trend to that of the SSH sector. Katz centrality reveals a consistent increasing pattern, with a

low predictive responsiveness. The “S” pattern in Closeness centrality indicates behavior com-

parable to the SSH network. The analysis of the inverse of the distance reveals an increasing

pattern. It quantifies the degree of proximity or closeness between universities, with higher val-

ues indicating closer proximity. Universities that are closer in terms of geographic distance

exhibit a higher probability to collaborate.

Fig 10. Pattern of the derivative of the probability of produce a link as a function of the features for SSH.

https://doi.org/10.1371/journal.pone.0290018.g010
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As for the link prediction in Life Sciences (Fig 13), we observe a decreasing trend in the

influence of the total core budget on the probability of collaboration between two universities.

This suggests that as the total core budget increases, the likelihood of collaboration between

universities decreases. The mean citation score trend is decreasing, with a flattening of the line

in the higher values of the variable. GDP per-capita also exhibits a U-shaped curve describing

the sub-population of universities contributing to link prediction. There would seem to be a

similarity effect between universities regarding the GDP of the regions in which they are

located. Universities located in areas with a lower GDP tend to link up more; similarly, univer-

sities located in areas with a higher GDP link together. The bridging role of the university on

the link creation loses its initial potential with higher values of Betweenness centrality. Our

analysis reveals a U-shaped relationship between the size of universities and the probability of

collaboration. This U-shaped pattern suggests that there is some degree of similarity in terms

of university size that promotes collaboration between universities. However, we observe a low

level of responsiveness. This means that the probability of collaboration between universities is

not highly sensitive or responsive to changes in university size. The Jaccard index shows simi-

lar values to the SSH and PE domains. Moreover, when two universities have low Katz scores,

there is an initial high probability of collaboration, followed by an immediate plateau in the

probability. We also note a low level of responsiveness of this variable in determining collabo-

ration probabilities. The Closeness centrality exhibits a U-shaped pattern. This finding

Fig 11. Conditional partial expectation of the probability to have a link for PE.

https://doi.org/10.1371/journal.pone.0290018.g011
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suggests that nodes with similar values of Closeness centrality in the network tend to exhibit a

higher propensity for connecting with each other compared to nodes with intermediate values.

Understanding the propensity for nodes with similar Closeness centrality values to connect

can provide insights into the underlying dynamics of the network. It suggests that there are

certain attractor mechanisms or clustering tendencies that operate based on Closeness central-

ity values. The inverse of the distance, which captures the geographic proximity between uni-

versities, exhibits a trend characterized by low levels of probability for distant universities,

followed by an increase in probability up to a certain threshold (around the value of 10), and

then a slow decrease.

As in the other domains, the Jaccard coefficient has the highest impact on link prediction.

Above a certain threshold limit, the probability is steady and closer to zero. The effect of com-

mon neighbors in creating connections tends to become saturated in terms of community

capacity to offer additional skills. APEs results for LS are showed by Fig 14.

In order to explain the differences emerged between the PE and LS domains compared to

the SSH domain in our results, we can refer to the major complexity of the types of organiza-

tions and institutional collaborations operating within the projects taking place within the PE

and LS domains. These consist of collaborations that often include private companies, of orga-

nizations operating through large R&D laboratories that carry out more explorative and risky

research, characterized by larger irreversibility and huger sunk costs.

Finally, Figs 15–17 set out the pattern of the elasticity of the probability of forming a link as

a function of the features for SSH, PE, and LS respectively. The interpretation of these figures

is as follows: for a given feature level x0j, each point in the graph sets out the percentage increase

of the probability to set up a link induced by a 100% increase in the feature evaluated at that

specific level. These changes can be both positive or negative, and their variability measures

Fig 12. Pattern of the derivative of the probability of produce a link as a function of the features for PE.

https://doi.org/10.1371/journal.pone.0290018.g012
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the sensitivity of the link probability to changes in the feature itself. By and large, we observe

that: (i) negative elasticities are in general likelier than positive ones over all features and

domains; (ii) elasticities are more sensitive to changes in the Betweenness centrality, Closeness

centrality, and the Jaccard coefficient than in the other features; (iii) the average sensitivity is

larger in the SSH, than in the PE and LS domains.

Conclusion

Although machine learning methods have been widely used for network link prediction, to the

best of our knowledge, our study is the first attempt to predict links using advanced machine

learning methods in a competitive project-funding programme, as well as the first to identify

the best ML approach in three different ERC domains. Moreover, no other studies have esti-

mated average partial effects within a super-learning setting.

Link prediction is an important challenge in knowledge networks. In this regard, our paper

has provided new contributions to this topic. First, we used different analytic procedures to

examine and compare the prediction accuracy, both jointly and separately for exogenous and

endogenous network variables. Second, we performed data analysis for link prediction in three

different ERC domains, i.e. Social Sciences and Humanities, Physical and Engineering Sci-

ences, and Life Sciences.

Fig 13. Conditional partial expectation of the probability to have a link for LS.

https://doi.org/10.1371/journal.pone.0290018.g013
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By jointly using all the selected features, we reached a link prediction accuracy larger than

90% for pretty all the machine learning methods employed. Removing the endogenous fea-

tures of the nodes (namely, Betweenness centrality, Closeness centrality, the Jaccard coeffi-

cient, and Katz centrality) the accuracy drops significantly down in all domains by, on average,

24 percentage points. Furthermore, we observe greater irregular fluctuations for the exogenous

variables. Lower accuracy when endogenous factors are removed and higher fluctuation of

exogenous ones indicate that predicting connections for the so-called newcomers (for whom

we do not know the endogenous features) is significantly more difficult than predicting links

for incumbents, who are already in the network (for whom we know both endogenous and

exogenous features). Based on our results, Jaccard coefficient appears to have the greatest link

predictive power across all scientific domains. As the Jaccard coefficient increases, the proba-

bility of forming a link decreases. Sharing common neighboring nodes reduces the likelihood

of a connection in joint project collaborations. In SSH and LS, the connection probability falls

as the Betweenness grows up. We know that knowledge networks are generally composed of

communities connected by links that bridge between them. According to our findings, univer-

sities connecting different communities have low link Betweenness. This centrality measure

exhibits higher responsiveness in the Social Sciences and Humanities (SSH) domain. The

higher responsiveness of Betweenness centrality in SSH implies that its variations have a more

pronounced impact on link prediction in this domain.

In the SSH domain, the results appear fairly different than in PE and LS. SSH shows less

predictive uncertainty, reflected in the likelihood of forming links. Moreover, elasticities have

a wider range of variation in SSH, which accounts for a larger sensitivity to attributes’ change.

The size of universities, represented by the total number of students, exhibits higher respon-

siveness in SSH domain compared to other domains. In SSH, there is a clear pattern where the

probability of link formation increases significantly as the size of universities increases. Our

Fig 14. Pattern of the derivative of the probability of produce a link as a function of the features for LS.

https://doi.org/10.1371/journal.pone.0290018.g014
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results indicate that the Katz and Closeness centralities exhibit lower responsiveness in PE

compared to other domains. Compared to other domains, the influence of Katz centrality and

Closeness centrality on the likelihood of link creation is less pronounced in PE.

The inverse of distance, which captures the geographic proximity between universities,

appears to be important in both PE and SSH domains, but with some differences in their rela-

tionship with link prediction. In PE, there is a more linear relationship between the geographic

proximity and the probability of link formation. On the other hand, in SSH, the relationship

between the inverse of distance and link prediction is not strictly linear; it exhibits an oscillat-

ing pattern.

The different ERC domains are characterized by different intellectual and organizational

patterns, and cover a wider spectrum of epistemic communities. More heterogeneity of the

types of partnerships (in particular with the private sector), and the presence of large laborato-

ries or research infrastructures characterize the PE and LS sectors compared to SSH, and can

explain the difference we have found in their link prediction performance.

Our results can be used to explore collaborations on scientific networks between universi-

ties by providing useful advice to policy makers. For example, reinforcement mechanisms can

be limited in competitive project funding, and policy makers may adopt specific actions with

the aim of facilitating integration and boosting the productivity of smaller universities. These

actions could include providing targeted support and resources to newcomers to improve

Fig 15. Pattern of the elasticity of the probability of produce a link as a function of the features for SSH.

https://doi.org/10.1371/journal.pone.0290018.g015
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their research capabilities and increase their chances of collaboration. This could involve offer-

ing funding opportunities specifically designed for newcomers, promoting networking events

and conferences to facilitate connections between universities, and fostering partnerships

between newcomers (individuals or institutions who are relatively new or less established

within the network) and incumbents (experienced researchers or institutions that have been

actively involved in the network for a significant period). By implementing such measures, pol-

icymakers can create a more inclusive and collaborative research environment, enabling new-

comers to contribute effectively to scientific advancements and fostering a more diverse and

dynamic scientific community.

Of course, our paper has also limitations. First, the paper analyzes competitive projects

funded within the Horizon 2020 programme, whose results cannot be generalized to other

science funding programmes. Second, the machine learning methods used in this paper do

not explicitly consider the network time serial correlation. We think however that this prob-

lem is alleviated in our case by the fact that—within the Horizon 2020 programme—nodes

and links are slightly changing over time (differently from what happens, for example, in co-

authorship networks). Third, we have considered only collaborations in the Horizon 2020

programme that actually received funding. We did not have information of collaborations

generated outside this funding mechanism, thus excluding these network links from our

analysis.

Fig 16. Pattern of the elasticity of the probability of produce a link as a function of the features for PE.

https://doi.org/10.1371/journal.pone.0290018.g016
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