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Energetics and quantumness 
of Fano coherence generation
Ludovica Donati 1,2,3, Francesco Saverio Cataliotti 1,2,3* & Stefano Gherardini 1,2*

In a multi-level quantum system Fano coherences stand for the formation of quantum coherences due 
to the interaction with the continuum of modes characterizing an incoherent process. In this paper we 
propose a V-type three-level quantum system on which we certify the presence of genuinely quantum 
traits underlying the generation of Fano coherences. We do this by determining work conditions 
that allows for the loss of positivity of the Kirkwood-Dirac quasiprobability distribution of the 
stochastic energy changes within the discrete system. We also show the existence of nonequilibrium 
regimes where the generation of Fano coherences leads to a non-negligible excess energy given by 
the amount of energy that is left over with respect to the energy of the system at the beginning of 
the transformation. Excess energy is attained provided the initial state of the discrete system is in 
a superposition of the energy eigenbasis. We conclude the paper by studying the thermodynamic 
efficiency of the whole process.

Keywords Fano coherence, Quantum photocell, Quantum thermodynamics, Work extraction enhancement, 
Thermodynamic efficiency

Three-level systems are a cornerstone model to study a plethora of different quantum phenomena, especially in 
the field of quantum optics and atomic  physics1,2. Depending on the system’s layout, this model takes into account 
the presence of coherent superposition of either the lower or upper states in �-type or V-type configuration, 
respectively. For instance, the �-type configuration has been used in the analysis of the interaction between two 
coherent radiation modes and two optical atomic transitions, during which the occurrence of quantum inter-
ference in absorption leads to population trapping in a superposition state that does not interact with the laser 
 fields3–5. The phenomenon, identified as Coherent-Population Trapping (CPT), causes alterations in the optical 
properties of the medium. Specifically, the absorption profile for one field undergoes modification due to the 
presence of the other field, making the medium electromagnetically-induced  transparent6,7. In this scenario the 
state of the quantum system changes coherently being driven by a coherent (laser)  field17.

Even more remarkable is the alternative mechanism of inducing quantum coherence by means of inco-
herent sources such as a broadband laser or a thermal source, as well as interactions with the surrounding 
 environment8,9. These sources are distinguished by a continuum of modes, as opposed to a single coherent mode 
of a laser source. Since the 1990s, there has been a growing interest in generating quantum coherence through 
incoherent processes, such as spontaneous emission and incoherent pumping. Several studies concerning the 
way a system can interact with vacuum modes, arising during the process of spontaneous emission, have prolif-
erated as detailed later. The primary focus of these investigations was to elucidate the interference phenomena 
that stem from the existence of multiple and closely spaced emission pathways, leading to a shared ground level 
within a three-level V-type system. The interference can manifest as quantum beats in the emission radiation 
 intensity1,10, as population  inversion11, and as the emergence of dark lines and narrower linewidths in the spec-
trum of spontaneous  emission12–14 or even its  quenching15.

Gaining control over the properties of the fluorescence spectrum is difficult when relying solely on the inter-
ference of two decay channels. However, the introduction of an additional incoherent mechanism can enhance 
flexibility in selecting control parameters with a higher degree of freedom, without degrading the coherence 
of the quantum system as one might  expect16,17. An example of this incoherent mechanism can be given by an 
external pumping from a broadband radiation source that simultaneously drives two near degenerate states in a 
three-level system. Interestingly, the combination of incoherent pumping and spontaneous emission results in 
the formation of Fano coherences or interferences, which can be stationary or quasi-stationary. These coherences 
emerge from the interaction between discrete atomic energy levels and the continuum of modes associated with 
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the two incoherent  processes18–21. The resilience of coherences under the aforementioned “noisy” conditions 
needed for their generation, which can be achieved also in �-type  systems18,22,23, has particular significance 
for systems in contact with thermal reservoirs, such as quantum heat  engines24, or with thermal radiation, as 
customary in photo-conversion  devices25. In particular, in the latter case, Svidzinsky et al.25 theoretically demon-
strate that Fano interferences might enable the mitigation of spontaneous emission, thereby reducing radiative 
recombination phenomena. To show this, the photo-conversion devices (photocell) is modeled with a V-type 
three-level system driven by incoherent light source, wherein the excited states represent conduction band states 
decaying into a common valence band state. Thus, quantum coherence between the excited states of the model 
would theoretically lead to an increase in extractable current from the device. Consequently, this enhancement 
would boost the output power and conversion efficiency.

Despite extensive research conducted on the topic and evident technological applications, an experiment 
proving the existence of Fano coherences produced by the interplay of incoherent pumping and spontaneous 
emission is still missing as far as we know. Currently, the atomic platform stands as the most suitable candidate 
for such measurements, given its capability to finely adjust the parameters that define a three-level V-type system. 
 In20 and subsequently  in21, a proposal was outlined for an experiment on a system comprising beams of Calcium 
atoms excited by a broadband polarized laser within a uniform magnetic field. Moreover, in a magneto-optical 
trap of Rubidium atoms, enhanced beat amplitudes due to the collective emission of light, akin to Fano coher-
ences due to the interaction with the vacuum modes, have been recently detected  in26.

Our paper explores the influence of quantum coherence in a V-type three-level system with optical transitions 
subjected to a incoherent light source. Specifically, we are going to investigate a system featuring near degenerate 
upper levels, consistent with prior  studies19–21, yet deviating  from17,25. This framework indeed aims to replicate 
a more realistic system, akin to those achievable in atomic platforms. However, we maintain the same formal-
ism for modelling the dynamics, namely a quantum Markovian master equation in the Schrödinger picture. 
Particular interest will be devoted to energetic aspects behind the generation of Fano coherences in the V-type 
three-level system. In this context:

1. We aim to certify that the generation of Fano coherences has genuinely quantum traits. We attain it by 
observing the loss of positivity (i.e., negative real parts or even non-null imaginary parts) of the Kirkwood-Dirac 
quasiprobability distribution of the system energies [section “Quasiprobabilities”]. The latter are evaluated, 
respectively, at the initial and final times of the transformation under scrutiny that gives rise to Fano coherences 
[see section “Model”].

2. We are going to optimize both the initial quantum state of the three-level system (before the latter interacts 
with the light source) and the parameters of the system, including the coupling strength with the light field, such 
that the non-positivity of some quasiprobabilities is enhanced. This aspect is doubly important: from the one 
hand, we can determine under which conditions Fano coherence are generated from a process with pronounced 
genuinely quantum traits; from the other hand, it can lead to a thermodynamic advantage. In fact, in quantum 
systems subjected to a work protocol, the presence of negativity (i.e., some quasiprobabilties have negative real 
parts) is a necessary condition for enhanced work  extraction38–40. Here, we will study to what extent the process 
generating Fano coherences (in our case-study, a three-level system illuminated by incoherent light source) can 
be employed for energy-conversion purposes. Specifically, we are going to compute the amount of energy in 
excess with respect to the initial condition, within the framework outlined in sections “Model” and “Quantum-
ness certification”, by looking for the parameters’ values that minimizes (with sign) the average difference of the 
internal energy variation inside the quantum system, in-between the initial and the current times in which the 
thermodynamic transformation is applied. In this regard, notice that if a system subjected to a thermodynamic 
transformation exhibits on average a negative difference of the internal energy variation, then the resulting excess 
energy could be exploited as extractable work, provided a load or a storage system is appropriately designed. In 
the perspective of such a goal, we will identify the range of parameters values that allow for excess energy entailed 
by negativity. We conclude the paper by discussing the thermodynamic efficiency of such a process.

Results
Model
The V-type three-level system under investigation corresponds to the general configuration depicted in Fig. 1. 
In the figure, |a� and |b� are the excited state levels from which the system (e.g. an atom) decay to the ground 
state |c� with rate γa, γb respectively. Additionally, both excited states are coupled to the ground via incoherent 
pumping, (e.g. thermal radiation), with rate Ra,Rb . The angular frequencies of the two transitions are indicated 
as ωac ≡ ωa − ωc and ωbc ≡ ωb − ωc , while the upper levels splitting as � ≡ ωac − ωbc . This scenario is thus 
described by the interaction between the system and the radiation field modelled as a thermal reservoir.

We describe the state of the system via a density operator formalism, as quantum coherences shall be gener-
ated during its dynamics. In our setting, as shown below, the quantum dynamics of the system’s density opera-
tor ρS(t) are derived using a quantum Markovian master equation, obtained from the Liouville-von Neumann 
equation governing the density operator ρ̂(t) = ρ̂S(t)⊗ ρ̂R(t) of the whole compound comprising the system 
(S) and the reservoir (R). This model, as well as its solution, has been already discussed in several references so 
 far17–19,21,25,27–29. However, being sometimes the derivation of the model lacking or not fully explained, we report 
below a comprehensive derivation that has also pedagogical function.

For the derivation of the master equation describing the quantum system dynamics, we employ a microscopic 
approach, which begins by settling the differential equation for ρ̂S(t) in the interaction representation, where the 
Hamiltonian of the whole system is solely determined by the interaction term. For this purpose, we set in the 
Rotating Wave Aproximation (RWA), under which the interaction Hamiltonian has the following form:
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where ga
k,�, g

b
k,� [rad/s] are the coupling terms between the k-th mode of the reservoir (with wave vector k , 

polarization � and angular frequency νk ) and transitions |a� ↔ |c�, |b� ↔ |c� . Given that

with r = a, b , the coupling terms depend on the quantization volume (The spatial region where the radiation 
field effectively interact with the system.) V, on the electric dipole moment matrix element µrc = �r|µ|c� , relative 
to the |r� ↔ |c� optical transition, and on the unitary polarization vector ǫk,� of the radiation. Both µrc and ǫk,� 
are assumed real. Then, âk,� and its Hermitian transpose â†

k,� are the annihilation and creation operators of the 
bosonic field, respectively. Also note that the definition (2) originates from the dipole approximation, where the 
spatial dependence of the field is ignored.

The time evolution of the whole system is governed by the following Liouville-von Neumann differential 
equation for ρ̂(t) in the integro-differential form:

In several real-life scenarios, the three-level system and the reservoir are weakly coupled, implying that the influ-
ence of the system on the reservoir is negligible. Consequently, assuming that the initial state of the total system 
is the separable state ρ̂(0) = ρ̂S(0)⊗ ρ̂R(0) , the state ρ̂(t) at any given time t can be approximated by the tensor 
product ρ̂(t) ≈ ρ̂S(t)⊗ ρ̂R(0) . This assumption is known as the Born or weak coupling approximation. The Born 
approximation simplifies the application of the partial trace over the reservoir degrees of freedom, which returns 
the reduced dynamics of the system S.

Moreover, we assume that the correlations between the quantum system and the reservoir decay rapidly in 
comparison with the rate of change of the system’s state. This approximation, known as Markov approximation, 
leads to a memoryless or Markovian process, which implies that the memory effects of the reservoir are negligible 
and the system’s future evolution depends only on its current state and not on its past history.

The final set of equations (the complete derivation is in section “Derivation of the quantum master equation”) 
is obtained first by inserting Eq. (1) and definition (2) in Eq. (3) and then from applying the Weisskopf-Wigner 
approximation. The latter assumes all the frequency modes νk of the radiation field are closely spaced within a 
spherical volume. We also consider that the frequency modes are approximately slowly-varying within a range 
comprising ωac ,ωbc , meaning that the incoherent radiation has a flat spectrum around the band [ωac ,ωbc] whose 
length is relatively small compared to the bandwidth of the incoherent light source. At the end of the derivation, 
we get:
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ĤI (t) = �

2
∑

�=1

∑

k

ga
k,�e

i(ωac−νk)t |a��c| âk,�+
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ĤI(t),
[
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Figure 1.  The energy level configuration for the V-type three-level system under consideration consists of 
two nearly degenerate excited levels, denoted as |a� and |b� with a frequency splitting of � . These levels are 
incoherently pumped, at rates Ra and Rb respectively, from the ground level |c� . Both |a� and |b� can decay to the 
ground level at rates γa and γb .
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In Eq. (4),

where γr denotes the spontaneous decay rate from level |r� to the ground level |c� , and p is the alignment parameter 
between the transition dipole moments of the transitions |a� ↔ |c�, |b� ↔ |c� . Thus, � is the angle between the 
two electric dipole moments. Moreover in Eq. (4), n̄ is the average occupation number of the incoherent field’s 
modes at the transition frequency (the expression of n̄ is in section “Derivation of the quantum master equation”).

Equation (4) is a quantum Markovian master equation in the interaction picture that describes the evolution 
of a V-type three-level system in the presence of isotropic, unpolarized, broadband radiation. As also shown 
in section “Derivation of the quantum master equation”, this equation is derived starting from a Bloch-Redfield 
master equation. In the general case, a Bloch-Redfield equation is notorious for not guaranteeing that the reduced 
density matrix ρ̂S(t) is positive semi-definite for any time t29–32, due to the generation of negative system’s popu-
lations that is unphysical. In our case-study, we observed that the issue of losing the positive semi-definiteness 
of ρ̂S(t) is not present and Eq. (4) always reveals accurate in its predictions. This is consistent with references in 
the  literature33–35 finding, with numerical and analytical arguments, that the Bloch-Redfield master equation is 
a reliable description of weakly-interacting quantum systems under nearly degeneracy of the system’s atomic 
levels. This important remark is linked with applying the partial-secular approximation that is needed to attain 
Eq. (4), as already did in Refs.18,21,27 as well as in section “Derivation of the quantum master equation”. The partial-
secular approximation involves to neglect terms that are rapidly oscillating around differences of atomic levels’ 
frequencies much larger than � = ωac − ωbc . Consequently, the terms oscillating at � are not averaged out. 
The partial-secular approximation enables us to describe the emergence of quantum interference effects from 
incoherent pumping and spontaneous emission processes, represented by the terms p√γaγb in Eq. (4)11. When 
the matrix elements µac ,µbc are orthogonal, thus resulting in p = 0 , such an interference is absent. Conversely, 
the magnitude of the quantum interference is maximized when the transition dipole moments are either parallel 
( p = 1 ) or anti-parallel ( p = −1).

As the last step of the derivation, we set Eq. (4) in the Schrödinger picture and we decompose ρ̂S(t) in its ele-
ments �k|ρ̂S(t)|j� ≡ ρkj(t) with k, j = a, b, c , obtaining the following set of differential equations for each ρkj(t):

together with

where the incoherent pumping rates Rr ≡ n̄γr of the transitions |r� ↔ |c� (r = a, b) are associated with the absorp-
tion and stimulated-emission processes due to the incoherent light source. Note that, if p = 0 , then Eqs. (7), (8) 
for the quantum system dynamics simplify to the standard Pauli rate  equations19,20.

Eqs. (7) and (8) correspond to two independent sub-processes of the quantum system’s  evolution36. Equa-
tion (7) comprise the time-evolution of the quantum coherence between the two nearly degenerate excited 
levels |a�, |b� , which arises thanks to the interference both between the two decay paths and between the two 
pumping paths (see Fig. 1). This kind of coupling gives rise to an effective one-photon coherence that makes 
indistinguishable the transition |a� ↔ |c� or |b� ↔ |c� along which the decay and pumping processes occur. On 
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the other hand, the sub-process (8) returns the time-evolutions of the quantum coherence between each excited 
level and the ground state, which are not affected by how the system populations vary. This decoupling is a con-
sequence of applying the partial-secular approximation, which averaged out the oscillating terms at the single 
atomic transition frequencies, while retaining the terms oscillating at the frequency splitting �21. Also Eq. (8) 
matters in our context, since they enter the expression of the quasiprobabilities associated to the stochastic energy 
changes within the quantum system.

In the large-time limit, the quantum system tends towards a nonequilibrium steady states with vanishing 
coherences ρab, ρac , ρbc and constant populations, apart the peculiar case with |p| = 1 and a superposition of 
energy eigenstates as initial state. Being linked to populations, the quantum coherence ρab exponentially decays 
on a fast time scale, contrarily to ρac , ρbc that, when initially different from zero, tend to zero following a damped 
oscillatory trend. During the decay, after a sufficiently large time, the real and imaginary parts of ρac , ρbc come 
into phase. These behaviours are thus dependent on both the initial state, and the model’s parameters.

The solution to the differential equations contained in (7), (8) can be achieved by solving two distinct systems 
of linear equations, i.e.,

with state vectors

Note that, differently from previous  approaches19,27,28, the vector x includes the population of the ground level 
ρcc(t) rather than imposing the constraint ρcc(t) = 1− ρaa(t)− ρbb(t) . This choice is needed to get at any time 
t the correct density operator ρ̂S(t) , solution of Eqs. (7), (8) altogether, from the direct exponentiation of the 
two differential equations in (9). In other terms, it is required to determine the solution of the whole process by 
solving separately the sub-processes Eqs. (7)-(8) that composed it. In Eq. (9), the matrices A, C of coefficients 
are equal to

 We numerically solve the homogeneous differential equations (9) via exponentiation, namely

with x(0), z(0) denoting the initial states in this representation. The exponential of the matrices A, C is computed 
using the Matlab function expm, which employs the scaling and squaring algorithm of  Higham37.

Analytical solutions of Eqs. (7) and (8) have been demonstrated in previous  studies19,27. These solutions 
exhibit different behaviors depending on the value of the ratio �/γ̄ (between the energy splitting � among the 
excited states and the average decay rate γ̄ ), as well as on the average photon number n̄ and on the alignment 
parameter p. Specifically, three regimes emerge: the overdamped, the underdamped, and the critical regimes. 
It is noteworthy that only in the overdamped regime quasi-stationary Fano coherences can be established, thus 
resulting in a prolonged coherence lifetime. Under the weak pumping condition ( ̄n < 1 ) with p ≤ |1| , achieving 
the overdamped regime is possible when �/γ̄ ≪ 1 . However, under the strong pumping condition ( ̄n > 1 ), the 
requirement �/γ̄ ≪ 1 can be relaxed, which means a value of � much larger than γ̄ without compromising 
the quasi-stationarity of coherences. This rationale will guide our selection of �/γ̄ ≪ 1 in the analyses below.

Quasiprobabilities
In the previous section, we have introduced a quantum Markovian master equation that generates Fano quantum 
coherences. In this regard, we recall that they can arise by illuminating a quantum system with an incoherent 
source, provided the system has a discrete number of levels and some of these levels are near degenerate. It is not 
possible to have Fano coherences in a two-level system (a qubit), but it becomes possible in a three-level system 
admitting two near degenerate energy levels, as we are going to show below with a detailed analysis.
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Since our aim is to determine the energetics for generating Fano coherences and then to understand the role 
of energy fluctuations beyond the average values, we introduce the Kirkwood-Dirac quasiprobabilities (KDQ)41–47. 
Thanks to the latter, we can describe the two-time statistics of the energy outcomes originated from evaluating 
the Hamiltonian of the quantum system in two distinct times.

Let us thus formalize the physical context we will work in, as well as the definition of the KDQ. We will con-
sider a three-level system with time-independent Hamiltonian ĤS =

∑3
k=1 Ek�̂k , with Ek denoting the energies 

of the system (eigenvalue of ĤS ) and �̂k ≡ |Ek��Ek| the corresponding projectors ( |Ek� are the eigenstates of ĤS ). 
The three-level system is initialized in the initial density operator ρ̂S(0) and then is subjected to the open quantum 
map �[·] that returns the density operator of the system at time t, i.e., ρ̂S(t) = �[ρ̂S(0)] . It is also responsible 
for the generation of Fano coherences under specific conditions; in this regard, we will show practical examples 
below. Hence, the KDQ describing the statistics of the energy changes, corresponding to the internal energy 
variation within the system, in the interval [t1, t2] is defined as

where �̂j and �̂ℓ are the j-th and ℓ-th projectors of ĤS evaluated at times t2 and t1 respectively. Each quasiprob-
ability qℓ,j is associated to the (ℓ, j)-th realization �Eℓ,j ≡ Ej − Eℓ of the energy change �E , which is given by 
the difference of the system energies evaluated at times t2 and t1 . We recall that the real parts of KDQ are also 
known as Margenau-Hill quasiprobabilities (MHQ)38,48–50, and has recently found several applications in quan-
tum thermodynamics.

It is worth providing some properties of  KDQ44 in the case-study we are here analyzing: 

1. The sum of KDQ is equal to 1: 
∑

ℓ,j qℓ,j = 1.
2. The unperturbed marginals are obtained: 

 where “unperturbed” means that the marginals are equal to the probabilities to measure the system at the 
single times t1 and t2 respectively, as given by the Born rule. Let us observe that, if [ρ̂S(0), ĤS] �= 0 for some 
ρ̂S(0) and ĤS , then the unperturbed marginal pj(t2) at time t2 is not obtained by the two-point measurement 
(TPM)  scheme51. The latter, indeed, cancels the off-diagonal terms of ρ̂S(0) with respect to the eigenbasis of 
ĤS due to the initial projective measurement at time t1 , whose effect is to induce decoherence.

3. The KDQ are linear in the initial density operator ρ̂S(0) . This means that, given any admissible decomposi-
tion of ρ̂S(0) [say ρ̂S(0) = ρ̂

(1)
S (0)+ ρ̂

(2)
S (0) ], (16) splits in two terms, one linearly dependent on ρ̂(1)

S (0) and 
the other on ρ̂(2)

S (0) , i.e., 

 with q(n)ℓ,j = Tr[�̂j �[�̂ℓρ̂
(n)
S (0)]] , n = 1, 2 . A choice that is commonly adopted is to take ρ̂(1)

S (0) as the 
matrix that solely contains the diagonal terms of ρ̂S(0) , and ρ̂(2)

S (0) as the matrix comprising only the off-
diagonal terms.

4. Under the commutative condition [ρ̂S(0), ĤS] = 0 , the KDQ are equal to the joint probabilities 

 returned by the TPM scheme.
5. KDQ are in general complex numbers and can lose positivity, i.e., they can admit negative real parts and 

imaginary parts different from zero. In fact, as prescribed by the no-go theorems in Refs.44,52, we recall that 
the non-positivity of KDQ is due to asking for unperturbed marginals and (quasi)joint probabilities of the 
distribution of �E that are linear in the initial density operator ρ̂S(0) , whenever [ρ̂S(0), ĤS] �= 0 . The presence 
of non-positivity is a proof of quantum  contextuality53–55, since its explanation requires taking into account 
non-classical features like the presence of quantum coherence in the state of the system or the incompatibility 
of the measurement observables. Thus, for a two-time statistics (here, of energy outcomes), non-positivity 
can be regarded as a form of non-classicality. We quantify the non-positivity of KDQ by means of the non-
positivity functional38,44,56,57 

 that is equal to 1 when all the quasiprobabilities are positive real numbers.

(16)qℓ,j = Tr

[

�̂j �

[

�̂ℓ ρ̂S(0)

]]

,

(17)
∑

ℓ

qℓ,j = pj(t2) ≡ Tr

[

�̂j�[ρ̂S(0)]
]

= Tr

[

�̂jρ̂S(t)
]

(18)
∑

j

qℓ,j = pℓ(t1) ≡ Tr

[

�̂ℓρ̂S(0)

]

,

(19)qℓ,j = q
(1)
ℓ,j + q

(2)
ℓ,j

(20)pTPMℓ,j ≡ Tr

[

�̂j�

[

�̂ℓρ̂S(0)�̂ℓ

]]

(21)ℵ ≡ −1+
∑

ℓ,j

∣

∣qℓ,j
∣

∣
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Quantumness certification
In this section we certify that the generation of Fano coherences can be accompanied by a distribution of qua-
siprobabilities for the energy change of a V-type three-level system, which exhibits negativity (the imaginary 
parts are zero). The presence of the latter results from initializing the three-level system in a superposition of 
the wave-functions comprising the energy eigenbasis, meaning that in such a basis quantum coherences have to 
be included. This occurs for specific parameter settings that we will analyze in more details in section “Optimi-
zation of excess energy”. Interestingly, there is also a subset of parameters’ values such that solely the quantum 
coherence in the initial state of the system (leading to negativity) is responsible for an amount of excess energy

larger than zero for any time t, with ĤS time-independent. Notice that in the context of quantum systems sub-
jected to a work protocol, negative values of 〈�E(t)〉 are denoted as extractable work.

Let us now show an example (with some plots) of these quantum behaviours involving the generation of Fano 
coherences. For this purpose, we take the following parameters’ setting: 

 (i) V-type three-level system: Spontaneous decay rates (from |a�, |b� to |c� ) γa = γb ≡ γ ≈ 3 · 107 [rad/s]; 
energies E3 = �ωa , E2 = �ωb , E1 = �ωc with E1 ≤ E2 ≤ E3 ; ωa = D +�/2 , ωb = D −�/2 and ωc = 0 , 
with D ≈ 108 [rad/s] (optical transition) and � a fraction (10%) of the spontaneous decay rate’s value, 
i.e. � = 10%γ = 0.1γ . In the figures we are going show below, the units of measurement of the plotted 
quantities are re-scaled such that � = 1.

 (ii) Incoherent source (sunlight radiation, or even noisy laser with quite larger emission bandwidth): 
Average photons number n̄ = 3 ; alignment parameter (between the dipole moments of the transitions 
|a� ↔ |c�, |b� ↔ |c� ) p = cos� = −1,−0.75,−0.5,−0.25.

 (iii) The bare Hamiltonian ĤS of the V-type three-level system is proportional to the spin-1 operator 

 along the z-axis. This means that the energy projectors �̂k resulting from its spectral decomposition are 
given by the outer product of the computational basis |c� ≡ (0, 0, 1)T , |b� ≡ (0, 1, 0)T and |a� ≡ (1, 0, 0)T.

 (iv) Initial quantum state of the three-level system: ρ̂S(0) = |ψ0��ψ0| with 

 with αa =
√
0.3 , αb =

√
0.3 , φb = π , and αc =

√
0.4 ; note that α2

a + α2
b + α2

c = 1 to ensure probability 
conservation. As previously anticipated, the initial density operator of the three-level system (thus, at the 

(22)−��E(t)� = −
∑

ℓ,j

qℓ,j�Eℓ,j(t) = Tr

[

ĤS

(

ρ̂S(0)− ρ̂S(t)
)

]

Sz =
�√
2

(

0 1 0
1 0 1
0 1 0

)

(23)|ψ0� = αa|a� + αb e
iφb |b� + αc|c�

Figure 2.  Average energy change 〈�E〉 , re-scaled by ωa , as a function of the dimensionless time tγ /(2π) , which 
we obtain by numerically computing the corresponding KDQ distribution. The dynamics of the three-level 
system subjected to an incoherent light source, entering in the quasiprobabilities, is provided by Eqs. (9). The 
black solid line denotes the contribution 〈�E〉diag of the average energy change that corresponds solely to the 
diagonal elements, contained in diag(ρ̂S(0)) , of the initial state ρ̂S(0) . It can be verified that 〈�E〉diag is equal to 
zero for any value of p. On the other hand, all the other curves in the figure refer to the contribution 〈�E〉coh 
of the average energy change depending on χS , matrix containing the off-diagonal elements of ρ̂S(0) , for 
p = 0,− 0.25,−0.5,−0.75,−1 . Notice that the black solid line is used also for 〈�E〉coh with p = 0 since in this 
case ��E�coh = 0 .
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beginning of the thermodynamic transformation under scrutiny) contains quantum coherence along 
the eigenbasis of ĤS.

Now, using this parameters setting, we show two distinct plots: one concerning the average energy change 〈�E〉 
as a function of the dimensionless time tγ /(2π) (Fig. 2), and the other regarding the underlying KDQ distribu-
tion (Fig. 3).

For both plots we numerically solve the linear differential equations (9) that describe the dynamics responsible 
for the generation of Fano coherence in Markovian regime. The values of the parameters inserted in Eqs. (9) 
are those provided at points (i)–(v) above. Moreover, we consider the results given by splitting the KDQ as in 
Eq. (19), where ρ̂S(0) = |ψ0��ψ0| is linearly decomposed in two matrices diag(ρ̂S(0)) and χS containing the 
diagonal and off-diagonal elements of ρ̂S(0) respectively. We denote the two contributions of the KDQ

with r, s = a, b, c , as qdiagr,s  and qcohr,s  respectively. In (24), the quantum map �[·] is derived from equations of 
motion (14)-(15).

The ranges of parameters at points (i)–(v) are such that ��E� = 0 , as long as the initial density operator 
ρ̂S of the three-level system does not contain quantum coherence χS (with respect to the basis diagonaliz-
ing ĤS ). We stress that, by construction, such a result cannot be provided by the TPM scheme. On the con-
trary, by including quantum coherences as given by Eq. (23), ��E� = ��E�coh ≤ 0 , as shown in Fig. 2. In fact, 
��E� = ��E�diag + ��E�coh but ��E�diag = 0 in our case study. This entails a non-negligible amount of excess 
energy assisted from initializing the quantum system in a superposition state of the energy eigenstates. Moreover, 
both the magnitude of |��E�| and the time interval in which |��E�| �= 0 can be linearly enhanced by increasing 
the value (with sign) of the alignment parameter p ∈ [−1, 1] . Such an effect is maximized for p = −1 , whereby 
max − ��E� ≈ 17%ωa and remains quasi-stationary as long as the incoherent light source is active. This finding 
is related (and thus consistent) with the already-known fact that |p| = 1 implies quasi-stationary Fano coherences, 
ideally for an arbitrarily large time t19,21,27. It is worth noting the sign of p is not relevant for the solution ρ̂S(t) of 
the quantum system dynamics, but it matters for the sign of 〈�E〉 and thus for the nature of the thermodynamics 

(24)qr,s = Tr

[

|s��s|�
[

|r��r|ψ0��ψ0|
]

]

= �r|ψ0�
〈

s|�
[

|r��ψ0|
]

|s
〉

,

Figure 3.  Kirkwood-Dirac quasiprobabilities (dashed black lines), quantifying the energy change statistics 
of the V-type three-level system subjected to incoherent light source, as a function of the dimensionless time 
tγ /(2π) . The quasiprobabilities refer to the (energy) transitions between the levels |a�, |b�, |c� of the system. 
Here, the imaginary parts of all the quasiprobabilities are equal to zero. For all the panels, we use the parameter 
setting at points (i)-(iv) with p = −1 , and we distinguish between the contributions qdiagr,s  and qcohr,s  depending 
respectively on χS (solid red lines) and diag(ρ̂S(0)) (dash-dotted blue lines), where diag(ρ̂S(0)),χS linearly 
decompose the initial density operator ρ̂S.
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process we are investigating. In fact, using the ranges of parameters at point (i)-(iv), p negative entails energy in 
excess, while p positive means absorbed energy.

In the 9 panels of Fig. 3 we plot the full distribution of KDQ (dashed black lines) qr,s with r, s = a, b, c . Such a 
quasiprobability distribution underlies the energy change statistics and thus the average energy change in Fig. 2. 
In doing this, we use again the parameters setting at points (i)–(iv) but with p = −1 , whereby the imaginary 
parts of all the plotted KDQ are equal to zero. In the figure, we distinguish between qdiagr,s  and qcohr,s  of qr,s , which 
we recall are the contributions stemming respectively from the matrices containing the diagonal and off-diagonal 
elements of ρ̂S(0) . We can observe that qac , qab, qaa have a contribution of qcohr,s  = 0 (solid red lines in the figure), 
which is due to initializing the system in a state with quantum coherence (with respect to the eigenbasis of ĤS ). 
Notably, the quasiprobability qab is globally negative in a transient time interval. In this regard, it is worth recall-
ing that the Fano interference can arise between the excited levels |a�, |b� of the three-level system. Hence, the 
presence of negativity in the corresponding KDQ describing energy change fluctuations is an hallmark of Fano 
coherence generation occurring in a non-classical regime.

We complete this analysis by showing in Fig. 4 that: 

 (i) The real part of qcoha,b  (plotted as a function of time) monotonically grows by increasing the value of the 
alignment parameter p that effectively represents a control knob to enhance the negativity of the cor-
responding KDQ [panel (a)].

 (ii) The non-positivity functional ℵ of the KDQ distribution of energy changes is > 0 in a transient time 
interval, at least in the parameters setting at points (i)-(iv). Interestingly, ℵ is maximized for p = −1.

As a final remark, notice that initializing a V-system in a superposition of all the three energy eigenstates (as in 
Eq. (23)) is not a necessary condition for observing a quasiprobability distribution with negative values ( ℵ �= 0 ), 
since the main factor appears to be the presence of coherence between the excited states.

Optimization of excess energy
In the previous section, we have introduced a case study in which 〈�E〉diag , dependent on the diagonal elements 
of ρ̂S(0) , is zero for any time t. In this section our focus shifts to optimizing some key parameters of the model, 
including the initial quantum state of the three-level system, in order to maximize the value of −��E�coh arising 
from the off-diagonal elements of ρ̂S(0) . As mentioned earlier, such an optimization also leads to an enhance-
ment of negativity.

Achieving the condition ��E�diag = 0 relies solely on specific values of n̄ and ρcc(0) = |αc|2 , under the 
assumption that the initial state of the system is given by Eq. (23). The analytical formula returning the values 
of n̄, ρcc(0) such that ��E�diag = 0 is unknown.

However, to attain ��E�diag = 0 with an increased value of n̄ , one needs to decrease ρcc(0) , and vice-versa. For 
instance, in the weak pumping regime ( ̄n < 1 ), the condition ��E�diag = 0 is satisfied for n̄ = 0.5 and ρcc(0) = 0.6 . 
Conversely, in the strong pumping regime ( ̄n > 1 ), the condition ��E�diag = 0 holds for n̄ = 3 and ρcc(0) = 0.4 
that are the values used in section “Quantumness certification”. Choosing n̄ above (below) the value allowing for 
��E�diag = 0 , for a given ρcc(0) , leads to 〈�E〉diag being nonzero and either positive (negative). These considera-
tions are valid for any values of p, but in what follows we specifically select p = −0.5.

Once the condition ��E� = ��E�coh is established, the optimization of 〈�E〉coh is determined by the initial 
state |ψ0� = αa e

iφa |a� + αb e
iφb |b� + αc e

iφc |c� , where we are considering a more general state featuring also the 
relative phases φa,φc in addition to φb.

Setting the values n̄ = 3 and ρcc(0) = 0.4 , we take the populations ρaa = |αa|2 = ρbb = |αb|2 = 0.3 , and we 
vary the relative phases φa, φb, φc of |ψ0� within the range [0, 2π] . Interestingly, setting one of the relative phases 
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Figure 4.  (a) Real part of qcoha,b  [panel (a)] and the non-positivity functional ℵ [panel (b)], as a function of the 
dimensionless time tγ /(2π) , for p = −1,−0.75,−0.5,−0.25 . For both panels, the ranges of parameters at point 
(i)–(iv) are considered.
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to zero does not impact the maximum attainable value for 〈�E〉 . Moreover, by using φa = 0 or φb = 0 and φc = 0 , 
we identify two distinct scenarios that now we are going to analyze in detail. 

(i) φa = 0 or φb = 0:
  Setting φa = 0 , the two relative phase vary within the range [0, 2π] , and we then record the corresponding 

values of 〈�E〉 . Fig. 5a highlights the maximum values of 〈�E〉coh by varying the value of the phases φb, φc . 
From the figure we observe that, in this setting, φc does not affect neither the magnitude nor the sign of 
|��E�coh| . Conversely, the relative phase φb significantly influences the quantity |��E�coh| . The magnitude 
|��E�coh| is zero for φb = π/2 , and increases in both directions either towards φb = 0 or φb = π , but with 
opposite sign. The value φb = π represents a line of mirroring symmetry. The results depicted in Fig. 5a 
are the same if we set φb = 0 instead of φa = 0 and we vary the relative phases φa, φc.

 (ii) φc = 0:
   In this scenario we explore how the largest values of 〈�E〉coh , with sign, modify by varying the values 

of the phases φa and φb across the range [0, 2π] ; see Fig. 5b. Unlike the symmetry observed in Fig. 5a, 
a different pattern emerges in Fig. 5b, whereby the mirroring symmetry line is given by the condition 
φa = φb.

We recall that in Fig. 5 the value of p has been set to −0.5 . However, if one is free to also vary p, then we would 
observe that the sign of p is responsible to affect the sign of 〈�E〉 , such that whenever p < 0 the sign of 〈�E〉 
is the same in Fig. 5, while for p > 0 the condition is reversed. Similarly, the magnitude of p is responsible to 
modify the magnitude of 〈�E〉 , such that decreasing the magnitude of p decreases the largest value of |��E�| . We 
have previously noticed this behaviour also in Fig. 2. Before proceeding, it is also worth stressing that selecting 
φa = 0, φb = π , φc = 0 in |ψ0� leads to the maximization of −��E� in Fig. 5.

Let us now analyze how 〈�E〉 varies for different values of the populations ρaa(0) and ρbb(0) pertaining to 
the excited states |a� and |b� . We do not directly consider ρcc(0) (population in the ground level |c� ), as it is pre-
determined by n̄ . For instance, in the scenario with p = −0.5, n̄ = 3 ⇒ ρcc(0) = 0.4 , we vary only the value of 
the population ρaa(0) ; indeed, ρbb(0) changes according to the constraint ρbb(t) = 1− ρaa(t)− ρcc(t) for any 
t. The results depicted in Fig. 6 illustrate max〈�E〉coh as a function of ρaa(0) , with φb = 0,π/4,π/2, 3π/4,π.

While ρcc(0) may affect 〈�E〉diag , the initial populations ρaa(0), ρbb(0) of the excited states impact 〈�E〉coh . 
Specifically, 〈�E〉coh is zero when the three-level system is initialized with one among ρaa(0), ρbb(0) is set to zero. 
Additionally, we observe that the maximum value of 〈�E〉coh is obtained when ρaa(0) = ρbb(0) . The imbalance 
in favor of one over the other decreases max〈�E〉coh . As in Fig. 5a, varying φb from 0 to π enables a transition 
from the condition of maximum absorbed energy ( φb = 0 ) to maximum energy in excess ( φb = π ), passing 
through a regime where ��E�coh = ��E�diag = ��E� = 0 ( φb = π/2).

To sum-up, the optimal initial state configuration is achieved by setting the populations ρaa(0), ρbb(0)  = 0 and 
ρaa(0) = ρbb(0) , while the value of ρcc(0) is dictated by the n̄ that allows for ��E� = ��E�coh . Finally, regarding 
the relative phases φa,φb,φc entering the initial wave-function |ψ0� , setting all the three to zero means maximum 
absorbed energy, whereas choosing φb = π (with φa = φc = 0 ) entails the maximum amount of excess energy.

(a) (b)

Figure 5.  Largest values of 〈�E〉coh including its sign, re-scaled by ωa , as a function of the relative phases φb,φc 
[panel (a)], and φa,φb [panel (b)]. In both panels the value of p has been set to −0.5 , n̄ = 3 , ρcc = 0.4 , and 
ρaa = ρbb = 0.3.
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Efficiency of the process
The assessment of the thermodynamic efficiency is crucial in any energy conversion process, to gauge the per-
formance in transforming a form of energy (the input energy Ein ) in another (energy in excess Eexc ) for practical 
uses. The efficiency is generally defined as follows:

In our case study, as introduced in section “Quantumness certification”, the excess energy is given by the quantity 
−��E(t)� > 0 , where only the contribution from the off-diagonal elements of ρ̂S accounts. Conversely, the energy 
that drives the system, which originates from the incoherent field, is Ein = n̄�ωac that corresponds to the average 
energy of the photons impinging on the system. Hence,

Eq. (26) reveals that the time dependence of the efficiency follows the one of 〈�E〉 depicted in Fig. 2. Conse-
quently, the efficiency reaches its peak when 〈�E〉 is maximized with sign, which occurs at a specific instant t that 
we denote as ˜t  . Notably, in the scenario with p = −1 , both η and −��E� attain a maximum quasi-stationary value.

Based on the optimization analysis in section “Optimization of excess energy”, we focus on the condition 
yielding the maximum amount of energy in excess, given by ρaa(0) = ρbb(0) = 0.3 with ρcc(0) = 0.4 , n̄ = 3 and 
φa = φc = 0,φb = π . In Table 1 we present the achievable maximum efficiency together with the time instants 
at which it is obtained, for various values of p.

We conclude by noting that we have not inserted, among the costs in the calculation of the efficiency, the 
energy for preparing the initial state of the three-level system. This is because we are implicitly assuming to work 
in a condition where the preparation of a superposition of Hamiltonian eigenstates as the initial state is given for 
granted. However, this assumptions shall to be properly calibrated when dealing with the experimental realiza-
tion of a process for Fano coherence generation.

(25)η ≡ Eexc

Ein
.

(26)η(t) = −��E(t)�
n̄�ωac

.

Figure 6.  Maximum value of 〈�E〉coh as a function of ρaa(0) , initial population of the excited 
state |a� . The ground state is fixed at ρcc(0) = 0.4 and the relative phases are φa = φc = 0 , while 
ρbb(0) = 1− ρcc(0)− ρaa(0) . The alignment parameter p is set to p = −0.5 . Different values of φb are taken 
into account.

Table 1.  Maximum efficiency of the energy conversion process as a function of p = −1,−0.75,−0.5,−0.25 
and the times at which it is obtained.

p ηmax

t̃γ

2π

− 1 6% > 0.40

− 0.75 4% 0.20

− 0.5 2% 0.17

− 0.25 1% 0.16
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Discussion
In this paper we discuss the energetics behind the generation of Fano-like quantum coherence, by using a 
prototypical V-type three-level system (finite dimensional quantum system) in interaction with an incoherent 
radiation field. The latter is assumed as consisting of a continuum of modes, shaped on a broadband frequency 
range. If the excited levels of the three-level system are taken close enough, then Fano coherences develop for a 
transient time interval. They become stationary in the limiting case the excited states are degenerate. Thus, the 
following question arises: “To what extent the process generating Fano coherence can be considered genuinely 
quantum?” The answer to this question would constitute a first attempt to certify the quantumness of a process, 
driven by an incoherence field, while inducing quantum effects in a nonequilibrium regime.

For this purpose, we here determine the Kirkwood-Dirac quasiprobability distribution of the (time-depend-
ent) energy changes in the three-level system under scrutiny, while the incoherent radiation field is active. If the 
real part of some quasiprobability is negative, or even some quasiprobability is complex, then one can witness 
the onset of a genuine quantum effect linked to quantum interference profiles. Necessary condition for that is 
the non-commutativity of the initial state of the quantum system with the Hamiltonian ĤS at the beginning of 
the dynamical transformation (recall that in the process generating Fano coherence, the Hamiltonian is time-
independent). Thus, as expected, we observe that initializing the three-level system in a superposition of the 
Hamiltonian eigenstates, there exist a range of parameters in which negative quasiprobabilities arise but still 
with zero imaginary parts. Initializing in the ground state of ĤS does not lead to the same result. In this regard, 
it is important to note that further studies on the interplay between the generation of Fano coherences and the 
presence of quantum coherences in the initial state are needed. These studies would help indeed to understand 
how different types of coherences affect the quantum dynamics of the open system and contribute to the loss of 
positivity in the KDQ distribution characterizing energy change fluctuations.

Under the same parameter setting and the same choice of the initial state ( ̄n = 3 and ρcc(0) = 0.4 ), we find 
that ��E� = ��E�coh ≤ 0 in a given time interval for any value of the alignment parameter p, except p = 0 . 
Interestingly, albeit the input light source is incoherent, the maximum efficiency of the thermodynamic process 
goes up to 6% , and becomes quasi-stationary for p = −1 . This findings motivates us in further investigating 
the design and optimization of a (coherent or incoherent) coupling with an external load that can act as energy 
 battery58 or quantum  flywheel59.

The results we provide in this paper could be experimentally validated via inferring the real part of the qua-
siprobabilities for the energy change statistics. For this purpose, as recently shown in Refs.38,44, we can resort to 
reconstruction procedures, either entirely based on projective measurements or implementing an interferometric 
scheme. Even the experimental realization of a V-type three-level system conducive to Fano coherence is achiev-
able. This can be implemented using an atomic platform comprising a gas of a suitable atomic species maintained 
at a constant temperature. The preparation of the initial state of the quantum system in a superposition of the 
Hamiltonian eigenstates can be done using independent coherent light sources quasi-resonant with the two dipole 
transitions, just before the interaction with the incoherent radiation. Choosing a cold or hot gas can be relevant 
for such a task, as lower is the temperature and better should be the tunability of the parameters inducing state 
variations. Finally, the generation of Fano coherence may necessitate the polarization of the incoherent radiation 
field, a requirement that varies depending on the selected atomic  species20,21.

Methods
Derivation of the quantum master equation
We provide the complete derivation of the set of differential equations in Eqs. (7), (8). For this purpose, we start 
with the Liouville-von Neumann differential equation for ρ̂(t) in the integro-differential form reported in Eq. (3).

As mentioned in section “Model”, we employ the Born approximation and we apply the partial trace over the 
reservoir degrees of freedom in order to obtain the reduced state for the quantum system:

Let us now analyze the first term on the right-hand side of (27), which is associated with the coherent part of the 
dynamics and we now denote it as dρ̂S(t)dt |coh . By inserting ĤI(t) [Eq. (1)] in (27) and upon further calculation, 
we get:

where we use the transition operators σ̂+
ac ≡ |a��c|, σ̂+

bc ≡ |b��c| and their Hermitian transpose σ̂−
ac and σ̂−

bc . Moreo-
ver, (28) contains also the expectation values �âk,�� and �â†

k,�� that are computed with respect to the composite state 
of the reservoir. Here, we assume that the modes of the reservoir are distributed among a mixture of uncorrelated 
thermal equilibrium states at temperature T. In this way, the expectation value and the correlation function of 

(27)

dρ̂S(t)

dt
=− i

�
TrB

[

ĤI (t), ρ̂S(0)⊗ ρ̂R(0)

]

+

− 1

�2

∫ t

0

TrB

[

ĤI (t),
[

ĤI (t
′), ρ̂S(t

′)⊗ ρ̂B(0)

]]

dt′.

(28)

dρ̂S(t)

dt

∣

∣

∣

∣

coh

=− i

2
∑

�=1

∑

k

ga
k,�e

i(ωac−νk)t�âk�[σ̂+
ac , ρ̂S(0)]+

− i

2
∑

�=1

∑

k

gb
k,�e

i(ωbc−νk)t�âk�[σ̂+
bc , ρ̂S(0)] + h.c.,
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the reservoir’s operators, computed with respect to the mixture of local thermal states for each mode, have the 
following values:

where n̄k ≡ [exp(�νk/(kBT))− 1]−1 is the average occupation number of the k-th thermal mode of the inco-
herent field, with kB the Boltzmann constant and δ the Dirac delta function. Thus, by substituting (29) in (28), 
we end-up to

We now analyze the second term on the right-hand side of Eq. (27), which is associated with the incoherent part 
of the dynamics by expanding the double commutator in Eq. (27). Later we will denote it as dρ̂S(t)dt

∣

∣

∣

incoh
 . After 

substituting Eqs. (1) in Eq. (27), we obtain terms of the form:

with r = a, b . Moreover, also the following crossing terms, involving both the levels |a� and |b� , arise:

Hence, from substituting the expectation values in Eqs. (30)–(32), Eqs. (34), (35) simplify as

and

At this point we apply the Weisskopf-Wigner approximation that assumes the all the frequency modes of the 
radiation field are closely spaced within a spherical volume. Also the fact that the radiation field is contained in a 
sphere is an approximation that helps to simplify the mathematical treatment of the model. However, it just leads 
to a small approximation error since the modes of the radiation fields are uncorrelated to each other, given that 
the (light) source is incoherent. The Weisskopf-Wigner approximation is formally provided by the replacement

(c is the speed of light), whose function indeed is to shift the discrete distribution of the radiation modes to a 
continuous distribution that we represent in spherical coordinates. Thus, implementing the Weisskopf-Wigner 
approximation (38) to Eqs. (36), (37) and using the definition of the coupling terms gr

k,� of Eq. (2) leads us to

(29)�âk,�� =�â†
k,�� = 0

(30)�â†
k,�âk′ ,�� =n̄kδk,k′δ�,�′

(31)�âk,�â†k′ ,�� =(n̄k + 1)δk,k′δ�,�′

(32)�âk,�âk′ ,�� =�â†
k,�â

†
k′ ,�� = 0

(33)
dρ̂S(t)

dt

∣

∣

∣

∣

coh

= 0.

(34)
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�,�′
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and

where νk = kc.
When νk  = ωrc , the exponential terms in Eqs. (39)-(40) oscillate and can be neglected. This allows us to treat νk 

as approximately constant for all k. Specifically, we can assume νk ≈ ωac or νk ≈ ωbc , for any k near the transition 
frequencies. Consequently, we substitute ν3k with ω3

rc . Additionally, we consider that ωac − ωbc = � ≪ ωac ,ωbc , 
leading to ωac ≃ ωbc , since we are dealing with optical transitions ( ∼ hundreds of THz). The condition 
� ≪ ωac ,ωbc is the reason for applying the partial-secular approximation where terms oscillating at transi-
tion frequencies, apart those oscillating at frequency � , average out over the system’s timescale. As a result, in 
Eqs. (39)-(40), the following integrals can be computed  as21,27,29

and

In both integrals we exploited the one-sided Fourier transform of the Dirac delta function, where P denotes the 
Cauchy principal value. The latter accounts for what is known as the Lamb shift effect arising from the interac-
tion of the atom with the vacuum fluctuations of the electromagnetic field. In our analysis, the Lamb shift term 
is omitted as in Refs.21 since it is expected to be negligible for weak system-radiation couplings.

In this way, Eqs. (39)–(40) simplify as

and

with n̄ = [exp(�ωac/kBT)− 1]−1.
Following the methodology used in the Appendix of Ref.21, we define the polarization vector ǫk,� in spherical 

coordinates, given that the wave vector k = |k|[sin θ cosφ, sin θ sin φ, cos θ ] . Since the polarization vector must 
be orthogonal to the wave vector, two possible instances ǫk,�=1 , ǫk,�=2 of the polarization vector for � = 1, 2 are 
given by the following expressions:

(39)
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(43)ǫk,�=1 = [− cos θ cosφ,− cos θ sin φ, sin θ ]

(44)ǫk,�=2 = [sin φ,− cosφ, 0].
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Then, we compute the scalar products 
(

µrc · ǫk,�=1

)

 and 
(

µrc · ǫk,�=2

)

 , with r = a, b , for arbitrary electric dipole 
moments µac and µbc , and we evaluate the integrals over the spherical polar angles θ,φ . In doing this, we obtain:

and

The fact that we are evaluating the sum of integrals in (45)-(46) means that we are assuming isotropic and unpolar-
ized radiation, i.e., the modes of the radiation are uniformly distributed along all the spatial directions, without 
a specific polarization. As a result, by substituting (45)-(46) in (41)-(42), the latter can be written as

and

Equations (47), (48) have non-Markovian traits leading to memory effects in the dynamics of the quantum 
system, given the dependence of the right-hand-side of the equations to all the “history” of ρ̂S(t′) from 0 to t. 
Hence, to get a quantum Markovian master equation, we apply Markov approximation that is valid whenever 
the correlations between the quantum system and the reservoir decay rapidly in comparison with the rate of 
change of the system’s state. Therefore, under the Markov approximation, the master equation governing the 
system dynamics only depends on ρ̂S(t) at time t and not on its past history. Hence, setting the upper limit of the 
integral to ∞ and substituting ρ̂S(t′) = ρ̂S(t) (i.e., t = t ′ ∀t ) in Eqs. (47), (48), we obtain the following simplified 
expression for Eq. (27):

Finally, the equation of motion for ρ̂S(t) in the Schrödinger picture is derived by adding the Hamiltonian ĤS of 
the three-level system in the coherent part of the differential equation of ρ̂S(t) . Formally, it entails to solve the 
differential equation

with ÎB denoting the identity operator in the Hilbert space of the reservoir. Hence, by incorporating the explicit 
expression of ĤS =

∑

k Ek|k��k| into the differential equation (9) and decomposing ρ̂S(t) in its elements 
�k|ρ̂S(t)|j� ≡ ρkj(t) with k, j = a, b, c , we retrieve the set of differential equations for each ρkj(t) as reported in 
Eqs. (7), (8), upon following the same steps already performed in the interaction picture.
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