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Abstract
Quantification is the supervised learning task that consists of training predictors of 
the class prevalence values of sets of unlabelled data, and is of special interest when 
the labelled data on which the predictor has been trained and the unlabelled data are 
not IID, i.e., suffer from dataset shift. To date, quantification methods have mostly 
been tested only on a special case of dataset shift, i.e., prior probability shift; the 
relationship between quantification and other types of dataset shift remains, by and 
large, unexplored. In this work we carry out an experimental analysis of how current 
quantification algorithms behave under different types of dataset shift, in order to 
identify limitations of current approaches and hopefully pave the way for the devel-
opment of more broadly applicable methods. We do this by proposing a fine-grained 
taxonomy of types of dataset shift, by establishing protocols for the generation of 
datasets affected by these types of shift, and by testing existing quantification meth-
ods on the datasets thus generated. One finding that results from this investigation is 
that many existing quantification methods that had been found robust to prior prob-
ability shift are not necessarily robust to other types of dataset shift. A second find-
ing is that no existing quantification method seems to be robust enough to dealing 
with all the types of dataset shift we simulate in our experiments. The code needed 
to reproduce all our experiments is publicly available at https:// github. com/ pglez 82/ 
quant_ datas etshi ft.

Keywords Quantification · Learning to quantify · Supervised prevalence 
estimation · Dataset shift · Covariate shift · Prior probability shift · Concept shift

Responsible editor: Eyke Hüllermeier.

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9250-0920
https://github.com/pglez82/quant_datasetshift
https://github.com/pglez82/quant_datasetshift
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-024-01014-1&domain=pdf


1671

1 3

Binary quantification and dataset shift: an experimental...

1 Introduction

Quantification (variously called learning to quantify, or class prior estimation, 
or class distribution estimation—(see Esuli et al. 2023; González et al. 2017 for 
overviews) is a supervised learning task concerned with estimating the preva-
lence values (or relative frequencies, or prior probabilities) of the classes in a 
sample of unlabelled datapoints, using a predictive model (the quantifier) trained 
on labelled datapoints.

A straightforward solution to the quantification problem can be obtained by (i) 
Using a classifier to issue label predictions for the unlabelled datapoints in the sam-
ple, (ii) Counting how many datapoints have been attributed to each class, and (iii) 
Reporting the relative frequencies. This method is typically known as Classify and 
Count (CC). However, unless the classifier is a perfect one, CC is known to deliver 
suboptimal solutions (Forman  2005). One reason (but not the only one) is that CC 
tends to inherit the bias of the classifier; for example, in binary quantification prob-
lems (i.e., when there are only two mutually exclusive classes), if the classifier has 
a tendency to produce more (resp., fewer) false positives than false negatives, CC 
tends to overestimate (resp., underestimate) the prevalence of the positive class.

Since the term “quantification” was coined by Forman  (2005), quantification has 
come to be recognised as a task in its own right and is, by now, no longer considered 
as a mere by-product of classification. Quantification finds applications in many 
areas whose primary focus is the analysis of data at the aggregate level (rather at 
the level of the individual datapoint), such as market research (Esuli and Sebastiani 
2010), the social sciences (Hopkins and King 2010), ecological modelling (Beijbom 
et al. 2015), and epidemiology (King and Lu 2008), among many others.

A common trait of all these applications is that all of them emerge from the need 
to monitor evolving class distributions, i.e., situations in which the class distribution 
of the unlabelled data may differ from the one of the training data. In other words, 
these situations are characterised by a type of dataset shift  (Moreno-Torres et  al. 
2012; Quiñonero-Candela et al. 2009), i.e., the phenomenon according to which, in 
a supervised learning context, the training data and the unlabelled data are not IID. 
Dataset shift comes in different flavours; the ones that have mostly been discussed in 
the literature are (i) prior probability shift, which has to do with changes in the class 
prevalence values; (ii) covariate shift, which concerns changes in the distribution of 
the covariates (i.e., features); and (iii) concept shift, which has to do with changes in 
the functional relationship between covariates and classes. We provide more formal 
definitions of dataset shift and its subtypes in the sections to come.

Since quantification aims at estimating class prevalence, most experimental 
evaluations of quantification systems (see, e.g., Barranquero et  al. 2015; Bella 
et al. 2010; Esuli et al. 2018; Forman 2008; Hassan et al. 2020; Milli et al. 2013; 
Moreo and Sebastiani 2022; Pérez-Gállego et al. 2019; Schumacher et al. 2021) 
have focused on situations characterised by prior probability shift, while the other 
two types of shift mentioned above have not received comparable attention. A 
question then naturally arises: How do existing quantification methods fare when 
confronted with types of dataset shift other than prior probability shift?
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This paper offers a systematic exploration of the performance of existing quanti-
fication methods under different types of dataset shift. To this aim we first propose 
a fine-grained taxonomy of dataset shift types; in particular, we pay special atten-
tion to the case of covariate shift, and identify variants of it (mostly having to do 
with additional changes in the priors) that we contend to be of special relevance in 
quantification endeavours, and that are understudied. We then follow an empirical 
approach, devising specific experimental protocols for simulating all the types of 
dataset shift that we have identified, at various degrees of intensity and in a tightly 
controlled manner. Using the experimental setups generated by means of these pro-
tocols, we then test a number of existing quantification methods; here, the ultimate 
goal we pursue is to better understand the relative merits and limitations of exist-
ing quantification algorithms, to understand the conditions under which they tend 
to perform well, and to identify the situations in which they instead tend to generate 
unreliable predictions.

The rest of this paper is organised as follows. In Sect.  2, we discuss previous 
work on establishing protocols to recreate different types of dataset shift, with spe-
cial attention to work done in the quantification arena, and the (still scarce) work 
aimed at drawing connections between quantification and different types of dataset 
shift. In Sect. 3, we illustrate our notation and provide definitions of relevant con-
cepts and of the quantification methods we use in this study. Section 4 goes on by 
introducing formal definitions of the types of shift we investigate. Section 5 illus-
trates the experimental protocols we propose for simulating the above types of shift, 
and discusses the results we have obtained by generating datasets via these protocols 
and using them for testing quantification systems. Section 6 wraps up, summarising 
our main findings and also pointing to interesting directions for future work.

2  Related work

Since quantification targets the estimation of class frequencies, it is fairly natural that 
prior probability shift has been, in the related literature, the dominant type of data-
set shift on which the robustness of quantification methods has been tested. Indeed, 
when Forman  (2005) first proposed (along with novel quantification methods) to 
consider quantification as a task in its own right (and proposed “quantification” as 
the name for this task), he also proposed an experimental protocol for testing quan-
tification systems. This protocol consisted of generating a number of test samples, 
to be used for evaluating a quantification method, characterised by prior probability 
shift. Given a dataset consisting of a set L of labelled datapoints and a set U of unla-
belled datapoints (both with binary labels), the protocol consists of drawing from U 
a number of test samples each characterised by a prevalence value (of the “positive 
class”) lying on a predefined grid (say, G = [0.00, 0.05,… , 0.95, 1.00] ). This pro-
tocol has come to be known as the “artificial prevalence protocol” (APP), and has 
since been at the heart of most empirical evaluations conducted in the quantifica-
tion literature; see, e.g.,  (Bella et  al. 2010; Barranquero et  al. 2015; Schumacher 
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et al. 2021; Moreo et al. 2021; Moreo and Sebastiani 2022).1 Actually, the protocol 
proposed by Forman  (2005) also simulates different prevalence values in the train-
ing set, drawing from L a number of training samples characterised by prevalence 
values lying on grid G. In such a way, by systematically varying both the training 
prevalence and the test prevalence of the positive class across the entire grid, one 
could subject a quantification method to the widest possible range of scenarios char-
acterised by prior probability shift. Some empirical evaluations conducted nowadays 
only extract test samples from U, while others extract training samples from L and 
test samples from U.

The APP has sometimes been criticised (see e.g.,  Esuli and Sebastiani  2015; 
Hassan et al. 2021) for generating training-test sample pairs exhibiting “unrealistic” 
or “implausible” class prevalence values and degrees of prior probability shift. For 
instance, Esuli and Sebastiani  (2015) and González et al. (2019) indeed renounce to 
using the APP in favour of using datasets containing a large amount of timestamped 
test datapoints, which allows splitting the test data into sizeable enough, tempo-
rally coherent chunks, in which the class prevalence values naturally fluctuate over 
time. However, this practice is rarely used in the literature, since it has to overcome 
at least three important obstacles: (i) The amount of test samples thus available is 
often too limited to allow statistically significant conclusions, (ii) Datasets with the 
above characteristics are rare (and expensive to create, if not available), and (iii) The 
degree of shift which the quantifiers must confront is (as in  Esuli and Sebastiani  
2015) sometimes limited.

Conversely, the other two types of shift that we have mentioned above (covariate 
shift and concept shift) have received essentially no attention in the quantification 
literature. An exception to this includes the theoretical analysis performed in (Tasche  
2022, 2023), and the work on classifier calibration of Card and Smith (2018), both 
of them having to do with covariate shift. More in general, we are unaware of the 
existence of specific evaluation protocols for quantification, or quantification meth-
ods, that explicitly address covariate shift or concept shift.

Some discussion of protocols for simulating different kinds of prior probability 
shift can be found in the work of Lipton et al. (2018), who propose protocols for 
generating prior probability shift in multiclass datasets. They propose protocols 
for addressing “knock-out shift”, which they define as the shift generated by sub-
sampling a specific class out of the n classes; “tweak-one shift”, that generates 
samples in which a specific class out of the n classes has a predefined preva-
lence value while the rest of the probability mass is evenly distributed across the 
remaining classes; and “Dirichlet shift”, in which a distribution P(Y) across the 
classes is picked from a Dirichlet distribution with concentration parameter � , 
after which samples are drawn according to P(Y). Other works (Azizzadenesheli 
et  al. 2019; Rabanser et  al. 2019; Alexandari et  al. 2020) have come to subse-
quently adopt these protocols. We do not explore “knock-out shift” nor “tweak-
one shift” since these sample generation protocols are only meaningful in the 
multiclass regime, and since we here address the binary case only. The protocol 

1 Although the protocol was originally proposed for binary quantification problems only, an extension 
to the multiclass regime based on so-called Kraemer sampling was later proposed by Esuli et al. (2022).
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we end up adopting (the APP) is similar in spirit to the “Dirichlet shift” protocol 
(i.e., both are designed to cover the entire spectrum of legitimate prevalence val-
ues), although the APP allows for a tighter control on the test prevalence values 
being generated.

Using image datasets for their experiments, Rabanser et al. (2019) bring into 
play (and define protocols for) other types of shift having to do with covariate 
shift, such as “adversarial shift”, in which a fraction of the unlabelled samples 
are adversarial samples (i.e., images that have been manipulated with the aim of 
confounding a neural model, by means of modifications that are imperceptible 
to the human eye); “image shift”, in which the unlabelled images result from the 
application of a series of random transformations (rotation, translation, zoom-in); 
“Gaussian noise shift”, in which Gaussian noise affects a fraction of the unla-
belled images; and combinations of all these. We do not explore these types of 
shift since they are specific to the world of images and computer vision.

Dataset shift has been widely studied in the field of classification in order to 
support the development of models robust to the presence of shift. In the machine 
learning literature this problem is also known as domain adaptation. For instance, 
the combination of covariate shift and prior probability shift has recently been 
studied by Chen et  al. (2022), who focus on detecting the presence of shift in 
the data and on predicting classifier performance on non-IID (a.k.a. “out-of-dis-
tribution”) unlabelled data. This and other similar works are mostly concerned 
with improving the performance of a classifier on non-IID unlabelled data (a con-
cern that goes back at least to (Saerens et al. 2002; Vucetic and Obradovic 2001), 
and that has given rise to works such as (Alaíz-Rodríguez et  al. 2011; Bickel 
et al. 2009; Chan and Ng  2006); in these works, estimating class prevalence in 
non-IID unlabelled data is merely an intermediate step for calculating the class 
weights needed for adapting the classifier to these data, and not a primary con-
cern in itself.

As a final note, we should mention that, despite several efforts for unifying the 
terminology related to dataset shift (see Moreno-Torres et al. 2012 for an exam-
ple), this terminology is still somewhat confusing. For example, prior probability 
shift (Storkey  2009) is sometimes called “distribution drift” (Moreo and Sebas-
tiani 2022), “class-distribution shift” (Beijbom et al. 2015), “class-prior change” 
(du Plessis and Sugiyama 2012; Iyer et al. 2014), “global drift” Hofer and Krempl 
(2012), “target shift” (Zhang et al. 2013; Nguyen et al. 2015), “label shift” (Lip-
ton et  al. 2018; Azizzadenesheli et  al. 2019; Rabanser et  al. 2019; Alexandari 
et al. 2020), or “prior shift” (Šipka et al. 2022). The terms “shift” and “drift” are 
often used interchangeably (in this paper we will stick to the former), although 
some authors (e.g., Souza et  al. 2020) establish a difference between “concept 
shift” and “concept drift”; in Sect.  4.3 we will precisely define what we mean 
by concept shift. Note also that, until recently, most works in the quantification 
literature hardly even mentioned (any type of) “shift” or “drift” (despite using 
an experimental protocol that recreated prior probability shift), certainly due to 
the fact that the awareness of dataset shift and the problems it entails has become 
widespread only in recent years.
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3  Preliminaries

3.1  Notation and definitions

In this paper we restrict our attention to the case of binary quantification, and 
adopt the following notation. By x we indicate a datapoint drawn from a domain 
X  . By y we indicate a class drawn from a set Y = {0, 1} , which we call the clas-
sification scheme (or codeframe), and by y we indicate the complement of y in Y . 
Without loss of generality, we assume 0 to represent the “negative” class and 1 to 
represent the “positive” class. By L we denote a collection of k labelled datapoints 
{(xi, yi)}

k
i=1

 , where xi ∈ X  is a datapoint and yi ∈ Y is a class label, that we use for 
training purposes. By U we instead denote a collection {(x�

i
, y�

i
)}k

�

i=1
 of k′ unlabelled 

datapoints, i.e., datapoints x′
i
 whose label y′

i
 is unknown, that we typically use for 

testing purposes. We hereafter refer to L and U as “the training set” and “the test 
set”, respectively.

We use symbol � to denote a sample, i.e., a non-empty set of (labelled or unla-
belled) datapoints from X  . We use p�(y) to denote the (true) prevalence of class 
y in sample � (i.e., the fraction of items in � that belong to y), and we use p̂q𝜎(y) 
to denote the estimate of p�(y) as computed by a quantification method q; note 
that p�(y) is just a shorthand of P(Y = y | x ∈ �) , where P indicates probability 
and Y is a random variable that ranges on Y . Since in the binary case it holds that 
p�(y) = 1 − p�(y) , binary quantification reduces to estimating the prevalence of the 
positive class only. Throughout this paper we will simply write p� instead of p�(1) , 
i.e., as a shortcut for the true prevalence of the positive class in sample � ; similarly, 
we will shorten p̂𝜎(1) as p̂𝜎.

We define a binary quantifier as a function q ∶ 2X → [0, 1] , i.e., one that acts as a 
predictor of the prevalence p� of the positive class in sample � . Quantifiers are gen-
erated by means of an inductive learning algorithm trained on L. We take a (binary) 
hard classifier to be a function h ∶ X → Y , i.e., a predictor of the class label of a 
datapoint x ∈ X  which returns 1 if h predicts x to belong to the positive class and 
0 otherwise. Classifier h is trained by means of an inductive learning algorithm that 
uses a set L of labelled datapoints, and usually returns crisp decisions by thresh-
olding the output of an underlying real-valued decision function f whose internal 
parameters have been tuned to fit the training data. Likewise, we take a (binary) soft 
classifier to be a function s ∶ X → [0, 1] , i.e., a function mapping a datapoint x into 
a posterior probability s(x) ≡ P(Y = 1|X = x) and represents the probability that s 
subjectively attributes to the fact that x belongs to the positive class. Classifier s is 
either trained on L by a probabilistic inductive algorithm, or obtained by calibrating 
a (possibly non-probabilistic) classifier s′ also trained on L.2

2 A binary soft classifier s is said to be well calibrated (Flach 2017) for a given sample � if, for every 
� ∈ [0, 1] , it holds that

Note that calibration is defined with respect to a sample � , which means that a classifier cannot, in gen-

(1)
|{(x, y) ∈ � ∣ s(x) = �, y = 1}|

|{(x, y) ∈ � ∣ s(x) = �}|
= �
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We take an evaluation measure for binary quantification to be a real-valued func-
tion D ∶ [0, 1] × [0, 1] → ℝ which measures the amount of discrepancy between 
the true distribution and the predicted distribution of Y in � ; higher values of D 
represent higher discrepancy, and the distributions are represented (since we are in 
the binary case) by the prevalence values of the positive class. In the quantification 
literature, these measures are typically divergences, i.e., functions that, given two 
distributions p′ , p′′ , satisfy (i) D(p�, p��) ≥ 0 , and (ii) D(p�, p��) = 0 if and only if 
p� = p�� . By D(p𝜎 , p̂

q
𝜎) we thus denote the divergence between the true class distribu-

tion in sample � and the estimate of this distribution returned by binary quantifier q.

3.2  The IID assumption, dataset shift, and quantification

One of the main reasons why we study quantification is the fact that most scenarios 
in which estimating class prevalence values via supervised learning is of interest, 
violate the IID assumption, i.e., the fundamental assumption (that most machine 
learning endeavours are based on) according to which the labelled datapoints used 
for training and the unlabelled datapoints we want to issue predictions for, are 
assumed to be drawn independently and identically from the same (unknown) dis-
tribution.3 If the IID assumption were not violated, the supervised class prevalence 
estimation problem would admit a trivial solution, consisting of returning, as the 
estimated prevalence p̂q𝜎 for any sample � of unlabelled datapoints, the true preva-
lence pL that characterises the training set, since both L and � would be expected to 
display the same prevalence values. This “method” is called, in the quantification 
literature, the maximum likelihood prevalence estimator (MLPE), and is considered 
a trivial baseline that any genuine quantification system is expected to beat in situa-
tions characterised by dataset shift.

We will thus assume the existence of two unknown joint probability distributions 
PL(X, Y) and PU(X, Y) such that PL(X, Y) ≠ PU(X, Y) (the dataset shift assumption). 
The ways in which the training distribution and the test distribution may differ, and 
the effect these differences can have on the performance of quantification systems, 
will be the main subject of the following sections.

3.3  Quantification methods

The six quantification methods that we use in the experiments of Sect. 5 are the 
following.

3 For example, we might be interested in monitoring through time the degree of support for a cer-
tain politician by estimating the prevalence values of classes “Positive” and “Negative” in tweets that 
express opinions about this politician (this is an instance of sentiment quantification (Moreo and Sebas-
tiani 2022)). The very fact that we want to monitor these prevalence values through time is an implicit 
assumption that these prevalence values may vary, i.e., may take values different from the prevalence 
values that these classes had in the training data. In other words, it is an implicit assumption that we may 
be in the presence of some form of dataset shift.

eral, be well calibrated for two different samples (e.g., for L and U) that are affected by prior probability 
shift.

Footnote 2 (Continued)
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Classify and Count (CC), already hinted at in the introduction, is the naïve 
quantification method, and the one that is used as a baseline that all genuine 
quantification methods are supposed to beat. Given a hard classifier h and a sam-
ple � , CC is formally defined as

In other words, the prevalence of the positive class is estimated by classifying all the 
unlabelled datapoints, counting the number of datapoints that have been assigned 
to the positive class, and dividing the result by the total number of datapoints in the 
sample.

The Adjusted Classify and Count (ACC) method (see Forman 2008) attempts 
to correct the estimates returned by CC by relying on the law of total probability, 
according to which, for any x ∈ X  , it holds that

which can be more conveniently rewritten as

where tprh and fprh are the true positive rate and the false positive rate, respectively, 
that h has on samples of unseen datapoints. From Eq. (4) we can obtain

The values of tprh and fprh are unknown, but their estimates ̂tprh and ̂fprh can be 
obtained by performing k-fold cross-validation on the training set L, or by using a 
held-out validation set. The ACC method thus consists of estimating p� by plugging 
the estimates of tpr and fpr into Eq. (5), to obtain

While CC and ACC rely on the crisp counts returned by a hard classifier h, it is pos-
sible to define variants of them that use instead the expected counts computed from 
the posterior probabilities returned by a calibrated probabilistic classifier s (Bella 
et  al. 2010). This is the core idea behind Probabilistic Classify and Count (PCC) 
and Probabilistic Adjusted Classify and Count (PACC). PCC is defined as

while PACC is defined as

(2)p̂CC
𝜎

=
1

|𝜎|
∑

x∈𝜎

h(x)

(3)P(h(x) = 1) = P(h(x) = 1|Y = 1) ⋅ p + P(h(x) = 1|Y = 0) ⋅ (1 − p)

(4)p̂CC
𝜎

= tprh ⋅ p𝜎 + fprh ⋅ (1 − p𝜎)

(5)p𝜎 =
p̂CC
𝜎

− fprh

tprh − fprh

(6)p̂ACC
𝜎

=
p̂CC
𝜎

− ̂fprh

̂tprh −
̂fprh

(7)

p̂PCC
𝜎

=
1

|𝜎|
∑

x∈𝜎

s(x)

=
1

|𝜎|
∑

x∈𝜎

P(Y = 1|x)
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Eq. (8) is identical to Eq. (6), but for the fact that the estimate p̂CC
𝜎

 is replaced with 
the estimate p̂PCC

𝜎
 , and for the fact that the true positive rate and the false positive 

rate of the probabilistic classifier s (i.e., the rates computed as expectations using the 
posterior probabilities) are used in place of their crisp counterparts.

Distribution y-Similarity (DyS) (Maletzke et al. 2019) is instead a generalisa-
tion of the HDy quantification method of González-Castro et al. (2013). HDy is 
a probabilistic binary quantification method that views quantification as the prob-
lem of minimising the divergence (measured in terms of the Hellinger Distance, 
from which the name of the method derives) between two distributions of poste-
rior probabilities returned by a soft classifier s, one coming from the unlabelled 
examples and the other coming from a validation set. HDy looks for the mix-
ture parameter � (since we are considering a mixture of two distributions, one of 
examples of the positive class and one of examples of the negative class) that best 
fits the validation distribution to the unlabelled distribution, and returns � as the 
estimated prevalence of the positive class. Here, robustness to distribution shift 
is achieved by the analysis of the distribution of the posterior probabilities in the 
unlabelled set, that reveals how conditions have changed with respect to the train-
ing data. DyS generalises HDy by viewing the divergence function to be used as 
a parameter.

A further, very popular aggregative quantification method is the one proposed 
by  Saerens et  al. (2002) and often called SLD, from the names of its propos-
ers. SLD was the best performer in a recent data challenge devoted to quantifi-
cation  (Esuli et  al. 2022), and consists of training a (calibrated) soft classifier 
and then using expectation maximisation (Dempster et al. 1977) (i) To tune the 
posterior probabilities that the classifier returns, and (ii) To re-estimate the preva-
lence of the positive class in the unlabelled set. Steps (i) and (ii) are carried out in 
an iterative, mutually recursive way, until convergence (when the estimated prior 
gets fairly close to the mean of the recalibrated posteriors).

4  Types of dataset shift

Any joint probability distribution P(X,  Y) can be factorised, alternatively and 
equivalently, as:

• P(X, Y) = P(X|Y)P(Y) , in which the marginal distribution P(Y) is the distribution 
of the class labels, and the conditional distribution P(X|Y) is the class-conditional 
distribution of the covariates. This factorization is convenient in anti-causal 
learning (i.e., when predicting causes from effects)  (Schölkopf et al. 2012), i.e., 
in problems of type Y → X  (Fawcett and Flach 2005).

(8)p̂PACC
𝜎

=
p̂PCC
𝜎

− ̂fprs

̂tprs −
̂fprs
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• P(X, Y) = P(Y|X)P(X) , in which the marginal distribution P(X) is the distribu-
tion of the covariates and the conditional distribution P(Y|X) is the distribution of 
the labels conditional on the covariates. This factorization is convenient in causal 
learning (i.e., when predicting effects from causes) (Schölkopf et al. 2012), i.e., 
in problems of type X → Y  (Fawcett and Flach 2005).

Which of these four ingredients (i.e., P(X), P(Y), P(X|Y), P(Y|X)) change or remain 
the same across L and U, gives rise to different types of shift, as discussed in (Stor-
key  2009; Moreno-Torres et al. 2012). In this section we turn to describing the types 
of shift that we consider in this study. To this aim, also recalling that the related ter-
minology is sometimes confusing in this respect (as also noticed by Moreno-Torres 
et al. 2012), we clearly define each type of shift that we consider.

When training a model, using our labelled data, to issue predictions about unla-
belled data, we expect some relevant general conditions to be invariant across the 
training distribution and the unlabelled distribution, since otherwise the problem 
would be unlearnable. In Table 1, we list the three main types of dataset shift that 
have been discussed in the literature. For each such type, we indicate which distri-
butions are assumed (according to general consensus in the field) to vary across L 
and U, and which others are assumed to remain constant. In the following sections, 
we will thoroughly discuss the relationships between these three types of shift and 
quantification.

It is immediate to note from Table 1 that, for any given type of shift, there are 
some distributions (corresponding to the blank cells in the table—e.g., P(X) for prior 
probability shift) for which it is not specified if they change or not across L and U; 
indeed, concerning what happens in these cases, the literature is often silent. In the 
next sections, we will try to fill these gaps. We will identify applicatively interesting 
subtypes of dataset shift based on different ways to fill the blank cells of Table 1, 
and will propose experimental protocols that recreate them in order for quantifica-
tion systems to be tested under those conditions.

4.1  Prior probability shift

Prior probability shift (see Fig. 1 for a graphical example) describes a situation 
in which (a) there is a change in the distribution P(Y) of the class labels (i.e., 

Table 1  Main types of dataset 
shift discussed in the literature

For the type of dataset shift on the row, symbol “ ≠ ” indicates that 
the distribution on the column is assumed to change across L and U, 
while symbol = indicates that the distribution is assumed to remain 
invariant. The last column indicates the section of the present paper 
where this type of shift is discussed in detail

P(X) P(Y) P(X|Y) P(Y|X) Section

Prior probability shift ≠ = §4.1
Covariate shift ≠ = §4.2
Concept shift ≠ ≠ §4.3
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PL(Y) ≠ PU(Y) ) while (b) the class-conditional distribution of the covariates 
remains constant (i.e., PL(X|Y) = PU(X|Y)).

In this type of shift, no further assumption is usually made as to whether the 
distribution P(X) of the covariates and the conditional distribution P(Y|X) change 
or not across L and U. Notwithstanding this, it is reasonable to think that the 
change in P(Y) indeed causes a variation in P(X), i.e., that PL(X) ≠ PU(X) ; if this 
were not the case, the class-conditional distributions P(X|Y = 1) and P(X|Y = 0) 
would be indistinguishable, i.e., the problem would not be learnable. We will thus 
assume that prior probability shift does indeed imply a change in P(X) across L 
and U. The following is an example of this scenario.

Example 1 Assume our application has to do with predicting influenza from symp-
toms (a clear example of a Y → X problem), where the classes denote presence (1) 
or absence (0) of influenza and the covariates represent the possible symptoms. 
Assume our training data are labelled cases of influenza (1) or non-influenza (0) 
from the winter season, while our unlabelled data are influenza or non-influenza 
cases from the summer season. Assume also that all other properties of the unla-
belled data (e.g., region where the data have been collected, strain of the influenza 
virus, etc.) are the same as in the training data. In this scenario, it is the case that 

Fig. 1  Example of prior probability shift generated with synthetic data using a normal distribution for 
each class. Scenario A (1st row): original data distribution, in which the positive class (orange) and the 
negative class (blue) have the same prevalence, i.e., pA = 0.5 . Scenario B (2nd row): with respect to Sce-
nario A there is a shift in the prevalence such that pB = 0.1 . Dashed lines represent linear hypotheses 
learnt from the corresponding empirical distributions. Note that, although the positive class and the nega-
tive class may have not changed in meaning between A and B, i.e., PA(Y|X) = PB(Y|X) , the posteriors we 
would obtain by calibrating two soft classifiers trained from the two empirical distributions would likely 
differ. Note also that PA(X) ≠ PB(X) (2nd column) but PA(X|Y) = PB(X|Y) (3rd column)
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PL(Y) ≠ PU(Y) (since, e.g., the prevalence value of the influenza class in U is sup-
posedly lower than the one in L), and it is the case that PL(X|Y) = PU(X|Y) , since 
the 1’s (resp., 0’s) in the unlabelled data look the same as the 1’s (resp., 0’s) in the 
training data. Therefore, this is an example of prior probability shift. Note that it is 
also the case that PL(X) ≠ PU(X) , since in PU(X) the values of the covariates are 
just those typical of the summer season, unlike in PL(X) , and it is also the case that 
PL(Y|X) = PU(Y|X) , since nothing in the functional relationship between X and Y 
has changed.   ◻

Concerning the issue of whether, in prior probability shift, the posterior distribu-
tion P(Y|X) is invariant or not across L and U, it seems, at first glance, sensible to 
assume that it indeed is, i.e., PL(Y|X) = PU(Y|X) , since there is nothing in prior 
probability shift that implies a change in the functional relationship between X and Y 
(in the binary case: in what being a member of the positive class or of the negative 
class actually means). However, it turns out that a change in the priors has an impact 
on the a posteriori distribution of the response variable Y, i.e., that 
PL(Y|X) ≠ PU(Y|X) . This is indeed the reason why the posterior probabilities issued 
by a probabilistic classifier s (which has been trained and calibrated for the training 
distribution) would need to be recalibrated for the target distribution before attempt-
ing to estimate PU(Y) as 1

�U�
∑

x∈U s(x) . This is exactly the rationale behind the SLD 
method proposed by Saerens et al. (2002). Following this assumption, prior proba-
bility shift is defined as in Row 1 of Table 2.

Prior probability shift is the type of shift which quantification methods have 
mostly been tested on, and the invariance assumption PL(X|Y) = PU(X|Y) that is 
made in prior probability shift indeed guarantees that a number of quantification 
methods work well in these scenarios. In order to show this, let us take ACC as an 
example. The correction implemented in Eq. (6) does not attempt to counter prior 
probability shift, but attempts to counter classifier bias (indeed, note that this cor-
rection is meaningful even in the absence of prior probability shift). This adjustment 
relies on Eq. (4), which depends on two quantities, the tpr and the fpr of classifier 
h, that must be estimated on the training data L. Since h(x) is the same for L and U, 
the fact that PL(X|Y) = PU(X|Y) (which is assumed to hold under probability shift) 
implies that ̂tprh = tprh and ̂fprh = fprh . In other words, under prior probability shift 
ACC works well, since the assumption that the class-conditional distribution P(X|Y) 
is invariant across L and U guarantees that our estimates of tpr and fpr are good esti-
mates. Similar considerations apply to different quantification methods as well.

Prior probability shift has been widely studied in the quantification literature, 
both from a theoretical point of view (Tasche  2017; Fernandes  Vaz et  al. 2019) 
and from an empirical point of view (Schumacher et al. 2021). Indeed, note that the 
artificial prevalence protocol (APP—see Sect. 2), on which most experimentation of 
quantification systems has been based, does nothing else than generate a set of sam-
ples characterised by prior probability shift with respect to the set from which they 
have been extracted; the APP recreates the PL(Y) ≠ PU(Y) condition by subsampling 
one of the two classes, and recreates the PL(X|Y) = PU(X|Y) condition by perform-
ing this subsampling in a random fashion.
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Most of the quantification literature is concerned with ways of devising robust 
estimators of class prevalence values in the presence of prior probability shift. 
Tasche  (2017) proves that, when PL(Y) ≠ PU(Y) and PL(X|Y) = PU(X|Y) (i.e., 
when we are in the presence of prior probability shift) the method ACC is Fisher-
consistent, i.e., the error of ACC tends to zero when the size of the sample increases. 
Unfortunately, in practice, the condition of an unchanging P(X|Y) is difficult to fulfil 
or verify.

At this point, it may be worth stressing that not every change in P(Y) can be con-
sidered an instance of prior probability shift. Indeed, in Sect. 4.2 we present differ-
ent cases of shift in the priors that are not instances of prior probability shift, and 
that we deem of particular interest for realistic applications of quantification.

4.2  Covariate shift

Covariate shift (see Fig. 3 for a graphical example) describes a situation in which 
(a) there is a change in the distribution P(X) of the covariates (i.e., PL(X) ≠ PU(X) ), 
while (b) the distribution of the classes conditional on the covariates remains con-
stant (i.e., PL(Y|X) = PU(Y|X) ). In this type of shift, no further assumption is usu-
ally made as to whether the distribution P(Y) of the classes and the class-conditional 
distribution P(X|Y) change across L and U.

In this paper, we are going to assume that also a change in the class-conditional 
distribution takes place, i.e., PL(X|Y) ≠ PU(X|Y) . The rationale of this choice is 
that, without this assumption, there would be a possible overlap between the notion 
of prior probability shift and the notion of covariate shift. To see why, imagine a 
situation in which the positive and the negative examples are numerical univariate 
data each following a uniform distribution U(a, b) and U(c, d) , with different param-
eters a < b < c < d . A change in the priors (i.e., PL(Y) ≠ PU(Y) ) would not cause 
any modification in the class-conditional distribution (i.e., PL(X|Y) = PU(X|Y) 
would hold). Thus, by definition, this would squarely count as an example of prior 
probability shift, since these are the same conditions listed in Row 1 of Table  2. 
However, at the same time, the distribution of the covariates has also changed (i.e., 
PL(X) ≠ PU(X) ), since P(X) = U(a, b)P(Y = 1) + U(c, d)P(Y = 0) and since the pri-
ors have changed, with the posterior distribution P(Y|X) remaining stable across L 
and U. Thus, this would also count as an example of covariate shift; see Fig. 2 for a 
graphical explanation. For this reason, and for the sake of clarity in the exposition, in 
this work we will break the ambiguity by assuming that covariate shift implies that 
P(X|Y) is not invariant across L and U. As a final observation, note that the conditions 
of covariate shift are incompatible with a situation in which both P(Y) and P(X|Y) 
remain invariant. The reason is that P(X) is assumed to change under the covariate 
shift assumptions, but, since P(X) = P(X|Y = 1)P(Y = 1) + P(X|Y = 0)P(Y = 0) , 
the only way in which this condition can hold true comes down to assuming either a 
change in P(Y) or in P(X|Y).

We will further distinguish between two types of covariate shift, i.e., (i) global 
covariate shift, in which the changes in the covariates occur globally, i.e., affect the 
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entire population, and (ii) local covariate shift, in which the changes in the covari-
ates occur locally, i.e., only affect certain subregions of the entire population. These 
two types of covariate shift will be the subject of Sects. 4.2.1 and 4.2.2, respectively.

4.2.1  Global covariate shift

Global covariate shift occurs when there is an overall change in the representation 
function. We will study two variants of it that differ in terms of whether P(Y) is 
invariant or not across L and U: global pure covariate shift, in which PL(Y) = PU(Y) , 
and global mixed covariate shift, in which PL(Y) ≠ PU(Y) (the name “mixed” of 
course refers to the fact that there is a change in the distribution of the covariates 
and in the distribution of the labels). Both scenarios are interesting to test quanti-
fication methods on, but the latter is probably even more interesting, since changes 
in the priors are something that quantification methods are expected to be robust to.

Global pure covariate shift might occur when, for example, a sensor (in charge of 
generating the covariates) experiences a change (e.g., a partial damage, or a change 
in the lighting conditions for a camera); in this case, the prevalence values of the 
classes of interest do not change, but the measurements (covariates) might have been 
affected.4

Global mixed covariate shift might occur when, for example, a quantifier is 
trained to monitor the proportion of positive opinions on a certain politician on 
Twitter on a daily basis. This training takes place shortly after a notable change in 
Twitter’s policy, allowing for longer tweets.5 At the time of model deployment (a 
few weeks later), longer tweets have became more prevalent, as users have fully 
adopted this new option. In this case, there is a variation in P(X), as longer tweets 
have become more probable; there is variation in P(X|Y), since there will likely be 

Fig. 2  Possible overlap between the notions of prior probability shift and covariate shift, unless we 
assume that PL(X|Y) ≠ PU(X|Y) in covariate shift

4 This example is what Kull and Flach (2014) called covariate observation shift.
5 This actually happened in 2017, when Twitter raised the maximum allowed size of tweets from 140 to 
280 characters. As an aside, we should note that “Twitter” is, as we all know, now called “X”. However, 
we here call it “Twitter” to avoid possible confusion with X, which is, in our paper, a random variable 
ranging on vectors of covariates.
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longer positive tweets and longer negative tweets; P(Y|X) will remain constant, since 
a change in the length of tweets does not make positive comments more likely or 
less likely; and P(Y) can change too (because opinions on politicians do change in 
time), although not as a result of the change in tweet length.

By taking into account the underlying conditions of pure covariate shift, it seems 
pretty clear that PCC (see Sect. 3.3) would represent the best possible choice. The 
reason is that PCC computes the estimate of the class prevalence values by relying 
on the posterior probabilities returned by a soft classifier s (see Eq. 7). Inasmuch as 
these posterior probabilities are reliable enough (i.e., when the soft classifier is well 
calibrated, see Card and Smith 2018), the class prevalence values would be well 
estimated without further manipulations (i.e., there is no need to adjust for possible 
changes in the priors since, in the pure version, we assume P(Y) has not changed); 
see Fig. 3, 2nd row.

However, in practice, the posterior probabilities returned by s might not align 
well with the underlying concept of the positive class (the soft classifier s might 
not be well calibrated for the unlabelled distribution). This might be due to several 
reasons, but a relevant possibility is due to the inability of the learning device to find 
good parameters for the classifier. This might happen whenever the hypothesis (i.e., 
the soft classifier s) learnt by means of an inductive learning method (e.g., logis-
tic regression) comes from an empirical distribution in which certain regions of the 
input space were insufficiently represented during training, and have later become 
more prevalent during test as a result of a change in P(X); see Fig. 2, 3rd row. This 
situation is certainly problematic, and would lead to a deterioration in performance 
of most aggregative quantifiers (including PCC). Further theoretical considerations 
on the connections between PCC and covariate shift are offered by Tasche  (2022).

4.2.2  Local covariate shift

Consider a binary problem in which the positive class is a mixture of two (differently 
parameterised) Gaussians N1 and N2 , i.e., that P(X|Y = 1) = �N1 + (1 − �)N2 . 
Assume there are analogous Gaussians N3 and N4 governing the distribution of neg-
atives; see Fig. 4. Assume now that there is a change (say, an increase) in the preva-
lence of datapoints from N1 leading to an overall change in the priors P(Y). Note 
that this also implies an overall change in P(X). There is also a change in P(X|Y = 1) 
(therefore, in P(X|Y)) since the parameter � of the mixture has changed (it is now 
more likely to find positive examples from N1 ). However, the change in the covari-
ates is asymmetric, i.e., P(X|Y = 0) has not changed.

Situations like this naturally occur in real scenarios of interest for quantification. 
For example, in ecological modelling, researchers might be interested in estimating 
the prevalence of, e.g., different species of plankton in the sea. To do so, they ana-
lyse pictures of water samples taken by an automatic optical device, identify indi-
vidual exemplars of plankton, and estimate the prevalence of the different species 
via a quantifier (González et al. 2019). However, these plankton species are typically 
grouped, because of their high number, into coarse-grained superclasses (i.e., parent 
nodes from a taxonomy of classes), which means that no prevalence estimation for 
the subclass is attempted. An increase in the prevalence value of one of the (super-)
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classes is often the consequence of an increase in the prevalence value of only one 
of its (hidden) subclasses. A similar example may be found in seabed cover mapping 
for coral reef monitoring  (Beijbom et  al. 2015); here, ecologists are interested in 
quantifying the presence of different species in images, often grouping the coral spe-
cies and algae species into coarser-grained classes.

In contrast to global covariate shift, local covariate shift does not occur due to 
a variation in the feature representation function (e.g., an alteration of the device 
in charge of taking measurements, which would impact on the covariates) but due 
to changes in the priors of (sub-)classes that remain hidden. The most important 
implication for quantification concerns the fact that this shift would reduce to 

Fig. 3  Example of global pure covariate shift generated with synthetic data using a normal distribution 
for each cluster. Situation a (1st row): original data distribution. Each class consists on two clusters of 
data (for example positive or negative opinions of two different categories: ElEctronics and Books). Sit-
uation b (2nd row): there is a shift in the number of opinions of one category, that affects both classes. 
P(X) changes (see 2nd column) but P(Y|X) remains invariant. Situation C (3rd row), P(X) changes 
abruptly, affecting the posterior probabilities s(x) that a soft classifier, trained via induction on this sce-
nario, would issue
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prior probability shift if the subclasses (the original species in our examples) were 
observed in place of the superclasses.6 We will only consider the case in which P(Y) 
changes, since it is hard to think of any realistic scenario for asymmetric covari-
ate shift in which the class prevalence values remain unaltered. Note also that, in 
extreme cases, an abrupt change in P(Y) can end up compromising the condition 
PL(Y|X) = PU(Y|X) , for the same reasons why P(Y|X) is altered in prior probability 
shift. However, under mild conditions, we can assume P(Y|X) does not change, or 
does not change significantly.

4.3  Concept shift

Concept shift arises when the boundaries of the classes change, i.e., when the 
underlying concepts of interest change across the training and the testing con-
ditions. Concept shift is characterised by a change in the class-conditional dis-
tribution PL(X|Y) ≠ PU(X|Y) , as well as a change in the posterior distribution 
PL(Y|X) ≠ PU(Y|X) . Another way of saying this is that there is a change in the func-
tional relationship between the covariates and the class labels; see Fig. 5.

Figure 5 depicts a situation in which each of the two classes (say, documents 
relevant and non relevant, respectively, to a certain user information need) 

Fig. 4  Example of local covariate shift generated with synthetic data using a normal distribution for each 
cluster. Situation a (1st row): original data distribution with two positive (orange) Gaussians N1 , N2 and 
two negative (blue) Gaussians N3 , N4 . Situation b (2nd row): the prevalence of N1 grows

6 Technically speaking, any distribution can be expressed as a (potentially infinite) mixture of Gaussians; 
thus, in theory, one could always reduce the problem to prior probability shift. In our definition, however, 
we assume the existence of a limited set of real subpopulations with unobserved labels, and not of an 
infinite such set.
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subsumes two subclasses, and one of the subclasses “switches class”, i.e., the 
documents contained in the subclass were once considered relevant to the infor-
mation need and are now not relevant any more. Yet another example along 
these lines could be due to a change in the sensitivity of a response variable. 
So, for example, a change in the threshold above which the value of a continu-
ous response variable indicates a positive example, is a change in the concept of 
“being positive”, which implies (i) A change in P(Y|X), since some among the 
positive examples have now become negative, (ii) A change in P(X|Y), since the 
positive and negative classes are inevitably distributed differently, and (iii) Even 
a change in P(Y), since the higher the threshold, the fewer the positive examples; 
however, the above does not imply any change in the marginal distribution P(X).

There are other examples of concept shift which may, instead, lead to a change 
in P(X) as well. Take, for example, the case of epidemiology (one of the quintes-
sential applications of quantification) in which the spread of a disease (e.g., by a 

Fig. 5  Example of concept shift generated with synthetic data using a normal distribution for each clus-
ter. Situation a (1st row): original data distribution. Situation b (2nd row): the concept “negative” (blue) 
has changed in a way that it now encompasses one of the originally “positive” (orange) clusters, thus 
implying a change in P(X|Y) and in P(Y|X) but not in P(X) (2nd column)

Table 2  The types of shift we consider

Greyed-out cells indicate assumptions we make (and that we discuss and justify in Sect. 4). Symbol * 
indicates a condition that can get compromised in extreme situations
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viral infection) is now manifested in the population by means of different symp-
toms (the covariates) due to a change in the pathogenic source (e.g., a mutation). 
In this paper, though, we will only be considering instances of concept shift in 
which the marginal distribution P(X) does not change, since otherwise none of 
the four distributions of interest (P(X), P(Y), P(X|Y), P(Y|X)) would be invariant 
across L and U, which would make the problem essentially unlearnable.

Needless to say, concept shift represents the hardest type of shift for any quan-
tification system (and, more in general, for any inductive inference model), since 
changes in the concept being modelled are external to the learning procedure, 
and since there is no possibility of behaving robustly to arbitrary changes in the 
functional relationship between the covariates and the labels. Attempts to tackle 
concept shift should inevitably entail a later phase of learning (as in “continual 
learning”—see e.g., Parisi et al. 2019) in which the model is informed, possibly 
by means of new labelled examples, of the changes in the functional relationship 
between covariates and classes. To date, we are unaware of the existence of quan-
tification methods devised to counter concept shift.

4.4  Recapitulation

In light of the considerations above, in Table 2 we present the specific types of 
shift that we consider in this paper. Concretely, this comes down to exploring 
plausible ways of filling out the blank cells of Table  1, which are indicated in 
grey in Table 2.

5  Experiments

In this section we describe experiments that we have carried out in which we simu-
late the different types of dataset shift described in the previous sections. For sim-
plicity, we have simulated all these types of shift by using the same base datasets, 
which we describe in the following section.

5.1  Datasets

We extract the datasets we use7 for the experiments from a large crawl of 233.1 M 
Amazon product reviews made available by McAuley et al. (2015)8; we use different 
datasets for simulating different types of shift. In order to extract these datasets from 
this crawl we first remove (a) All product reviews shorter than 200 characters and 
(b) All product reviews that have not been recognised as “useful” by any users. We 
concentrate our attention on two merchandise categories, Books and ElEctronics, 

7 https:// zenodo. org/ recor ds/ 84216 11
8 http:// jmcau ley. ucsd. edu/ data/ amazon/ links. html

https://zenodo.org/records/8421611
http://jmcauley.ucsd.edu/data/amazon/links.html
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since these are the two most populated categories in the corpus (see Table 3); in the 
next sections these two categories will sometimes be referred to as category A and 
category B.

Every review comes with a (true) label, consisting of the number of stars (accord-
ing to a “5-star rating”, with 1 star standing for “poor” and 5 stars standing for 
“excellent”) that the author herself has attributed to the product being reviewed. 
Note that the classes are ordered, and thus we can define Y⋆ = {s1, s2, s3, s4, s5} , with 
si meaning “i stars”, and s1 ≺ s2 ≺ s3 ≺ s4 ≺ s5 . Since we deal with binary quanti-
fication, we exploit this order to generate, at desired “cut points” (i.e., thresholds 
below which a review is considered negative and above which is considered posi-
tive), binary versions of the dataset. We thus define the function “ binarise_dataset ”, 
that takes a dataset labelled according to Y⋆ and a cut point c, and returns a new 
version of the dataset labelled according to a binary codeframe Y = {0, 1} ; here, 
every labelled datapoint (x, si) , with si ∈ Y⋆ , is converted into a datapoint (x, y) , 
with y ∈ Y , such that y = 1 (the positive class) if i > c , or y = 0 (the negative class) 
if i < c ; note that we filter out datapoints for which i = c . In the cases in which we 
want to retain all datapoints labelled with all possible numbers of stars, we simply 
specify c as a real value intermediate between two integers (e.g., c = 2.5).

5.2  General experimental setup

In all the experiments carried out in this study we fix the size of the training set 
to 5000 and the size of each test sample to 500. For a given experiment we evalu-
ate all quantification methods with the same test samples, but different experiments 
may involve different samples depending on the type of shift being simulated. We 
run different experiments, each targeting a specific type of dataset shift; within each 
experiment we simulate the presence, in a systematic and controlled manner, of dif-
ferent degrees of shift. When testing with different degrees of a given type of shift, 
for every such degree we randomly generate 50 test samples. In order to account 
for stochastic fluctuations in the results due to the random selection of a particu-
lar training set, we repeat each experiment 10 times. We carry out all the experi-
ments by using the QuaPy open-source quantification library (Moreo et al. 2021).9 
All the code for reproducing our experiments is available from a dedicated GitHub 
repository.10

Table 3  Dataset information for categories Books and ElEctronics, along with the prevalence for each 
different star rating

Instances

Books 7,813,813 0.093 0.071 0.094 0.160 0.582
ElEctronics 1,889,965 0.193 0.079 0.093 0.178 0.457

9 https:// github. com/ HLT- ISTI/ QuaPy
10 https:// github. com/ pglez 82/ quant_ datas etshi ft

https://github.com/HLT-ISTI/QuaPy
https://github.com/pglez82/quant_datasetshift
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In order to turn raw documents into vectors, as the features we use tfidf-weighted 
words; we compute idf independently for each experiment by only taking into 
account the 5000 training documents selected for that experiment. We only retain 
the words appearing at least 3 times in the training set, meaning that the number 
of different words (hence, the number of dimensions in the vector space) can vary 
across experiments.

As the evaluation measure we use absolute error (AE), since it is one of the most 
satisfactory (see Sebastiani 2020 for a discussion) and frequently used measures in 
quantification experiments, and since it is very easily interpretable. In the binary 
case, AE is defined as

For each experiment we report the mean absolute error (MAE), where the mean is 
computed across all the samples with the same degree of shift and all the repeti-
tions thereof. We perform statistical significance tests at different confidence lev-
els in order to check for the differences in performance between the best method 
(highlighted in boldface in all tables) and all other competing methods. All methods 
whose scores are not statistically significantly different from the best one, accord-
ing to a Wilcoxon signed-rank test on paired samples, are marked with a special 
symbol. Specifically, we use superscript † to indicate that 0.001 < p-value < 0.05 , 
while superscript ‡ indicates that 0.05 ≤ p-value; the absence of any such symbol 
thus indicates that p-value ≤ 0.001.

All the quantification methods considered in this study are of the aggregative type 
and are described in Sect. 3.3. In addition to these methods, we had initially also 
considered the Sample Mean Matching (SMM) method  (Hassan et  al. 2020), but 
we removed this method from the experiments as we found it to be equivalent to the 
PACC method (we give a formal proof of this equivalence in Appendix 1).

For the sake of fairness, underlying all quantification methods we use the same 
type of classifier. (All the quantification methods we use are aggregative, so all of 
them use an underlying classifier.) As our classifier of choice we use logistic regres-
sion, since it is a well-known classifier which also delivers “soft” predictions and is 
known to deliver reasonably well-calibrated posterior probabilities (these two char-
acteristics are required for PCC, PACC, DyS, and SLD).

Previous research  (Esuli et  al. 2021; Moreo and Sebastiani 2021; Esuli et  al. 
2022) has investigated whether calibrating a classifier trained by logistic regression, 
and underlying a quantification method, could bring about improved quantification 
accuracy. These works found improvements when the quantification method was 
SLD (see the results in Esuli et al. 2021) but no improvement for other quantifica-
tion methods (see the discussion in Footnote 19 of Moreo and Sebastiani 2021). We 
thus apply a calibration step (specifically, Platt’s scaling; see Platt 2000) only when 
SLD is the chosen quantification method, and no calibration for the other methods.

We optimise the hyperparameters of the quantifier following (Moreo and Sebas-
tiani 2021), i.e., minimising a quantification-oriented loss function (here: MAE) 
via a quantification-oriented parameter optimisation protocol; we explore the val-
ues C ∈ {0.1, 1, 10, 100, 100} (where C is the inverse of the regularization strength), 

(9)AE(p𝜎 , p̂𝜎) = |p𝜎 − p̂𝜎|
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and the values class_wEight ∈ {Balanced , None} (where class_wEight indicates the 
relative importance of each class), via grid search. We evaluate each configuration of 
hyperparameters in terms of MAE over artificially generated samples using a held-out 
stratified validation set consisting of 40% of the training documents. This means that we 
optimise each classifier specifically for each quantifier, and the parameters we choose 
are the ones that best suit this particular quantifier. Once we have chosen the optimal 
values for the hyperparameters, we retrain the quantifier using the entire training set.

The quantification methods used in this study do not have any additional hyperpa-
rameters, except for DyS that has two, i.e., (i) The number of bins used to build the 
histograms and (ii) the distance function. In this work we fix these values to (i) 10 
bins and (ii) The Topsœdistance, since these are the values that gave the best results 
in the work that originally introduced DyS (Maletzke et al. 2019).

5.3  Prior probability shift

5.3.1  Evaluation protocol

For generating prior probability shift we consider all the reviews from categories 
ElEctronics and Books. Algorithm 1 describes the experimental setup for this type 
of shift. For binarising the dataset we follow the approach described in Sect.  5.1, 
using a cut point of 3. We sample 5000 training documents from the dataset using 
prevalence values of the positive class with values ranging from 0 to 1, at steps of 
0.1. (Since it is not possible to generate a classifier with no positive examples or 
no negative examples, we actually replace pL = 0 and pL = 1 with pL = 0.02 and 
pL = 0.98 , respectively.) We draw test samples from the dataset varying, here too, 
the prevalence of the positive class using values in {0.0, 0.1, .., 0.9, 1.0} . In order to 
give a quantitative indication of the degree of prior probability shift in each experi-
ment, we compute the signed difference (pL − pU) rounded to one decimal, resulting 
in a real value in the range [−1, 1] ; to this respect, note that negative degrees of shift 
do not indicate an absence of shift, but indicate a presence of shift in which pU is 
greater than pL (for positive degrees, pU is lower than pL).

For this experiment the number of test samples used for evaluation amounts to 
11 × 11 × 50 × 10 = 60,500 for each quantification algorithm we test.



1692 P. González

1 3

Algorithm 1  Protocol for generating prior probability shift.

5.3.2  Results

Table 4 and Fig. 6 present the results of the prior probability shift experiments in 
the form of boxplots (blue boxes), where the outliers are indicated by black dots. In 
this case the SLD method stands out as the best performer, closely followed by DyS 
and PACC. These methods perform very well when the degree of shift is moder-
ate,11 while their performance degrades as this degree increases. On the other hand, 
CC and PCC are clearly the worst performers; the reason is that, as stated previ-
ously, CC and PCC naturally inherit the bias of the underlying classifier, so when 
the divergence between the distribution they are biased towards (i.e., the training 
distribution) and the test distribution increases, their performance tends to decrease. 
These results are in line with previous studies in the quantification literature such as 
Maletzke et al. 2019; Schumacher et al. 2021; Moreo et al. 2021; Moreo and Sebas-
tiani 2022, most of which has indeed focused on prior probability shift.

One interesting observation that emerges from Fig. 6 has to do with the stability 
of the methods. ACC shows a tendency to sporadically yield anomalously high lev-
els of error. Those levels of error correspond to cases in which the training sample 
is severely imbalanced ( pL = 0.02 or pL = 0.98 ). Note that, the correction imple-
mented by Eq. (4) may turn unreliable when the estimation of tpr itself is unreliable 
(this is likely to occur when the amount of positives is 2%, i.e., when pL = 0.02 ) 
and/or when the estimation of fpr is unreliable (this is likely to occur when the 
amount of negatives is 2%, i.e., when pL = 0.98 ). Yet another cause might include 
the instability of the denominator (this happens when tpr ≈ fpr ), which could, in 
turn, require clipping the output in the range [0, 1]. After analyzing the 100 worst 

11 Here and in the rest of the paper, when speaking of “high” or “low” degrees of shift we actually refer 
to the absolute value of this degree (e.g., a degree of shift of -1 counts as as a “high” degree of shift). 
This will be the case not only for prior probability shift but also for other types of shift.
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cases, we verified that in 36% of the cases involved clipping, in 46% of the cases the 
denominator turned out to be smaller than 0.05.

Note that, if these extreme cases were to be removed, the average scores obtained 
by ACC would not substantially differ from those obtained by other quantification 
methods such as PACC or DyS.

5.4  Global covariate shift

5.4.1  Evaluation protocol

For generating global covariate shift, we modify the ratio between the documents 
in category A (Books) and those in category B (ElEctronics), across the training 
data and the test samples. We binarise the dataset at a cut point of 3, as described 
in Sect.  5.1. We vary the prevalence � of category A (the prevalence of category 
B is (1 − �) ), in the training data ( �L ) and in the test samples ( �U ), in the range 
[0, 1] with steps of 0.1, thus giving rise to 121 possible combinations. For the sake 

Table 4  Results for prior 
probability shift experiments in 
terms of MAE

Each row corresponds to a given degree of shift, measured as 
(p

U
− p

L
) (rounded to one decimal)

CC ACC PCC PACC DyS SLD

−1.0 0.737 0.000 0.548 0.001 0.063 0.001
−0.9 0.479 0.049 0.439 0.044 ‡0.053 0.041
−0.8 0.355 0.088 0.352 0.077 0.045 0.049
−0.7 0.271 0.099 0.278 0.069 0.040 ‡0.041
−0.6 0.213 0.094 0.216 0.054 0.032 †0.034
−0.5 0.166 0.086 0.162 0.042 0.028 ‡0.029
−0.4 0.126 0.071 0.115 0.031 †0.024 0.023
−0.3 0.091 0.055 0.093 0.025 0.021 0.020
−0.2 0.064 0.041 0.085 0.023 0.019 0.017
−0.1 0.047 0.032 0.091 0.022 0.017 0.015
0.0 0.035 0.026 0.111 0.017 0.016 0.014
0.1 0.048 0.034 0.090 0.021 0.018 0.017
0.2 0.064 0.046 0.084 0.023 †0.019 0.018
0.3 0.092 0.063 0.089 0.025 0.022 0.020
0.4 0.127 0.077 0.112 0.029 0.026 0.022
0.5 0.167 0.089 0.160 0.036 0.030 0.024
0.6 0.213 0.096 0.213 0.045 0.035 0.025
0.7 0.272 0.095 0.276 0.053 0.043 0.027
0.8 0.355 0.081 0.351 0.058 0.053 0.030
0.9 0.478 0.052 0.440 0.039 0.062 0.029
1.0 0.742 0.020 0.551 0.002 0.076 0.016
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of a clear exposition, we present the results for different degrees of global covari-
ate shift, measured as the signed difference between �L and �U , resulting in a real 
value in the range [−1,+1] . We vary the priors of the positive class12 using the values 
{0.25, 0.50, 0.75} in both the training data and the test samples, in order to simulate cases 
of global pure covariate shift, where PL(Y) = PU(Y) , and global mixed covariate shift, 
where PL(Y) ≠ PU(Y) . Note that even if the global pure covariate shift scenario is particu-
larly awkward for a quantification setting (since the prevalence of the positive class in the 
training data coincides with the one in the test data), it is interesting because it shows how 

Fig. 6  Results obtained for prior probability shift; the error measure is MAE and the degree of shift is 
computed as (pU − pL) (rounded to one decimal)

12 Conditioning the sampling protocol to the class label distribution, as we do in Line 17 of Algorithm 2, 
might seem unnatural, since covariate shift does not depend on Y. However, we do this in order to simu-
late not the entire range of scenarios characterised by global covariate shift, but only the specific cases of 
it that are interesting for quantification purposes. In other words, the “sample of samples” we generate is 
not meant to be a random sample of all the samples characterised by global covariate shift, but one that 
well represents the type of samples characterised by global covariate shift that are interesting from the 
viewpoint of quantification. We thank Dirk Tasche for bringing this point to our attention.
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quantifiers react just to a mere change in the covariates. Algorithm 2 describes the experi-
mental setup for this type of shift.

For this experiment the number of test samples used for evaluation amounts to 
3 × 3 × 11 × 11 × 50 × 10 = 544,500 for each quantification algorithm we test.

Algorithm 2  Protocol for generating global covariate shift.

5.4.2  Results

We now report the results for the scenario in which the data exhibits global pure covari-
ate shift (see Tables 5, 6 and 7, where global pure covariate shift is represented by the 
columns with a grey background, and Figs. 7, 8 and 9). As can be expected, the big-
ger the degree of such shift, the worse the performance of the methods. Note that 
a degree of global pure covariate shift equal to 1 (resp., −1) means that the sys-
tem was trained with documents only from category A (resp., B) while the testing 
samples only have documents from category B (resp., A). On the other hand, low 
degrees of global pure covariate shift represent the situation in which similar val-
ues of �L and �U were used. The experiments show that the method most robust to 
global pure covariate shift is PCC, which is consistent with the theoretical results of 
Tasche  (2022). PCC is able to provide good results, beating the other methods con-
sistently, even when the degree of global pure covariate shift is high. On the other 
hand, methods like SLD, that show excellent performance under prior probability 
shift, perform poorly under high values of global pure covariate shift.
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The situation changes drastically when analysing the results for global mixed 
covariate shift (which in the tables are represented by the columns with a white 
background), i.e., when also P(Y) changes across training data and test data. In these 
cases, the performance of methods like PCC or CC (methods that performed very 
well under the presence of global pure covariate shift) degrades, due to the fact that 
these methods do not attempt any adjustment to the prevalence of the test data. In 

Table 5  Results for global covariate shift when p
L
= 0.5 in terms of MAE

Each row contains the results for a degree in covariate shift computed as (�L − �U) . Results are presented 
in three groups, depending on the prevalence used for the positive class in the test samples p

U
 . Columns 

with a grey background represent cases of of global pure covariate shift, in which P
L
(Y) = P

U
(Y)

Table 6  Results for global covariate shift when p
L
= 0.25 in terms of MAE

Each row contains the results for a degree in covariate shift computed as (�L − �U) . Results are presented 
in three groups, depending on the prevalence used for the positive class in the test samples p

U
 . Columns 

with a grey background represent cases of global pure covariate shift, in which P
L
(Y) = P

U
(Y)
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this case, methods designed to deal with prior probability shift, such as SLD, stand 
as the best performers. This is interesting, since this experiment represents a situa-
tion in which a change in the covariates happens along with a change in the priors, 
thus harming the calibration of the posterior probabilities on which PCC rests upon.

5.5  Local covariate shift

5.5.1  Evaluation protocol

For simulating local covariate shift we generate a shift in the class conditional distri-
bution of only one of the classes. In order to do so, categories A and B are treated as 
subclasses, or clusters, of the positive and negative classes. Figure 10 might help in 
understanding this protocol. The main idea is to alter the prevalence P(Y) of the test 
samples by just changing the prevalence of positive documents of one of the sub-
classes (e.g., of category A) while maintaining the rest (e.g., positives and negatives 
in B and the negatives of A) unchanged. Following this procedure, we let the class-
conditional distribution of the positive examples P(X|Y = 1) vary, while the class-
conditional distribution of the negative examples P(X|Y = 0) remains constant.

For this experiment, we keep the training prevalence fixed at pL = 0.5 , while 
we vary the test prevalence pU artificially. To allow for a wider exploration of 
the range of the prevalence values pU that can be achieved by varying only the 
number of positives in category A, we start from a configuration in which 2

3
 of the 

positives in the training set are from category A and the remaining 1
3
 are from cat-

egory B. Both categories contribute to the training set with exactly the same num-
ber of documents (2500 each, since the training set contains 5000 documents, as 

Table 7  Results for global covariate shift when p
L
= 0.75 in terms of MAE

Each row contains the results for a degree in covariate shift computed as (�L − �U) . Results are presented 
in three groups, depending on the prevalence used for the positive class in the test samples p

U
 . Columns 

with a grey background represent cases of global pure covariate shift, in which P
L
(Y) = P

U
(Y)
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before). The set of negative examples is composed of 1
3
 documents from A and 2

3
 

documents from B. In the test samples all these proportions are kept fixed except 
for the positive documents from category A, so that a desired prevalence value is 
reached by removing, or adding, positives of this category. Note that this process 
generates test samples of varying sizes. In particular, when the test size is equal 
to 500, the proportions of positive and negative documents, as well as the propor-
tion of documents from A and B, match the proportions used in the training set. 
Using this procedure we explore pU in the range [0.25, 0.75] at steps of 0.05 (see 
Algorithm 3).

Fig. 7  Results for global covariate shift with pL = 0.5 . The error measure is MAE and the degree of 
covariate shift is computed as (�L − �U) . Figures with a grey background represent cases of global pure 
covariate shift, in which PL(Y) = PU(Y)
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For this experiment the number of test samples used for evaluation amounts to 
11 × 11 × 50 × 10 = 60,500 for each quantification algorithm we test.

Fig. 8  Results for global covariate shift with pL = 0.25 . Error measure is MAE and the degree of covari-
ate shift is computed as (�L − �U) . Figures with a grey background represent cases of global pure covari-
ate shift, in which PL(Y) = PU(Y)
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Fig. 9  Results for global covariate shift with pL = 0.75 . Error measure is MAE and the degree of covari-
ate shift is computed as (�L − �U) . Figures with a grey background represent cases of global pure covari-
ate shift, in which PL(Y) = PU(Y)
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Algorithm 3  The protocol for generating local covariate shift.

5.5.2  Results

The results we have obtained for local covariate shift (orange boxes) are displayed in 
Fig. 11. For easier comparison, this plot also shows results for the cases in which the 
class-conditional distributions are constant across the training data and the test data 
(blue boxes), i.e., when the type of shift is prior probability shift.

Fig. 10  Conceptual diagram illustrating our local covariate shift protocol
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Consistently with the results of Sect.  5.3.2, most quantification algorithms (except 
for CC and PCC) work reasonably well (see the blue boxes) when the class-conditional 
distributions are invariant across the training and the test data. Instead, when the class-
conditional distributions change, the performance of these algorithms tends to degrade. 
This should come at no surprise given that all the adjustments implemented in the quan-
tification methods we consider (as well as in all other methods we are aware of) rely on 
the assumption that the class-conditional distributions are invariant. The exception to this 
are CC and PCC, the only methods that do not attempt to adjust the priors. What comes 
instead as a surprise is not only that the performance of CC and PCC does not degrade, 
but that this performance seems to improve (i.e., the orange boxes in the extremes are 
systematically below the blue boxes for CC and PCC). This apparently strange behav-
iour can be explained as follows. When pU ≪ pL , CC and PCC will naturally tend to 
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Fig. 11  Results for local covariate shift expressed in terms of MAE . Blue boxes represent the situation 
in which PL(X|Y) = PU(X|Y) while orange boxes represent the situation in which PL(X|Y) ≠ PU(X|Y) 
because PL(X|Y = 1) ≠ PU(X|Y = 1) . The degree of shift in the priors is shown along the x-axis and is 
computed as (pU − pL) rounded to two decimals
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overestimate the true prevalence. However, in this case, the positive examples in the 
test sample happen to mostly be from category B. Since the underlying classifier has 
been trained on a dataset in which the positives from category A were more abundant 
( 2
3
 ) than the positives from category B ( 1

3
 ), the classifier has more problems in classify-

ing positives from B than from category A. This has the consequence that the overesti-
mation brought about by CC and PCC is partially compensated (that is, positive exam-
ples from B tend to be misclassified as negatives more often), and thus the final p̂U 
gets closer to the real value pU . On the other side, when pU ≫ pL , CC and PCC will 
tend to underestimate p̂ . However, in this scenario positive examples mostly belong to 
category A, which the classifier identifies as positives more easily (since it has been 
trained on a relatively higher number of positives from A), thus increasing the value of 
p̂U and making it closer to the actual value pU.

A fundamental conclusion of this experiment is that, when the class-conditional 
distributions change, the adjustment implemented by the most sophisticated quanti-
fication methods can become detrimental. This is important since, in real applica-
tions, there is no guarantee that the type of shift a system is confronted with is prior 
probability shift, nor is there any general way for reliably identifying the type of shift 
involved. This experiment also shows how the bias inherited by CC and PCC can, 
under some circumstances, be “serendipitously” mitigated, at least in part. (We will 
see a similar example when studying concept shift in Sect. 5.6.)

5.6  Concept shift

5.6.1  Evaluation protocol

In order to simulate concept shift we exploit the ordinal nature of the original 
5-star ratings. Specifically, we simulate changes in the concept of “being posi-
tive” by varying, in a controlled manner, the threshold above which a review is 
considered positive. The protocol we propose thus comes down to varying the cut 
points in the training set ( cL ) and in the test set ( cU ) independently, so that the 
notion of what is considered positive differs between the two sets. For example, 
by imposing a training cut point of cL = 1.5 we are mapping 1-star to the negative 
class, and 2-, 3-, 4-, and 5-stars to the positive class. In other words, everything 
but strongly negative reviews are considered positive in the training set. If, at 
the same time, we set the test cut point at cU = 4.5 , we are generating a large 
shift in the concept of “being positive”, since in the test set only strongly positive 
reviews (5 stars) will be considered positive. For 5 classes there are 4 possible cut 
points {1.5, 2.5, 3.5, 4.5} ; the protocol explores all combinations systematically 
(see Algorithm 4).
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Algorithm 4  Protocol for generating concept shift. 

We use the signed difference (cL − cU) as an indication of the degree of con-
cept shift, resulting in an integer value in the range [−3, 3] ; note that (cL − cU) = 0 
corresponds to a situation in which there is no concept shift.

It is also worth noting that this protocol does not affect P(X), which remains 
constant across the training distribution and the test distribution. Conversely, var-
ying the cut point has a direct effect on P(Y), which means that by establishing 
different cut points for the training and the test datasets we are indirectly inducing 
a change in the priors. In order to allow for controlled variations in the priors, we 
depart from a situation in which all five ratings have the same number of exam-
ples, i.e, we impose p(Y⋆) = (0.2, 0.2, 0.2, 0.2, 0.2) onto both the training set and 
the test set. This guarantees that a change in a cut point c ∈ {1.5, 2.5, 3.5, 4.5} 
gives rise to a binary set with (positive) prevalence values in {0.2, 0.4, 0.6, 0.8} , 
which in turn implies a difference in priors (pL − pU) ∈ {−0.6,−0.4,… , 0.4, 0.6}.

For this experiment, the number of test samples used for evaluation amounts to 
4 × 4 × 50 × 10 = 8000 for each quantification algorithm we test.

5.6.2  Results

The results for our simulation of concept shift are shown in Fig.  12. The perfor-
mance of all methods decreases as the degree of concept shift increases, i.e., when 
cL < cU (resp., cL > cU ) all methods tend to overestimate (resp., underestimate) the 
true prevalence. That no method could fare well under concept shift was expected, 
for the simple reason that none of these methods has been designed to confront arbi-
trary changes in the functional relationship between covariates and classes. These 
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results deserve no further discussion, and are here reported only for the sake of com-
pleteness (we omit the corresponding table, though).

What instead deserves some discussion is the fact that concept shift might, 
under certain circumstances, lead to erroneous interpretations of the relative merits 
of quantification methods. This confusion might arise when the bias of a quantifier 
gets partially compensated by the variation in the prior resulting from the change in 
the concept. This situation is reproduced in Fig. 13, where we impose pL = 0.5 and 
pU = 0.75.13 Take a look at the errors produced by both methods when (cL − cU) = 0 , 
i.e., when cL = cU . Note that in this case, there is no concept shift, but there is prior 
probability shift. (Recall that we chose pL = 0.5 and pU = 0.75 for this experiment). 
We know that PCC tends to deliver biased estimators, while SLD instead does not. 
This is witnessed by the fact that PCC yields an error close to MAE=0.15 (it tends to 
underestimate the test prevalence), while SLD obtains a very low error instead; let us 

Fig. 12  Results for concept shift. The error measure is MAE and the degree of concept shift is computed 
as ctr − ctst

13 As a consequence of resampling, P(X) changes across the training and the test data.
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call this bias the “global” bias. As we separate the cut points, we introduce a form of 
bias (a “local” bias) that interacts with the global one. For instance, imagine we train 
our classifier with 1-star and 2-stars acting as negative labels and (3, 4, 5) acting as 
positive ones. Assume that in test we instead have (1, 2, 3) stars acting as the negative 
labels and only (4, 5) as the positives. In this case, the classifier will now tend to clas-
sify as positive the test examples with 3 stars. This local overestimation will partially 
compensate for the global underestimation. (An analogous reasoning applies in the 
other direction as well.) Note that such an improvement is accidental, and attributing 
any merit to the quantifier for this would be misleading.

5.7   A final note about our experiments

Unlike many other machine learning papers, which present experiments carried 
out on multiple datasets, we here use one single dataset. The reason is that for this 
research we need our dataset(s) to be (i) Structurally complex and (ii) Very large, 
and there are not many datasets around that fit our needs. The Amazon dataset of 
product reviews that we use here has the following characteristics, all required for 
our experiments: 

(1) All the datapoints (the product reviews) are all labelled according to two inde-
pendent dimensions at the same time, i.e., they are labelled according to the 
merchandise category the review is about (Books and ElEctronics are two such 
categories), and they are labelled according to an ordinal sentiment score (1 to 
5 stars). In particular, 

(a) The fact that the reviews are labelled according to different merchandise 
categories allows us to simulate covariate shift (see Sect. 5.4.1), by having 
the training set and the test set each contain reviews of categories Books 
and ElEctronics, but in different proportions.

Fig. 13  Results for concept shift with forced values for pL = 0.5 and pU = 0.75 . The error measure is 
MAE and the degree of concept shift is computed as (ctr − ctst)
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(b) The fact that the reviews are labelled according to an ordinal sentiment 
score allows us to simulate concept shift (see Sect. 5.6.1), by having the 
training set and the test set characterised by different thresholds (placed 
on the ordinal scale) between what is considered “positive” and what is 
considered “negative”.

(2) The fact that the dataset is large (about 800,000 datapoints) allows, whenever 
samples are extracted (with replacement) from it, to extract samples with a 
low probability / degree of overlap. For instance, only for the experiments of 
Sect. 5.4.1 a total of 544,500 test samples are extracted. If we had used a much 
smaller dataset, many test samples would substantially overlap with each other.

(3) The dataset is publicly available, which allows our experiments to be reproduced.

It is clear from the above that not many datasets have all these characteristics at the 
same time, and it would not have been easy to find others.

6  Conclusions

Since the goal of quantification is estimating class prevalence, most previous efforts 
in the field have focused on assessing the performance of quantification systems 
in situations characterised by a shift in class prevalence values, i.e., by prior prob-
ability shift; in the quantification literature other types of dataset shift have received 
less attention, if any. In this paper we have proposed new evaluation protocols for 
simulating different types of dataset shift in a controlled manner, and we have used 
them to test the robustness to these types of shift of several representative methods 
from the quantification literature. The experimental evaluation we have carried out 
has brought about some interesting findings.

The first such finding is that many quantification methods are robust to prior 
probability shift but not to other types of dataset shift. When the simplifying 
assumptions that characterise prior probability shift (e.g., that the class-conditional 
densities remain unaltered) are not satisfied, all the tested methods (including SLD, 
a top performer under prior probability shift) experience a marked degradation in 
performance.

A second observation is that, while previous theoretical studies indicate that PCC 
should be the best quantification method for dealing with covariate shift, our experi-
ments reveal that its use should only be recommended when the class label pro-
portions are expected not to change substantially (a setting that we refer to as pure 
covariate shift).

Such a setting, though, is fairly uninteresting in real-life applications, and our 
experiments show that other methods (particularly: SLD and PACC) are prefer-
able to PCC when covariate shift is accompanied by a change in the priors. How-
ever, even SLD becomes unstable under certain conditions in which both covari-
ates and labels change. We argue that such a setting, which we have called local 
covariate shift, shows up in many applications of interest (e.g., prevalence estima-
tion of plankton subspecies in sea water samples (González et al. 2019), or seabed 
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cover mapping (Beijbom et al. 2015), in which finer-grained unobserved classes are 
grouped into coarser-grained observed classes.

Finally, our results highlight the limitations that all quantification methods exhibit 
when coping with concept shift. This was to be expected since no method can adapt 
to arbitrary changes in the functional relationship between covariates and classes 
without the aid of external information. The same batch of experiments also shows 
that concept shift may induce a change in the priors that can partially compensate 
the bias of a quantifier; however, such an improvement is illusory and accidental, 
and it is difficult to envision clever ways for taking advantage of this phenomenon.

Possible directions for future work include extending the protocols we have 
devised to other specific types of shift that may be application-dependent (e.g., 
shifts due to transductive active learning  (Kottke et  al. 2022), to oversampling of 
positive training examples in imbalanced data scenarios (Moreo et al. 2016), to con-
cept shifts in cross-lingual applications), and to types of quantification other than 
binary (e.g., multiclass, ordinal, multi-label). The goal of such research, as well of 
the research presented in this paper, is to allow a correct evaluation of the poten-
tial of different quantification methods when confronted with the different ways in 
which the unlabelled data we want to quantify on differs from the training data, and 
to stimulate research in new quantification methods capable of tackling the types of 
shift that current methods are insufficiently equipped for.

The equivalence of SMM and PACC 

In this section we prove that the method Sample Mean Matching (SMM) proposed 
by Hassan et al. (2020) is equivalent to the method Probabilistic Adjusted Classify 
& Count (PACC) presented by Bella et  al. (2010). This equivalence between the 
two methods was already hinted at in (Castaño et al. 2023) but no formal proof was 
provided.

SMM fits in the DyS framework of Maletzke et al. (2019), replacing histograms, 
binning the posterior probabilities issued by a soft classifier s, with the mean of 
these posteriors, and adopting L1 as the dissimilarity function DS:

Solving for � when the L1 distance is equal to 0 we obtain

On the other hand PACC solves the following equation to compute p̂PACC:

Both Eqs. (11) and (12) are equal, as all their terms are equivalent:

(10)p̂SMM
𝜎

= argmin
0≤𝛼≤1

|(𝛼 �
x∈L⊕[s(x)] + (1 − 𝛼)�

x∈L⊖[s(x)]) − �
x∈𝜎[s(x)]|

(11)p̂SMM
𝜎

=
�

x∈𝜎[s(x)] − �
x∈L⊖ [s(x)]

�
x∈L⊕ [s(x)] − �

x∈L⊖[s(x)]
.

(12)p̂PACC
𝜎

=
p̂PCC
𝜎

− ̂fprs

̂tprs −
̂fprs
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