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ABSTRACT: The incorporation of a strong-interaction regime
within the approximate semilocal exchange−correlation functionals
still remains a very challenging task for density functional theory.
One of the promising attempts in this direction is the recently
proposed adiabatic connection semilocal correlation (ACSC)
approach [Constantin, L. A.; Phys. Rev. B 2019, 99, 085117]
allowing one to construct the correlation energy functionals by
interpolation of the high and low-density limits for the given
semilocal approximation. The current study extends the ACSC
method to the meta-generalized gradient approximations (meta-
GGA) level of theory, providing some new insights in this context.
As an example, we construct the correlation energy functional on
the basis of the high- and low-density limits of the Tao−Perdew−
Staroverov−Scuseria (TPSS) functional. Arose in this way, the TPSS-ACSC functional is one-electron self-interaction free and
accurate for the strictly correlated and quasi-two-dimensional regimes. Based on simple examples, we show the advantages and
disadvantages of ACSC semilocal functionals and provide some new guidelines for future developments in this context.

■ INTRODUCTION
The electronic structure calculations of quantum chemistry,
solid-state physics, and material sciences become enormously
simple since the advent of the Kohn−Sham (KS)1,2 density
functional theory (DFT).3 In DFT, the development of an
efficient yet accurate exchange−correlation (XC) functional,
which contains all the many-body quantum effects beyond the
Hartree method, is one of the main research topics since the last
couple of decades and continues to be the same in recent times.
The accuracy of the ground-state properties of electronic
systems depends on the XC functional approximation (density
functional approximation�DFA). The nonempirical XC func-
tionals are developed by satisfying many quantum mechanical
exact constraints4−7 such as density scaling rules of XC
functionals due to coordinate transformations,5,8−10 second
(and fourth) order gradient expansion of exchange and
correlation energies,11−17 low density, and high density limit
of the correlation energy functional,18−20 asymptotic behavior of
the XC energy density or potential,21−28 quasi-two-dimensional
(quasi-2D) behavior of the XC energy,29−32 and exact properties
of the XC hole.7,33−35

Different rungs of Jacob’s ladder36 classification of non-
empirical XC approximations are developed based on the use of
various ingredients, from the simple spin densities and their
gradients, until the occupied and unoccupied KS orbitals and
energies.37−43 The first rung of the ladder is the local density
approximations (LDA).1 Next rungs are represented by

semilocal (SL) functionals, such as generalized gradient
approximations (GGA)44,45 and meta-GGA.6,7,46−51 Higher
rungs are known as 3.5 rung XC functionals,52−58 hybrids and
hyper-GGAs,59−75 double hybrids,76−81 and adiabatic con-
nection (AC) random-phase approximation (RPA) like
methods and DFT version of the coupled-cluster
theory.13,31,39,40,82−91

Specifically, we recall that the AC formalism,92−98 used in
various sophisticated XC functionals,82,89,94−110 is based on the
coupling-constant (or interaction strength) integral formu-
la92,94−97
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where V̂ee is the Coulomb operator, U[n] is the Hartree energy,
Ψα[n] is the antisymmetric wave function that yields the density
n(r) and minimizes the expectation value ⟨T̂ + αV̂ee⟩, with T̂
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being the kinetic energy operator, and α is the coupling constant.
Equation 1 can be seen as the exact definition of the XC
functional, and it connects a noninteracting single particle
system (α = 0) to a fully interacting one (α = 1). Note that the α
→ 0 limit is known as the weak-interaction limit (or high-density
or rs → 0 limit, where rs is the local Seitz radius), where the
perturbative approach is valid. Thus, the well-known second-
order Görling−Levy perturbation theory (GL2)18−20,111 can be
applied in the weak-interaction limit, and Wα[n] can be
expanded as43

[ ] = [ ] + [ ] + ···W n W n W n0 0 0 (2)

where W0 = Ex and W0′[n] = 2Ec
GL2[n]. On the other hand, the

strong-interaction limit (or low-density or rs → ∞ limit) of
Wα[n] is given as43,101,112,113

[ ] = [ ] + [ ] + ···W n W n W n O p( ) , 3/4p1/2

(3)

where W∞[n] and W∞′ [n] have a highly nonlocal density
dependence, captured by the strictly correlated electrons (SCE)
limit,114−116 and their exact evaluation in general cases is a
nontrivial problem.

In particular, one of the successful attempts at practical
usability of the AC DFAs came through the interaction strength
interpolation (ISI) method by Seidl and co-work-
ers43,100,104,109,112,113,117−120 where the DFA formula is built
by interpolating between the weak- and strong-interaction
regimes. The α → ∞ limit is approximated by semilocal gradient
expansions (GEA) derived within the point-charge-plus-
continuum (PC) model.43,100,104,112 Based on this form, the
ISI has been tested for various applications.106,118,121 Also,
several modifications of the ISI have been sug-
gested101,113,119,122,123 as well as the PC model itself such as
the hPC124 or modified PC (mPC),110 which was found to be
more robust for the quasi-two-dimensional (quasi-2D) density
regime.

Recently based on the ISI formula, the adiabatic connection
semilocal correlation (ACSC) method was introduced,110

showing the alternative path of construction of semilocal
correlation energy functionals. The ACSC formula interpolates
the high- and low-density limits for the given semilocal DFA
directly, in contrary to the standard path where the interpolation
is done at the local LDA level and then corrected by gradient or
meta-GGA corrections.44,46 We recall that in ref 110,110 the
ACSC functional was built using the Perdew−Burke−Ernzerhof
(PBE)44 high-density formula and mPC model showing similar
or improved accuracy over its PBE precursor proving in the same
time the evidence for the robustness of ACSC construction.

Motivated by the progress in this direction, this paper extends
the ACSC method at the meta-GGA level and provides new
insights into this context.

In the following, we briefly recall some aspects related to
ACSC functional construction and investigate a few available
approximations for the high- and low-density regimes. Based on
that, we propose an extension of the ACSCmethod to the meta-
GGA level using the high- and low-density limits of the Tao−
Perdew−Staroverov−Scuseria (TPSS)46 DFA. Following that,
we apply ACSC correlation energy functionals to some model
systems (Hooke’s atom and H2 molecule) and real calculations
(the atomization energies of several small molecules) to show
some advantages and current limitations of ACSC functional
construction. Lastly, we conclude by discussing the possible
advances of the present construction.

■ THEORY
Background of the Adiabatic Connection Semilocal

Correlation (ACSC). Following ref 110, the ACSC correlation
energy per particle is given as (eq 15 of ref 110)
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The above expression represents a general form for the
correlation energy density derived from the ISI formu-
la43,100,104,109,112,113,117−120 with
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and where w0, w0′, and w∞, w∞′ denote the approximation for
energy densities for high- (or weak-interaction) and low-density
(or strong-interaction) limits, respectively. Considering the
accuracy of eq 4, it depends on three main aspects:

(i) The interpolation formula is used to define the wc,α(r)
integrand in eq 4. In ref 110 (and here eq 5), the ISI
interpolation formula was utilized to define ACSC. We
note, however, that for this choice, the Wα[n] contains a
spurious term proportional to α−1 in its strong-interaction
limit (α → ∞),112 which has been corrected in refs 101
and 115. In order, to be consistent with our previous work,
we sticked with the ISI formula. Nonetheless, other
possibilities also exist.101,113,119,122

(ii) The approximation for the α → ∞ limit. Several
possibilities exist, e.g., exact treatment by employing
SCE formulas (numerically expensive but feasible) or
much less time-consuming variants such as mPC,110

hPC,124 or the ones derived from semilocal DFA via the
procedure described in ref 112 Note that by choosing
different α → ∞ limits, one can incorporate in the ACSC
formula different physics, e.g., good performance for the
quasi-2D regime.

(iii) The approximation for the α → 0 limit. In principle, this
limit can be taken into account exactly by considering the
exact exchange (EXX) and GL2 limit.19,108,125 However,
evaluation of the GL2 correlation energy density on the
numerical grid would likely be computationally quite
expensive. Hence, in ref 110, the nonlocal contributions
have been substituted by semilocal high-density counter-
parts obtained from the PBE functional.44

In this work, we extend the ACSC DFA by considering all
input quantities at the semilocal (SL), meta-GGA level. For
instance, the w0(r) and w0′(r) approximations are constructed as
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using SL form of the GL2 correlation energy density (SL-
GL2),110 where τ(r) = ∑j=1

occ|∇ϕj(r)|2/2 is the KS non-
interacting kinetic energy density, with ϕj(r) being the one-
particle jth occupied KS orbital. We underline that the Laplacian
of the density (∇2n) contains information that is is already
encapsulated in τ,126 such that many meta-GGA XC functionals
do not consider ∇2n as an ingredient.

There are also two prime motivations behind the extension of
ACSC functionals to the meta-GGA level:

(i) Many of the SL-GL2 correlation energy functionals, such
as TPSS-GL2 (and all TPSS-like GL2 functionals) have
already been derived;59,127 thus, they can be easily applied
in the present construction. The quantitative comparison
of the accuracy of these SL-GL2 models with reference
second-order GL2 correlation energy data is reported in
ref 128 in Table S12.

(ii) The meta-GGA SL-GL2, such as TPSS-GL2 DFA, is one-
electron self-interaction free, giving exactly zero for the
hydrogen atom, which is not the case for PBE-GL2.

In the next section, we address the choice ofw∞(r) andw∞′ (r).
TPSS-ACSC Correlation Functionals Formula. To

construct ACSC meta-GGA DFA, we fix the w0(r) and w0′(r)
(where the energy density wα(r) is defined by Wα = ∫ dr wα(r))
in the form of TPSS exchange (w0(r) = n(r)ϵx

TPSS) and TPSS-
GL259 (w0′(r) = 2n(r)ϵc

TPSS‑GL2), respectively. In the case of
w∞(r) and w∞′ (r), the choice is not so simple due to various
variants available in the literature. As was noted before, the form
of w∞(r) and w∞′ (r) implies the incorporation of important
physics in the ACSC formula, i.e., the quasi-2D regime via the
mPC110 model or very accurate performance for weak and
strong-interaction regime via the hPC model developed
recently.124 However, both mPC and hPC are simple GGA-
level approximations of SCE formulas, which are not one-
electron self-interaction free.124 Therefore, the utilization of
these GGA models might impact the performance of ACSC
meta-GGA DFA. To overcome this limitation, one can develop
the meta-GGAmodel for the TPSS strong-interaction129 regime
as was done in appendix D in ref 112. Thus, for clarity of this
paper, we recall that for any approximate XC energy DFA (Exc

DFA

= Ex
DFA + Ec

DFA), the corresponding coupling-constant integrand
Wα

DFA can be derived from the following formula

[ ] = [ ] + [ ]W n n E n n E n n, ,
d

d
( , )DFA

x
DFA 2

c
DFA

,1/ ,1/

(9)

by considering the strictly correlated α → ∞ limit.
Thus, for the low-density limit of the TPSS functional, we

obtain the W∞
TPSS (eq 17) and W∞′TPSS (eq 18) expressions with

their corresponding energy densities w∞(r) and w∞′ (r),
respectively. The latter quantities incorporate all physically
meaningful features, i.e., canceling one-electron self-interaction
and proper behavior for the quasi-2D regime (shown later),
which was also the case for the mPC model.110 Based on the
above consideration, we construct the TPSS-ACSC correlation
functional using eq 5 with TPSS variants of w0, w0′ and w∞, w∞′
energy densities.

The final TPSS-ACSC formula diverges to −∞ when s → 0
(w0′ → −∞), (e.g., for the case of the uniform electron gas
(UEG) model) behaving in this limit as110
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which reveals the ACSCDFA accuracy for UEG (see also Figure
3 in ref 110 for the PBE-ACSC functional). On the other hand
for w0′ → 0, it gives
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w w
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c
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2
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3
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such that Ec
TPSS‑ACSC = 0 whenever Ec

TPSS‑GL2 = 0. The TPSS-GL2
correlation energy density vanish whenever τ = τW, and ζ = 1,
where τW is the von Weizsac̈ker kinetic energy density.130,131

Thus, for one-electron systems, where Ec
TPSS‑GL2 = 0, the TPSS-

ACSC correlation energy is exact, showing that the functional is
one-electron self-correlation free.

At this point, analysis of the behavior of the TPSS-ACSC
correlation energy is required. In Figure 1, we show the UEG

correlation energies per particle of the exact LDA132 (shown by
the exact line in Figure 1). We recall that for UEG, the reduced
gradient s = 0; thus, w0 reduces to LDA exchange energy density
and w0′ → −∞; thus, for the ACSC functional, we utilize the
ACSC limit for UEG given by eq 10. For comparison, we also
show Lee−Yang−Parr (LYP)133 and Tognetti−Cortona−
Adamo (TCA) correlation134−136 energy densities. One can
note that the ACSC formula is accurate in the low-density limit
(rs ≥ 20), while in the high-density limit (rs → 0), it diverges as
∼rs−1/2, thus faster than the exact behavior (∼ln(rs)). Never-
theless, in the high-density limit, the exchange energy dominates
over the correlation, such that this failure of the ACSC
correlation should be compensated by the proper choice of
the exchange functional part. This can be considered a drawback
of ACSC construction because it might lead to some issues with
a lack of compatibility between standard semilocal exchange
functionals and the ACSC correlation functionals (mutual error
cancellation effect). We will address this issue in the following.

Figure 1. Correlation energy per particle ϵc versus the bulk parameter

= ( )r
ns

3
4

1/3
, for the uniform electron gas. See the text for details of the

methods and exact reference curve.
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■ RESULTS AND DISCUSSION
We first test the accuracy of W∞

TPSS = ∫ dr w∞
TPSS(r) and W∞

TPSS =
∫ dr w∞

TPSS(r) expressions, which are reported in Table 1 for real
atoms. For comparison, we also present the data obtained for the
exact SCE method,17,114,115 PC, mPC, hPC, and PBE (W∞

PBE,
W∞′PBE) formulas from ref 112. In the case of W∞, the TPSS
approximation gives the best performance measured with
respect to (wrt) SCE values (even for Ar, Kr, and Xr data
reported recently17) being almost 3 times better than the one
obtained for a very accurate hPCmodel. This is partially because
the former correctly removes the one-electron self-interaction in
W∞

TPSS, which is taken into account in all GGA W∞
approximations. Nonetheless, even without hydrogen atom
contribution (reported in parentheses), the mean absolute
relative error (MARE) of TPSS W∞ presents the best
performance for this model (MARE = 0.44%), closely followed
by hPC (MARE = 0.48%) that are twice better than the original
PC variant.

In the case ofW∞′ the overall performance of the TPSS model
is worse than the one observed for hPC, being in line with the
results reported for PC. This can be due to the fact thatW∞′TPSS in
the slowly varying density limit does not recover correctly the
gradient expansion of the PC model. The problem lies in theH2
function (eq 18), which when t → 0 gives rise to the term

proportional to t6, in comparison to the PC model, which yields
here the term proportional t2. One important difference,
however, can be noted for the TPSS formula that for the H
atom, it correctly recovers the SCE value, which is not possible
by any GGA variant.

An additional assessment of all models is provided in Table 2
and Figure 2, where we present results obtained for Hooke’s
atom at different confinement strengths ω (see further text for
computational details). Turning first our attention to Table 2,
we see similar trends to those presented in Table 1 for all values
of ω where exact SCE data are available. Moreover, Figure 2
shows that in the small ω range (strong-interaction limit of the
Hooke’s atom) hPC and TPSS yield the best estimation of the
XC energy Exc = W∞ + 2W∞′ , being slightly better than those
obtained from the PC model, while the mPC and PBE methods
fail completely. Actually, mPC and PBE W∞ and W∞′ perform
very similarly in all investigated cases, giving rise to large errors.

Further, we perform the comparison ofW∞ andW∞′ behaviors
for all studied models for an infinite barrier model (IBM) quasi-
2D electron gas of fixed 2D electron density (rs2D = 4) as a
function of the quantum-well thickness L as was also done in ref
110. The quasi-2D is very useful for the XC functional
development, being the exact constraints in several modern
density functional approximations.6,137 Under a uniform density

Table 1. Values of W∞ and W∞′ for Several Atoms Obtained from Different Models and Using EXX Densitiesa

SCE PC hPC mPC PBE TPSS

W∞

H −0.3125 −0.3128 −0.3293 −0.4000 −0.4169 −0.3125
He −1.500 −1.463 −1.492 −1.671 −1.6888 −1.5122
Be −4.021 −3.943 −3.976 −4.380 −4.4203 −3.9803
Ne −20.035 −20.018 −20.079 −21.022 −21.2983 −19.9792
Ar −51.555 −51.5473 −51.6158 −53.2709 −53.9322 −51.3799
Kr −166.850 −167.3561 −167.4387 −170.3279 −172.0157 −166.7765
Xe −322.835 −324.5206 −324.6190 −328.6846 −331.3261 −323.3446
MARE (%) 0.78 (0.89) 1.18 (0.48) 8.64 (5.41) 10.36 (6.53) 0.38 (0.44)

W∞′
H 0 0.0426 0.0255 0.2918 0.243 0
He 0.621 0.729 0.646 1.728 1.517 0.728
Be 2.59 2.919 2.600 6.167 5.442 2.713
Ne 22 24.425 23.045 38.644 35.307 23.835
MARE (%) 13.71 3.05 130.67 104.94 10.10

aWe used atomic units. The results that agree best with SCE values114,115 are highlighted in bold (for Ar, Kr, and Xe, the SCE W∞ values are taken
from ref 17). The last line of each panel reports the mean absolute relative error (MARE) [for W∞ (in parentheses) and W∞′ we report the results
where H results are excluded]. The W∞′SCE reference data are reported with the same precision as in ref 115.

Table 2.W∞ andW∞′ Energies (in Ha) for Three Values of ω for Which Hooke’s Atom Has Analytical Solutions138 and Exact SCE
Reference Data Are Available108,a

SCE PC hPC mPC PBE TPSS

W∞

0.0365373 −0.170 −0.156 −0.167 −0.191 −0.191 −0.170
0.1 −0.304 −0.284 −0.303 −0.344 −0.344 −0.308
0.5 −0.743 −0.702 −0.743 −0.841 −0.843 −0.754
MARE (%) 6.78 0.70 12.90 12.98 0.96

W∞′
0.0365373 0.022 0.021 0.021 0.060 0.053 0.026
0.1 0.054 0.054 0.053 0.146 0.130 0.062
0.5 0.208 0.215 0.208 0.562 0.501 0.240
MARE (%) 2.64 2.13 171.10 139.81 14.70

aThe last line of each panel reports the mean absolute relative error (MARE). The bold numbers indicate the most accurate values corresponding
to the reference data.
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limit to the quasi-2D limit, density behaves as nλ
z(x, y, z) = λn(x,

y, λz) and the system approaches the 2D limit when λ → ∞. In
this limit, the XC energy is finite and negative, i.e.,
limλ→∞Exc[nλ

z(x, y, z)] > −∞. We report this in Figure 3. One

can note that PC and hPC models change signs even for a mild
quasi-2D regime. This feature is not allowable because it can
lead to nonphysical positive correlation energy or total failure of
ISI or ACSC correlation energy expressions in quasi-2D
regimes. On the other hand, the mPC, PBE, and TPSS W∞
andW∞′ give correct behavior for a whole range of quantum-well
thickness L.

A brief summary of all important features of strong-interaction
models is given in Table 3. One can note that TPSSW∞ andW∞′
reproduce reference SCE data with quite a good accuracy and
also some other important features, e.g., good performance in
the quasi-2D regime, removing one-electron self-interaction.
This possibly indicates that the description of all nonlocal
features of the SCE model can be done only by the utilization of

nonlocal ingredients such as τ. This is the first important finding
of the present study.

Now, let us turn our attention to the numerical performance
of the TPSS-ACSC functional itself. In Table 4, we report the

correlation energies for small atoms and molecules obtained
with TPSS-ACSC andTPSS functional energy expression. In the
case of atoms, the calculations are performed using theHartree−
Fock (HF) analytic orbitals of Clementi and Roetti.143 For
molecules, we have performed the HF calculations in the
ACESII144 program using the uncontracted cc-pVTZ142 basis
sets and geometries taken from refs 40 and 41.We recall that the
utilization of self-interaction free HF orbitals allows us to test the
error specifically related to the functional construction itself,
namely, the functional-driven error.145 As was shown in ref 146
the utilization of HF densities can sometimes lead to the

Figure 2. Comparison of the leading term of the XC energy (Exc =W∞
+ 2W∞′ ) in the strong-interaction regime of Hooke’s atom calculated
using different models with FCI data.128

Figure 3. Comparison of W∞ (solid line) and W∞′ (dashed line)
behaviors for an IBM quasi-2D electron gas of fixed 2D electron density
(rs2D = 4) as a function of the quantum-well thickness L. Also shown is
the exact exchangeW0. PC andmPC are obtained from PBE, and results
are taken from ref 110. For PBE, theW∞ andW∞′ expressions are from
ref 112. For TPSS,W∞ andW∞′ expressions are given in eqs 17 and 18,
respectively.

Table 3. Brief Summarization of Properties of w∞(r) and
w∞′ (r) from Various Semilocal Models

PC43,112 mPC110 hPC124 PBE112 TPSS129

level of theory GEA GGA GGA GGA meta-GGA
accurate for the
strictly correlated
regime

√ × √ × √

quasi-2D regime × √ × √ √
self-consistent
calculations

× √ √ √ √

one-electron
self-interaction free

× × × × √

Table 4. TPSS and TPSS-ACSC Correlation Energies (mHa)
Divided by the Number of Electrons (Ne) for 10 Atoms
(Computed Using Hartree−Fock (HF) Analytic Orbitals and
Densities139−141) and Eight Molecules (Computed Using
Hartree−Fock Orbitals and Densities Obtained with
Uncontracted cc-pVTZ142 Basis Sets)c

atoms Ne TPSS TPSS-ACSC refs 139−141

H 1 0.0 0.0 0
He 2 −21.5 −20.2 −21
Li 3 −16.5 −15.9 −15.1
Be 4 −21.7 −20.8 −23.6
N 7 −26.5 −25.9 −26.9
Ne 10 −35.4 −35.3 −39.1
Ar 18 −39.5 −39.8 −40.1
Kr 36 −49.2 −49.9 −57.4
Zn 30 −47.0 −47.8 −56.2
Xe 54 −54.1 −55.3 −57.2
MAEatm 2.6 2.5
moleculesa Ne TPSS TPSS-ACSC refb

H2 2 −21.1 −19.9 −19.8
LiH 4 −21.5 −20.2 −18.5
Li2 6 −21.0 −20.0 −17.9
H2O 10 −33.2 −33.1 −32.9
NH3 10 −31.9 −32.1 −30.6
HF 10 −34.3 −34.1 −33.7
CO 14 −32.4 −32.4 −34.0
N2 14 −32.7 −32.1 −30.6
MAEmol 1.7 1.2

aThe geometries have been taken from refs 40 and 41. bCorrelation
energies obtained at CCSD(T) with the uncontracted cc-pVTZ level
of theory. cThe bold numbers indicate the most accurate values
corresponding to the reference data.
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worsening of predictions of DFAs or improving them for the
wrong reasons. This could happen in the cases where density-
driven error gives a significant contribution not canceled totally
by applying the HF densities. In these cases, utilization of more
accurate, correlated densities is required.146 However, in most
semilocal DFAs, the total error is predominated by functional-
driven error, meaning that HF densities are sufficiently accurate
to perform such analysis.

As noted before, both considered correlation functionals are
one-electron self-interaction free, which is visible in the case of
the H atom. In most cases, TPSS-ACSC performs in line with its
TPSS counterpart, indicating that the correlation effects are well
represented in the ACSC energy expression. To visualize the
correlation densities, in Figure 4, we show a comparison

between ϵc
TPSS, ϵc

TPSS‑GL2, and ϵc
TPSS‑ACSC for the Ar atom.

Whenever s is small, ϵc
TPSS‑GL2 starts to depart from ϵc

TPSS,
diverging when s = 0. However, ϵc

TPSS‑ACSC is well-behaved
everywhere.

As to the molecules, we note that TPSS-ACSC performs very
well for the majority of systems, being slightly better than the
TPSS functional. This again confirms the robustness of the
correlation functional construction.

In Figure 5, we report the relative error (RE) on XC energy
computed for the two-electron Hooke’s atom model for various
values of confinement strength ω (ω ∈ [0.03, 1000]). The errors
are computed with respect to full configuration interaction
(FCI) results from ref 128. The calculations have been
performed using an identical computational setup as in our
previous study49,128,147 using EXX reference orbitals. We recall
that for small values of confinement strength ω, the system is
strongly correlated, whereas for large values of ω, we enter a
weak-interaction regime. Thus, the model provides an excellent
tool for testing the functional performance in these two regimes.
We underline that in all following calculations, all TPSS-like
correlation functionals have been combined with the TPSS
exchange energy functional in order to obtain XC energies.

For medium and large values of ω, the TPSS and TPSS-ACSC
functionals perform very similarly, giving in the weak interacting
region a very small relative error (RE) similar to those of exact
GL2 and ISI XC functionals. In a strong-interaction regime, in
turn, the TPSS-ACSC improves over its TPSS precursor. We

note that in the latter regime, the TPSS-ACSC functional should
recover, in principle, the ISI functional data due to the inclusion
in both energy expressions theW∞ andW∞′ in the form given by
eqs 17 and 18. Although qualitatively they behave very similarly,
there is a large quantitative difference between these two curves.
This is most probably related to the significant impact of the
GL2 term, which enters both formulas. We recall that the ISI
formula utilized the exact GL2 energy expression, whereas
TPSS-ACSC approximated SL variant. Although they both
diverge when ω tends to zero, the origin of that behavior is
different. The exact GL2 energy diverges due to closing the
highest occupied molecular orbital−lowest unoccupied molec-
ular orbital (HOMO−LUMO) gap in this regime, whereas
TPSS-GL2 due to vanishing reduced gradient, which leads to a
much faster divergence. This feature of TPSS-GL2 energy
expression governs the behavior of TPSS-ACSC DFA in a small
ω regime. Thus, we might conclude that the quantitative
difference between ISI and TPSS-ACSC DFAs comes mainly
from the inaccuracy of the SL-GL2 formula used in the later
expression.

Now we turn attention to another two-electron example
where we may encounter a strong-interaction limit, namely, the
potential energy surface for the dissociation of the H2 molecule,
in a restricted formalism,149 which is one of the main DFT
challenges.149−151 This is reported in Figure 6. All energies were
obtained using EXX orbitals and densities. We want to underline
that restricted HF density could give rise to substantial errors in
the midbond region in the cases when the H2 molecule is largely
stretched. As pointed out previously, the functional-driven error
dominates most of the semilocal DFAs. Thus, the utilization of
HF densities still gives a valid picture of the performance of
semilocal DFAs for the whole range of distances of H2.

One can note that, in general, the TPSS-ACSC functional
performs very similarly to TPSS, especially near equilibrium
distance. More visible differences between these two DFAs can
be seen for larger distances R/R0 > 3. Asymptotically, the TPSS-
ACSC energy goes almost to the same value as the ISI method,

Figure 4. Correlation energy per particle ϵc versus the radial distance
from the nucleus r, for the Ar atom (computed using Hartree−Fock
analytic orbitals and densities139−141). In the inset, we show the
reduced gradient = | |s n

k n2 F
.

Figure 5. Relative error on XC energies of harmonium atoms for
various values of ω computed at @EXX orbitals for several functionals
using the computational setup from ref 128. The errors have been
computed with respect to FCI data obtained in the same basis set.128,148

For all TPSS-like results, the results have been obtained together with
the TPSS exchange energy functional. The GL2 and ISI(TPSS) XC
correlation results are obtained with the exact GL218 formula combined
with EXX energy expression. The ISI formula utilizesW∞ andW∞′ given
by eqs 17 and 18. Exact ISI data are taken from ref 108.
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with eqs 17 and 18 employed to describeW∞ andW∞′ . This is a
very interesting finding, possibly suggesting the dominant role of
the strong-interaction limit (eq 10) for large separation of
hydrogen atoms. We note, however, that the TPSS-GL2 total
energy gives much more stable results in the asymptotic region
in comparison to the exact GL2 curve, which diverges due to the
closing HOMO−LUMO gap. This indicates that the proper
behavior investigated here ISI and TPSS-ACSC DFAs have a
different origin. In the former, the exact GL2 diverges (EGL2 →
−∞), leading in the asymptotic limit to Exc

ISI → W∞ + 2W∞′ (1 −
1/q ln(1 + q)) with q = (Ex − W∞)/W∞′ .118,124 In the latter, in
turn, the asymptotic limit is governed rather by the mutual error
cancellation effect in the TPSS-ACSC energy expression. This is
due to the fact that TPSS-GL2 energy expressions do not diverge
for large R/R0, meaning that at the asymptotic region, eq 10 do
not hold. One possible way to recover eq 10 within the TPSS-
ACSC formula could be realized via proper incorporation of the
local gap model152−154 within the SL-GL2 formula.

Let us focus on self-consistent results (@SCF) obtained
within the generalized KS (gKS) scheme. As an example, we
report in Table 5 AE6155,156 atomization energies of six small
size molecules, obtained using SCF orbitals and densities. One
can note that the TPSS-ACSC functional, in general, gives
results that are twice worse (MAE = 18.4 kcal/mol) than for the
TPSS counterpart, which yields an MAE of 7.6 kcal/mol. The
same trend for the AE6 benchmark occurs when we feed the
TPSS-ACSC and TPSS total energy expressions with HF
orbitals. This indicates the following things:

• The major part of the error for the TPSS-ACSC
functional is related to functional-driven error.145 This
is most possibly related to the ACSC model itself, which
was not designed to be accurate in the high-density limit
where most of the chemical application takes place.

• Because both TPSS and TPSS-ACSC utilize the same
semilocal TPSS exchange, the much larger error observed
in the latter might suggest the lack of compatibility
between exchange and correlation functionals (there is no
error cancellation effect). The correlation energies
themselves are quite accurate as shown in Table 4. This
might indicate that the correct behavior of the TPSS-
ACSC functional can be restored by proper design of the
compatible exchange functional.

To test this possibility, we have performed ad hoc
modification of the TPSS exchange functional46 by calibration
of the second-order gradient expansion parameter (μ = 0.235).
We note that in general, this parameter might vary based on the
nature of the localized (such as atoms) or delocalized systems
(solids). At this point, using μ = 0.40, we have observed a
significant reduction of MAE for AE6 obtained at @SCF
densities to 6.63 kcal/mol.

Finally, the performance of the constructed functionals is also
benchmarked for other molecular test cases such as atomization
energies, barrier heights and weeks, and covalent interactions.
These results are reported in Table 6. A noticeable improvement
is observed from TPSS-ACSC (μ = 0.40) than from TPSS-
ACSC, especially for atomization energies. Interestingly, in
other cases, TPSS-ACSC performs slightly better or similarly to
TPSS-ACSC (μ = 0.40). This indicates that some more

Figure 6. Total energy of the stretched H2 molecule as calculated with
the various methods. The insets present the same data around the
equilibrium distance (R/R0 = 1) and large R/R0 > 10 values.

Table 5. AE6 Atomization Energies (in kcal/mol) Computed
Using Self-Consistent (@SCF) and Hartree−Fock (@HF)
Orbitals and Densities, and TPSSx Semilocal Exchange and
TPSS or TPSS-ACSC Correlation Functionalsa

TPSS@
SCF TPSS-ACSC@SCF

TPSS-ACSC@SCF
(μ = 0.40) ref 156

SiH4 334.2 337.9 332.0 323.1
SiO 187.1 189.4 179.3 191.5
S2 109.0 114.6 106.2 101.9
C3H4 707.8 724.0 699.8 701.0
C2H2O2 634.1 648.8 619.0 630.4
C4H8 1155.8 1182.8 1141.6 1143.4
MAE 7.6 18.4 6.6

TPSS@
HF TPSS-ACSC@HF

TPSS-ACSC@HF
(μ = 0.40) ref 156

SiH4 331.9 337.0 332.6 323.1
SiO 179.7 182.2 173.1 191.5
S2 103.5 109.5 101.5 101.9
C3H4 702.0 719.9 698.4 701.0
C2H2O2 621.1 637.2 610.3 630.4
C4H8 1148.3 1179.0 1142.8 1143.4
MAE 6.2 15.3 8.5

aThe mean absolute error (MAE, in kcal/mol) is shown in the last
row. The def2-QZVP basis set is used. All calculations are performed
using the Q-Chem code.157 The bold numbers indicate the most
accurate values corresponding to the reference data.

Table 6. Mean Absolute Errors (MAEs in kcal/mol) for the
Benchmark Molecular Tests Obtained Using Different
Methodsa

TPSS TPSS-ACSC TPSS-ACSC (μ = 0.40)

G2/148b 5.5 15.7 7.8
BH6c 8.2 8.3 8.4
HTBH38d 7.7 8.3 7.1
NHTBH38d 9.2 9.2 9.1
CT7e 2.0 1.7 1.1
WI7e 0.24 0.26 0.12
S22f 3.4 4.1 5.5

aAll calculations are performed self-consistently using a def2-QZVP
basis set with the Q-Chem code.157 bAtomization energies of 148
molecules.158 cSix barrier heights.156 d38 hydrogen (HTBH38) and
38 nonhydrogen bonded reaction barrier heights (NHTBH38).159
eSeven charge transfer molecules, and seven weekly interacting test
sets.160 f22 noncovalent interacting systems.161
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sophisticated modification of the TPSS exchange functional is
required in order to improve the accuracy of the method for all
benchmarked cases. One may note that for CT7, W17, and S22,
we do not include the dispersion correction, as the inclusion of a
functional specific dispersion interaction is beyond the scope of
the present paper.

Conclusions. In this work, we have constructed a semilocal
meta-GGA correlation energy functional, based on the ACSC
method proposed in ref 110. The correlation functional,
denoted as TPSS-ACSC, interpolates the high- and low-density
limit of the popular TPSS correlation energy functional showing
some direction on how to incorporate a strong-interaction
regime within the approximate, semilocal exchange−correlation
formula.

The new correlation TPSS-ACSC functional is nonempirical,
one-electron self-interaction free accurate for small atoms and
molecules. We provide a careful assessment of the TPSS-ACSC
functional base on some model systems (the uniform electron
gas, Hooke’s atom, stretched H2 molecule) and real-life
calculations (atomization energies) showing some advantages
and disadvantages of ACSC construction. From this broad
perspective, we can conclude that, although the ACSC method
holds promise for proper description of a strong-interaction
regime, it is still in its infancy, which implies that there is still
much space for improvement. The most important conclusions
of this study are as follows:

• The strong-interaction limit obtained from the semilocal
TPSS functional formula (W∞

TPSS and W∞′TPSS) reproduces
quite well reference SCE data. Moreover, both possess
some other important features, e.g., good performance in
the quasi-2D regime and removing one-electron self-
interaction. Thus, both formulas could be effectively
applied in the construction of ACSC and ISI-like
formulas.

• Although our numerical tests suggest that the strong-
interaction limit of semilocal TPSS-ACSC correlation is
well represented, the semilocal GL2 part may need some
amendment (Hooke’s atom, stretched H2 molecule
cases), e.g., via proper incorporation of the local gap
model.152−154

• In order to improve the accuracy of the TPSS-ACSC XC
functional, it must be combined with the compatible
exchange functional leading to a much better balance in
the XC term (better mutual error cancelation effect). As
was shown the ad hoc modification of TPSS exchange
gives some hints in that direction.

Some of these new developments in the ACSC context will be
addressed in a future study.

■ DETAILS OF THE TPSS-ACSC CORRELATION
FUNCTIONAL

Here, we summarized the expressions of energy densitywα of eqs
4−7, which is defined by Wα = ∫ d3r wα(r). Thus, one required
following energy densities w0(r), w0′(r), w∞(r), and w∞′ (r) to
calculate the ACSC correlation.

We take in the following expressions:
(i) First, w0(r) = n(r) ϵxTPSS(r), where ϵxTPSS(r) is the TPSS

exchange energy per particle46 given by

=
= + +
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with κ = 0.804. See ref 46 for the details of the TPSS
exchange enhancement factor (FxTPSS).

(ii) Second, w0′(r) = 2n(r)ϵcTPSS‑GL2, where ϵc
TPSS‑GL2 is the

Görling−Levy second-order limit of the TPSS correlation
energy46 per electron, which is given by59
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In eq 14, ϵc
PBE‑GL2 is the Görling−Levy limit of the PBE

correlation energy per electron. It is obtained by replacing
λr with r in the λ → ∞ uniform density scaling limit of the
PBE correlation energy per electron and has the
expression
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where γ = (1 − ln 2)/π2, ϕ(ζ) = 1/2[(1 + ζ)2/3 + (1 −
ζ)2/3], s = |∇n|/2nkF is the reduced density gradient, kF =
(3π2n)1/3, and χ = (β/γ)c2e−ω/γ ≈ 0.72161, where c =
(3π2/16)1/3, β = 0.066725, and ω = 0.046644.

The spin-dependent function ϵc̃,σ
PBE‑GL2 is defined as
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The function C(ζ, ξ) is the spin-dependent function,
where ζ is the spin-polarization and ξ = |∇ζ|/2kF.

(iii) Third, in the case of TPSS XC functional, the W∞ is
derived as
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(iv) Fourth and finally, W∞′ for the TPSS functional reads
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where d1(ζ) = 1.5 (spin-independent) was fixed using the
same reasoning as in ref 112 and Ex

TPSS[n↑, n↓] is the spin-
resolved TPSS exchange.46 H1 and H2 are the same as
given by eqs D11 and D12 of ref 112 C(ζ, ξ) is given in eq
14 of ref 46. We recall that W∞

TPSS[n↑, n↓] was already
reported in ref 129. However, the expression ofW∞′TPSS[n↑,
n↓] can be obtained in a similar fashion to eq D16 of
PKZB expression.112 For the details of the parameters and
terms, see ref 112 (for d0(ζ), d1(ζ), and d1(1)) and ref 46
(for C(ζ, ξ)). One may note that the expressions of TPSS
(given in this paper) differ from PKZB (given in ref 112)
from their correlation point of view.
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