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Abstract
Current stance detection methods employ topic-aligned data, resulting in many unexplored 
topics due to insufficient training samples. Large Language Models (LLMs) pre-trained 
on a vast amount of web data offer a viable solution when training data is unavailable. 
This work introduces Tweets2Stance - T2S, an unsupervised stance detection framework 
based on zero-shot classification, i.e. leveraging an LLM pre-trained on Natural Language 
Inference tasks. T2S detects a five-valued user’s stance on social-political statements by 
analyzing their X (Twitter) timeline. The Ground Truth of a user’s stance is obtained from 
Voting Advice Applications (VAAs). Through comprehensive experiments, a T2S’s opti-
mal setting was identified for each election. Linguistic limitations related to the language 
model are further addressed by integrating state-of-the-art LLMs like GPT-4 and Mixtral 
into the T2S framework. The T2S framework’s generalization potential is demonstrated by 
measuring its performance (F1 and MAE scores) across nine datasets. These datasets were 
built by collecting tweets from competing parties’ Twitter accounts in nine political elec-
tions held in different countries from 2019 to 2021. The results, in terms of F1 and MAE 
scores, outperformed all baselines and approached the best scores for each election. This 
showcases the ability of T2S, particularly when combined with state-of-the-art LLMs, to 
generalize across different cultural-political contexts.

Keywords  User stance detection · LLMs · Unsupervised · Twitter · Text content · 
Elections · VAA
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1  Introduction

Stance detection is a text-mining technique that identifies a user’s attitude towards a spe-
cific statement (Biber and Finegan, 1988), differentiating it from sentiment analysis, which 
merely categorizes text as positive, negative, or neutral without focusing on a particular 
target. This method is particularly relevant on social media, where it is used to detect 
agreement or disagreement in debates and assess public opinion on various topics, includ-
ing politics, ideology, and consumer products (Aldayel and Magdy, 2021; Dias and Becker, 
2016; Mohammad et al., 2016; Darwish et al., 2017, 2020; Fagni and Cresci, 2022). Stance 
detection involves either identifying the stance expressed in text or determining the user’s 
stance towards a target based on their content and context. Targets for stance detection can 
be single topics, multi-related topics implying a stance towards related targets, or claim-
based, evaluating whether a text or user supports a specific claim (Aldayel and Magdy, 
2021).

This research focuses on analyzing and quantifying public opinion on diverse issues, 
specifically addressing user stance detection across multiple unrelated subjects. Analyzing 
social media texts offers key insights into user stances, but assessing data accuracy and reli-
ability is essential (Cresci et al., 2014) due to potential manipulation by automated accounts 
(Tardelli et  al., 2020). However, existing literature suggests diverse approaches that par-
tially leverage text analysis along with user behavioural analysis, encompassing activities 
like likes, retweets, and network connections (Gottipati et al., 2013; Aldayel et al., 2019). 
Moreover, user stance detection on unrelated targets presents computational challenges 
(Aldayel and Magdy, 2021). Content-based stance detection approaches face limitations, 
including the inherent difficulty of processing natural language, the necessity for vast anno-
tated tweet corpora and language-specific resources, the absence of unsupervised transfer 
learning for generalization across unrelated targets, and the need to train distinct classifiers 
for each target. Cutting-edge research often concentrates on either two (support, against) or 
three levels of stance including the neutral class1) and current unsupervised methods rely-
ing on clustering techniques in user networks are inadequate for detecting a user’s stance 
on different unrelated targets. To tackle these challenges and concentrate exclusively on a 
content-based approach, we extend Tweets2Stance  (T2S) an unsupervised framework for 
stance detection (Gambini et al., 2023). T2S examines the content of a user’s social media 
timeline (e.g., X-Twitter) using Zero-Shot Learning (ZSL) techniques (Kojima et al., 2022) 
to identify their stance toward specific socio-political statements (targets), considering five 
(completely disagree, disagree, neither disagree nor agree, agree, completely agree) or 
three levels of agreement (disagree, neither disagree nor agree, agree).

We demonstrate T2S’s generalizability with F1 and MAE scores on nine diverse polit-
ical election datasets, collected from competing party Twitter accounts worldwide from 
2019 to 2021. In the current implementation,  T2S can internally leverage both special-
ized zero-shot classification models trained on Natural Language Inference (NLI) tasks 
and generic Large Language Models (LLMs) pre-trained on massive Web data that can 
be successfully used in zero-shot settings. While the former are computationally effi-
cient models offering good accuracy with minimal hardware requirements, LLMs achieve 
higher accuracy at the cost of increased computational demands. In this work, we com-
pare both approaches and show that for content-based stance detection methods, LLMs are 

1  the neutral level indicates that the user or text did not express a stance on that target or does not take a 
stance at all.
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preferable. This is because they process natural language with sophistication, capturing 
nuances and context more effectively, and seem to excel at capturing stances relative to a 
target.

The Ground Truth (GT) of a user’s stance comes from Voting Advice Applications 
(VAAs), online tools that help citizens identify their political leanings by comparing their 
political preferences with party political stances.

To sum up, this work investigates a completely unsupervised solution to user-stance 
detection by answering the following research questions:

RQ1 – What are the performances and insights of a completely unsupervised user-
stance detection framework leveraging zero-shot classification capabilities on textual con-
tents only? Here, we also compare T2S’s performance when used to detect either five or 
three stance classes.

RQ2 – Is there a general framework that performs well across different political con-
texts? Here, we explore the generalizing capabilities of T2S.

RQ3 – How well do Large Language Models perform in user stance detection tasks 
without fine-tuning? Here we explore the applicability of LLMs such asGPT-4, the best 
proprietary model, and Mixtral, the best open model (according to ChatBot Arena’s 
leaderboard).2

Contributions

•	 To the best of our knowledge, we filled the gap of investigating an unsupervised con-
tent-based-only model leveraging Large Language Models to detect a five-level and 
three-level stance of a user on multiple and diverse targets (the socio-political state-
ments on different political contexts).

•	 The proposed technique can be easily customized to be adapted to different social 
media platforms (as data sources) as it only works on users’ timelines containing exclu-
sively their texts. Working solely on text makes it independent of other features (net-
work data, user interactions data, etc.) that are usually specific to a certain social media 
platform. Moreover, it could be used to detect the stance of any user.

•	 In this study, we focus on a political scenario. The results can serve as an initial step in 
predicting users’ political orientation. However, T2S can be applied to other contexts 
such as extremism and radicalization, enabling the inference of user radicalization on 
specific themes (e.g., immigration and vaccines).

•	 Finally, we provide the collection of labeled datasets used in our experiments, along 
with the code for testing and evaluating methods, which can be accessed here.3 This 
resource may assist other researchers working on unsupervised stance-detection meth-
ods at the user level. To the best of our knowledge, there is no labeled dataset available 
for detecting user stances on multiple unrelated targets across various political contexts, 
especially one that utilizes a five-level stance classification.

The remainder of this paper is organized as follows: Section 2 discusses related work. In 
Section 3, we define the user stance-detection task and dataset collection. Section 4 details 
the Tweets2Stance framework and experiment settings. Section  5 summarizes and dis-
cusses the results, highlighting limitations. Finally, Section 6 concludes and suggests future 
work.

2  https://​chat.​lmsys.​org/, accessed on 2023-12-28.
3  https://​github.​com/​tizfa/​Tweet​s2Sta​nce

https://chat.lmsys.org/
https://github.com/tizfa/Tweets2Stance
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2 � Related work

In the classical definition, Biber and Finegan (1988), user-level stance detection involves 
detecting a user’s stance on a given topic based on their authored text. In the following 
paragraphs, we summarize the literature on user-based stance detection in social media, 
considering the features used and the learning approach.

2.1 � Content and behavioural features

Rashed et al. (2021) focused on user-based stance detection using content features alone. 
They employed Google’s Multilingual Universal Sentence Encoder (MUSE) and a pre-
trained CNN to extract tweet embeddings. User representation was obtained by averaging 
these embeddings and projected onto a two-dimensional plane using the Uniform Mani-
fold Approximation and Projection (UMAP) technique. The authors utilized hierarchical 
density-based clustering (HDBScan) to classify users into pro and anti stances, achieving 
an F1 score of 0.86 on a dataset of 168k users. Moreover, interaction patterns and histori-
cal behaviour on social media, in addition to content features, can be used as well: Darwish 
et  al. (2020) successfully clustered users based on feature similarities such as retweets, 
common hashtags, and retweeted accounts; Aldayel et al. (2019) achieved an F1 score of 
0.72 by leveraging users’ online behaviour cues; et al. (2017) Thonet et al. (2017) consid-
ered both text and social interactions to uncover topics, user viewpoints, and discourse; 
Magdy et al. (2016) focused on elements such as retweets, replies, mentions, URLs, and 
hashtags to predict unexpressed stances (a stance that may or may not have transpired yet), 
not to detect them (an existing stance in past data).4 Lastly, Fraisier et al. (2018) used con-
tent-based and social-based proximities in a multi-layer graph, achieving an F1 score of 
0.95.

2.2 � Supervised and unsupervised learning

Stance detection techniques using supervised learning rely on large annotated datasets 
(Mohammad et  al., 2016). User-based stance detection has received less attention in these 
competitions, but notable studies include (Aldayel et  al., 2019) and Magdy et  al. (2016). 
Aldayel et al. (2019) trained a stance detector for each topic using the SemEval2016 dataset 
with 3, 000 users. Magdy et al. (2016) collected timelines of 44, 000 users discussing the Paris 
terrorist attack, while Fraisier et al. (2018) applied a proximity-based two-level stance detector 
to different datasets related to political events and gun control. More recently (Ghosh et al., 
2019; Küçük and Can, 2020), the trend in language processing for stance-detection tasks relies 
on language representation models (e.g., BERT (Devlin et al., 2019)) pre-trained on large un-
annotated corpora and fine-tuned on labeled and domain-specific datasets (Devlin et al., 2019; 
Yin et al., 2019). The work of Devlin et al. (2019) demonstrated how BERT led to consider-
able performance improvements for NLP tasks such as sentiment analysis. Ghosh et al. (2019) 
reported BERT’s successful use in stance detection compared to other techniques. Here, the 
BERT model takes the text as input to generate representations of the words through multiple 
transformer layers, and then the system is fine-tuned on the task-specific data.

4  See footnote 1.
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2.3 � Stance detection and large language models

Recently, researchers have begun exploring the potential of Large Language Models (LLMs) 
in stance detection tasks, yielding contrasting results. Zhang et al. (2022) utilized ChatGPT for 
text-based stance detection, matching or surpassing state-of-the-art results on SemEval-2016 
(Mohammad et al., 2016) and PStance (Li et al., 2021) datasets. Aiyappa et al. (2023) found 
ChatGPT improved performance but warned of potential reliability issues due to data contam-
ination risks. Cruickshank et al. (2023) explored the efficacy of various LLMs with different 
prompt schemes and increasing contextual information on stance detection, finding that while 
LLMs show promise, they currently do not outperform traditional supervised learning models, 
highlighting the need for further research to improve LLMs’ stance detection abilities.

In general, it remains uncertain whether LLMs, particularly when incorporating prompt 
engineering and without utilizing fine-tuning on labeled data, can effectively carry out the task 
of stance classification. Our work aims to contribute to the literature with twofold results. On 
the one hand, we present a contribution in terms of unsupervised solutions that are still under-
represented in the literature. Existing unsupervised methods, such as Darwish et al. (2020), 
Trabelsi et al. (2018), Fraisier et al. (2018), and Fagni and Cresci (2022), rely on standard lin-
guistic features like n-grams, keyword counts, and content embeddings. Recognizing this lack 
and the increasing use of pre-trained models in stance detection, we propose Tweets2Stance 
(T2S), an unsupervised framework based on zero-shot classification, hence leveraging an 
LLM: it effectively detects the stance of multiple unrelated targets without the need for sepa-
rate models per target; unlike transfer-learning approaches that require training, our frame-
work is entirely unsupervised. On the other hand, we assess the potential of using "raw" LLMs 
in our framework, i.e. by replacing each module of T2S with an advanced LLM pre-trained on 
a large corpus of web data.

Comparing the T2S framework to state-of-the-art user-based stance detection methods pre-
sents several challenges. Firstly, the method by Rashed et al. (2021) filtered tweets by selecting 
mentions of specific targets, which is incompatible with our work as our topic lacks a well-
defined person or organization. Other methods rely on timelines of users connected through 
specific keywords, while T2S aims to infer the stance of any random user on any topic without 
leveraging shared features like retweets or common mentions. Unlike existing methods, updat-
ing context for new users in Tweets2Stance does not require recomputing networks and clus-
ters. Moreover, the unavailability of public datasets used by state-of-the-art methods prevents 
us from evaluating T2S on those datasets. Furthermore, the lack of publicly available labeled 
datasets for five-level stance further limits the comparison.

3 � Task definition

The task is to detect the stance Au
s
 of a Social Media User u with respect to a socio-political 

statement (or sentence) s making use of the User’s textual content timeline (sequence of 
textual posts) on the considered social media (e.g., the X-Twitter timeline). Some illustra-
tive examples are in Appendix C.

The stance Au
s
 represents a five-level categorical label: completely agree (5), agree (4), 

neither disagree nor agree (3), disagree (2), completely disagree (1). The integer map-
pings used by the Tweets2Stance framework are shown in parentheses. The label neither 
disagree nor agree encompasses both a not expressed and neutral stance. We refer to the 
agreement/disagreement level (or label) as the stance level (or label). The desired GT is the 
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label Gu
s
 , which represents the known agreement/disagreement level of User u regarding 

sentence s. The GT is solely used for evaluating our proposed framework and optimizing 
its parameters; no training step is involved. In this study, users are assumed to be X (Twit-
ter) accounts of various political parties from different countries, as described in the subse-
quent section.

3.1 � Data collection

A Voting Advice Application (VAA) is an online tool that helps citizens determine their 
political leaning by comparing their stance on socio-political statements (e.g., "Brexit was 
an error") with the positions of political parties. To analyze the Parties’ stances, we col-
lected data from nine political elections held between 2019 and 2021 in VoteCompass,5 
including the 2019 Great Britain Election WhoGetsMyVoteUK.6 The statements and cor-
responding Ground Truths (GTs) for each election and Party can be found in the provided 
repository.7 For our analysis, we collected the X (Twitter) timelines of the competing Par-
ties using the Full-Archive Search Twitter API. Since some Parties had significantly fewer 
tweets compared to others, we removed certain Parties from the analysis and focused on 
those listed in Table 1. Di represents the collection of tweets posted within i months before 
the election day (further details in the Methodology section).

4 � Methodology

In this Section we present the proposed Tweets2Stance (T2S) framework (Fig. 1) to detect 
the stance Au

s
 of a X (Twitter) User u regarding a sentence s, exploiting its X (Twitter) 

timeline TLu = [tw1, ..., twn] . In the first part (Sect.  4.1), we describe T2S leveraging a 
Zero-Shot Classifier (ZSC). In the second part (Sect. 4.2), we detail the usage of state-of-
the-art Large Language Models (LLM) in T2S.

4.1 � Tweets2Stance ‑ T2S

A User might either not talk about a specific political argument (here expressed with 
sentence s ), or debate on an issue not risen by our pre-defined set of statements. For 
these reasons, our framework executes a preliminary Topic Filtering step, exploiting a 
Zero-Shot Classifier (ZSC) to get only those tweets talking about the topic tp of the sen-
tence s. Yin et al. (2019) defines ZSC as a Language Model (e.g., BART or DeBERTa) 
pre-trained on Natural Language Inference tasks that, given a text and a set of labels 
(e.g., topics), assigns a classification probability score to each label. The higher the 
score assigned to a label, the higher the likelihood that the input text pertains to that 
specific label. After obtaining the in-topic tweets Iu

tps
through Topic Filtering, the Agree-

ment Detector module employs the same ZSC to detect the user’s agreement/disagree-
ment level. Figure 1 colour-codes the four parameters of the T2S framework to be tuned: 
i) the language model (LM) used for zero-shot classification (ZSC) in the Topic 

5  https://​www.​votec​ompass.​com/
6  https://​www.​whoge​tsmyv​oteuk.​com/#​!/
7  https://​github.​com/​margh​e943/​Tweet​s2Sta​nce_​gener​aliza​tion

https://www.votecompass.com/
https://www.whogetsmyvoteuk.com/#%21/
https://github.com/marghe943/Tweets2Stance_generalization
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Filtering and Agreement Detector modules to gauge topic agreement and sentence rele-
vance, respectively; ii) the dataset Di from which extracting the timeline TLu ; iii) the 
algorithm Alg to use in the Agreement Detector module; iv) the threshold th to get the 
in-topic tweets Iu

tps
 in the Topic Filtering module.

The next subsections provide detailed descriptions of the Topic Filtering and Agree-
ment Detector modules. We focus on a specific political scenario where the Twitter 
accounts of interest are those of the political Parties mentioned in Sect.  3.1, and the 
User u corresponds to the Party p. The choice of the dataset’s period ( Di ) as one of the 
parameters to tune is motivated by the use of T2S for stance detection during political 
elections, where the proximity to the elections may impact the likelihood of users dis-
cussing socio-political topics.

4.1.1 � Topic filtering

The Topic Filtering module extracts the in-topic tweets Iptps from the Twitter Timeline 
TLp of Party p, using the topic tps associated with sentence s (e.g., the topic for the 

Table 1   Details of the nine elections under study with the total number of tweets. Di contains i months of 
tweets. Values between round brackets are the average number of tweets per Party

Election No. of No. of D3 D4 D5 D7
parties statements

Alberta Provincia Elec-
tion

5 18 5119 (1024) 5701 (1140) 6755 (1351) 8502 (1700)

(AB19)
Australian Federal Elec-

tion
3 17 2538 (846) 3130 (1043) 3368 (1123) 4582 (1527)

(AU19)
Canadian Federal Elec-

tion
6 16 7460 (1243) 9284 (1547) 10750 (1792) 12903 (2151)

(CA19)
Great Britain Election 5 20 9135 (1827) 10783 (2157) 12074 (2415) 15145 (3029)
(GB19)
British Columbia 3 20 3560 (1187) 3751 (1250) 3969 (1323) 4448 (1483)
(BC20)
Saskatchewan Provincial 

Election
2 17 1070 (535) 1245 (623) 1557 (779) 1982 (991)

(SK20)
New foundland and 

labrador
3 12 930 (310) 986 (322) 1070 (357) 1293 (431)

Provincial Election 
(NFL21)

New Scotia Provincial 
Election

3 17 859 (286) 1027 (342) 1454 (485) 1727 (579)

(NS21)
Canadian Federal Elec-

tion
6 16 6752 (1125) 7756 (1293) 8734 (1456) 10931 (1822)

(CA21)
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sentence “overall, membership in the EU has been a bad thing for the UK” can be “UK 
membership in EU”). The topic definitions for all considered sentences can be found in 
the linked repository. The module utilizes the ZSC C to retrieve the in-topic tweets Iptps 
and their corresponding topic scores Tp

tps
.

C(twi, tps) ∈ [0, 1] indicates the degree to which tweet twi is associated with topic tps . The 
filtering threshold value th was varied to determine the best and optimal parameter set.

4.1.2 � Agreement detector

The Agreement Detector module (Fig.  1 - Module 2) computes the final five-valued 
label Ap

s through an algorithm Alg(Tp

tps
, S

p
s ) , defining

as the C scores of tweets Iptps with respect to sentence s, each one indicating the relevance 
and agreement of tweet twi with sentence s . Each employed algorithm Alg exploits one of 
the following mapping functions:

(1)I
p

tps
={tw1, ..., twm|C(twi, tps) >= th}

(2)T
p

tps
={C(twi, tps)|twi ∈ I

p

tps
}

(3)Sp
s
= {C(twi, s)|twi ∈ I

p

tps
}

Fig. 1   Our Tweets2Stance framework to compute the agreement/disagreement level Au

s
 of User u in regard 

to sentence s leveraging a Zero-Shot Classifier. The inputs are the Twitter timeline TL
u
 extracted from a 

certain time-period dataset D
i
 , the sentence s, the topic tp associated with s, a language model LM, a thresh-

old th and an algorithm Alg. The highlighted components (in green) are the parameters that we’ll vary dur-
ing our experiments, as explained in Sect. 4.3
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where M1(�) ranges from 1 to 5, corresponding to the five agreement/disagreement labels 
defined in Sect. 3. Similarly, M2(�) ranges from 1 to 4, representing an intermediate agree-
ment/disagreement scale. Specifically, M2(�) = {1, 2} has the same meaning as in Sect. 3, 
while M2(�) = 3 indicates agreement and M2(�) = 4 represents complete agreement. The 
rationale behind this intermediate mapping is explained in Algorithm 4 (subsection 4.1.2). 
The proposed algorithms ordered by complexity are the following: 

Algorithm 1	 [Alg1] The label Ap
s is computed as 

 where �i ∈ S
p

tps
 and ti ∈ T

p

tps
.

Algorithm 2	 [Alg2] First, it maps each tweet twi ∈ I
p

tps
 into the label li ∈ {1, 2, 3, 4, 5} 

using its sentence score �i ∈ S
p
s

 then, Ap
s is 

 The step of assigning li to each tweet twi ∈ I
p

tps
 (Eq. 7) aims to achieve a fairer Ap

s . 
Tweet normalization aids in aggregating the contribution of each tweet ( li ) through 
standard mean, employing macro aggregation. Macro-metric aggregation is preferred 
in multi-class classification setups when class imbalance is suspected. In the current 
context, the values of li are unbalanced with respect to sentence s. Typically, if Party 
p agrees with a sentence, there will be numerous tweets in agreement (many li = 4 or 
li = 5 ), and few or no tweets in disagreement (few labels li = 1 , or li = 2 , or li = 3 ), and 
vice-versa.

Algorithm 3	 [Alg3] Like Alg2, but Ap
s is computed with a slight modification. Introduc-

ing Vl as the number of voters for the integer label l ∈ {1, 2, 3, 4, 5}

(4)M1(�) =

⎧
⎪⎪⎨⎪⎪⎩

1 if� ∈ [0, 0.2)

2 if� ∈ [0.2, 0.4)

3 if� ∈ [0.4, 0.6)

4 if� ∈ [0.6, 0.8)

5 if� ∈ [0.8, 1]

(5)M2(�) =

⎧⎪⎨⎪⎩

1 if� ∈ [0, 0.25)

2 if� ∈ [0.25, 0.5)

3 if� ∈ [0.5, 0.75)

4 if� ∈ [0.75, 1]

(6)Ap
s
=

⎧⎪⎨⎪⎩

M1

�∑�Iptps �
i=1

�i⋅ti

∑�Iptps �
i=1

�i

�
if ∣ I

p

tps
∣≠ 0

3 otherwise

(7)li = M1(�i)

(8)Ap
s
=

⎧⎪⎨⎪⎩

�∑�Iptps �
i=1

li

�Iptps �
�
if ∣ I

p

tps
∣≠ 0

3 otherwise



7252	 Machine Learning (2024) 113:7243–7266

 where li are the labels computed from Eq. 7. Let’s define v = max(Vl) , then 

 where 
⌊
...
⌉
 is the rounding function. Majority voting (case 10a) potentially contributes 

more to assigning correct labels than the plain standard mean (case 10b taken from 
Eq. 8 of Alg2) as it effectively accounts for class imbalance.

Algorithm 4	 [Alg4] The previous algorithms consider the neutral label nl = 3 (neither 
disagree, nor agree) even when ∣ Iptps ∣≠ 0 . However, we explored the scenario where nl is 
only considered when ∣ Iptps ∣= 0 . In such cases, the user might not have taken a position 
on the sentence s yet, and determining Ap

s based on a single tweet may lack significance. 
Hence, Alg4 extends Alg3 with the following modifications: 

 where li ∈ {1, 2, 3, 4} . Then, we define 

 Here, m is the minimum number of tweets required to activate either the majority vot-
ing algorithm or the standard mean. The output labels {3, 4} from M2(s) correspond to 
the final labels agree and completely agree, and they are mapped to the integer labels 4 
and 5 as defined in Sect. 3. 

4.2 � Enhancing T2S efficiency: leveraging state‑of‑the‑art LLMs

Figure 2 describes how our T2S framework can leverage either a ZSC or an LLM as the 
Topic Detector component. The Topic Detector employing zero-shot classification (ZSC) is 
detailed in Sect. 4.1, with the application of an LLM is explained subsequently. Enhancing 
Transformer-based language models by increasing their size and refining their pre-train-
ing has led to state-of-the-art LLMs (such as GPT-4 and Mixtral) achieving higher profi-
ciency in processing and adhering to instructions, demonstrating superior performance in 
understanding and completing tasks with increased precision and efficiency (Kasneci et al., 
2023). Hence, we also assess our T2S framework’s capabilities by implementing either 
one of the two modules –Topic Filtering and Agreement Detector – and then both, with an 
advanced LLM, obtaining the following three configurations: 

(9)Vl = |{li ∶ li = l}
|Iptps |
i=1

|

⎧⎪⎨⎪⎩

A
p
s =l if�{l ∶ Vl = v}� = 1 (10a)

�∑�Iptps �
i=1

li

�Iptps �
�
if�{l ∶ Vl = v}� > 1 (10b)

3 otherwise (10c)

(10)li = M2(�i)

(11)ap
s
=

⎧⎪⎨⎪⎩

3 if ∣ I
p

tps
∣< m

majority voting (case 10a)

rounded standard mean (case 10b)

(12)Ap
s
=

{
a
p
s ifa

p
s = 1 ∨ a

p
s = 2

a
p
s + 1 ifa

p
s = 3 ∨ a

p
s = 4
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1.	 LLM Topic Filtering - T2S Agreement Detector First and foremost, the LLM is used 
to get the filtered tweets Iptps . For each tweet, we provide the LLM with a list of topics 
related to sentences from the political election involving Party p, requesting it to iden-
tify the relevant topics, if any. Section 4.3.3 describes the used prompt_filtering. Then, 
the T2S Agreement Detector configured with the optimal settings (see later on Table 4 
with the highest F1 score for five and three labels) is used on those filtered tweets to 
compute the five-level stance Ap

s . Note that the sentence scores needed for Alg4 (the best 
algorithm in the optimal setting) are the ones computed using the ZSC of T2S.

2.	 T2S Topic Filtering - LLM Agreement Detector First and foremost, the T2S Topic Filter-
ing is used to get the filtered tweets Iptps using the ZSC topic scores and the threshold th 
from the T2S’s optimal setting. Then, the LLM is used to compute the five-level stance 
A
p
s by prompting it with precise instructions and the set of in-topic tweets, as shown in 

Sect. 4.3.3. Briefly, it detects and outputs the stance found in the provided tweets. Dif-
ferently from the T2S’s Agreement Detector, if the set of in-topic tweets is empty, all 
tweets for that political election and Party p are used.

3.	 LLM Topic Filtering - LLM Agreement Detector The LLM replaces both T2S’s mod-
ules. Hence, it is leveraged to both get the filtered tweets Iptps for the current Party p and 
sentence s, and then to compute the five-level stance Ap

s given the set of in-topic tweets. 
Differently from the T2S’s Agreement Detector, if the set of in-topic tweets is empty, 
all tweets for that political election and Party p are used.

Each experiment involving the LLM as the Agreement Detector is conducted for the three-
level stance too (’disagree’, ’neither disagree nor agree’, ’agree’), prompting the LLM 
with a three-level stance instead of five. Last but not least, note that LLMs like GPT-4 and 
Mixtral are proficient in handling multilingual text and do not require translation into Eng-
lish (Jiang et al., 2024).

Fig. 2   T2S’s architecture leveraging either a ZSC model or a generic LLM in the zero-shot setting. The 
parameters required for T2S using a ZSC model are marked in green. Implementing the Topic Filtering and 
Agreement Detector modules via an LLM involves adequately prompting the LLM with the content (tweets, 
topics, and sentences) we possess
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4.3 � Experiment settings

This work began before GPT-3’s introduction and the subsequent emergence of Large Lan-
guage Models. As a consequence, we offer two versions of T2S: one utilizing ZSC and 
another that employs an LLM. To evaluate the T2S’s performance we have to choose the 
baselines to which to compare T2S, and the evaluation metrics. Furthermore, the T2S ver-
sion with ZSC requires choosing the set of values for each of the four parameters to tune 
(the dataset size Di , the language model LM for ZSC, the algorithm Alg, and the topic-
filtering threshold th - Fig. 1). Conversely, the T2S version employing an LLM requires 
configuring the parameters of the cutting-edge LLMs to be tested (GPT-4 and Mixtral) and 
selecting appropriate prompts for the experiments.

4.3.1 � Baselines and evaluation metrics

To validate T2S’s abilities, we compare its performance with two bare baselines: (i) Ran-
dom: the final agreement/disagreement label Ap

s is set to a random integer picked from 
a discrete uniform distribution of int ∈ [1, 5] ; (ii) Assign-highest-value: Ap

s is always 
assigned the highest label (completely agree) since our datasets are skewed towards the 
agree and completely agree values.

In assessing the performance of the detection model for this stance detection task, tra-
ditional error metrics such as MSE, MAE, R2 Score, Residual Plots, and Macro Averaged 
Mean Absolute Error are commonly used. However, a custom error metric is needed to 
account for the varying importance of errors among the stance classes. For example, mis-
classifying as agree instead of completely disagree is considered a more acceptable error 
than misclassifying as neither disagree, nor agree instead of agree, even though both errors 
have a magnitude of one. In the absence of such a metric, MAE (Chai and Draxler, 2014) 
is the most appropriate choice. Additionally, the F1 weighted score (Sebastiani, 2002) is 
employed due to the integer nature of the detected labels and the imbalanced distribution of 
the GT values among the agreement/disagreement labels.

4.3.2 � Parameters for T2S with ZSC

We choose three to seven months of tweets ( Di ), a filtering threshold from 0.5 to 0.9, four 
algorithms for the Agreement Detector module (Sect.  4.1.2), and three language models 
for the ZSC. The chosen filtering threshold range is set higher than 0.5 to ensure better 
agreement between a text and a topic. The language models that we adopt are8: a) BART-
large (Lewis et  al., 2020) fine-tuned on the MultiNLI dataset (Williams et  al., 2018), b) 
DeBERTa-v3-base-mnli-fever (DeBERTa), and c) covid-twitter-bert-b1-fever-anli (Covid-
twitter-BERT). Since the majority of collected tweets are in English, we use English lan-
guage models. Non-English tweets are translated using Google Translate.9 Our attempts 
to employ Multi-Language Models resulted in worse performances Gambini et al. (2022). 
BART and DeBERTa are adapted to handle tweets by removing mentions, hashtags, and 

8  From www.​huggi​ngface.​co: a) facebook/bart-large-mnli, b) MoritzLaurer/DeBERTa-v3-base-mnli-fever-
anli, c) digitalepidemiologylab/covid-twitter-bert-v2-mnli.
9  https://​github.​com/​lusha​n88a/​google_​trans_​new

http://www.huggingface.co
https://github.com/lushan88a/google_trans_new
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emojis, while Covid-twitter-BERT, which is already trained on tweets, is evaluated with 
and without those structures.

4.3.3 � State‑of‑the‑art LLMs set‑up and prompting strategies

We select two of the most well-known and high-performing LLMs to incorporate into the 
T2S framework to solve the Stance Detection task: GPT-4, the best proprietary model, and 
Mixtral, the best open source model. Table 2 summarizes the set-up information for both 
GPT-4 and Mixtral. As for the latter, we choose the 8x7B Instruct version rather than the 
plain Mixtral 8x7B, as Instruct has been optimised through supervised fine-tuning for care-
ful instruction following10; besides, the GGML_TYPE_Q4_K quantization method11 is 
chosen as it is described as having medium and balanced quality.12

The GPT-4’s sampling parameters (temperature and top_p) are determined based on 
tests conducted by the OpenAI community, as documented in the thread13 on mastering 
temperature and top_p in the ChatGPT API. The recommended approach is to set either the 
temperature or top_p while keeping the other parameter at its default value (1.0) to achieve 
optimal performance. For our analysis, we select the ’Data Analysis Scripting’ setting with 
a temperature of 0.2. In the case of Mixtral, we opt for a temperature of 0.0 to ensure deter-
ministic results, while leaving the top_p parameter at its default value (0.95).

Prompts
Considering appropriate prompting schemes is the scope of Prompt engineering, 

a new field arising with the emergence of LLMs, that focuses on optimizing inputs and 
prompts to maximize model outputs (White et al., 2023). To improve the interaction with 
the selected LLMs we use the typical Role-Task-Requirements-Instructions (RTRI) prompt 

Table 2   Set-up for GPT-4 and Mixtral. The not-mentioned parameters are the default ones of the Azure 
Microsoft API for GPT-4 and the llama_ccp library for Mixtral

GPT-4 Mixtral

Model GPT-4-Turbo Mixtral-8x7B Instruct
Version – mixtral-8x7b-instruct-v0.1.Q4_K_M
Size (no. of parameters) [100B − 200B] 46.7B
Temperature 0.2 0.0
Top_p 1.0 0.95
Max Context Length 128, 000 tokens 32, 768 tokens
Max Generated Sequence Length 512 tokens 512 tokens
GPU – NVIDIA RTX 6000 Ada Generation 

(32GB VRAM)
API Microsoft Azure OpenAI 

Service
–

(Python) Library – llama_cpp

10  https://mistral.ai/news/mixtral-of-experts/
11  "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales 
and mins are quantized with 6 bits. This ends up using 4.5 bits-per-word.
12  https://​huggi​ngface.​co/​TheBl​oke/​Mixtr​al-​8x7B-​Instr​uct-​v0.1-​GGUF
13  https://​commu​nity.​openai.​com/t/​cheat-​sheet-​maste​ring-​tempe​rature-​and-​top-p-​in-​chatg​pt-​api/​172683

https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF
https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api/172683


7256	 Machine Learning (2024) 113:7243–7266

structure that Open AI supposedly used14 to organize the interaction clearly and effectively: 
initially, the LLM is assigned a specific role to embody. Following this, the task is clearly 
outlined, providing a detailed description of the objectives to be achieved; subsequently, 
the requirements section specifies the desired characteristics of the output, ensuring clar-
ity on the expected results; finally, the instructions segment offers direct guidance on the 
actions the LLM should undertake to fulfill the prompt successfully. Moreover, the Micro-
soft Copilot Team highlights the importance of adopting a polite and supportive tone.15 
Utilizing polite expressions, including ’please’ and ’thank you,’ fosters a dialogue charac-
terized by respect, civility, and constructiveness. Conversely, harsh or inflammatory words 
can provoke unwanted behaviours.

Topic filtering (Prompt 1) - This prompt starts by asking the LLM to write again the 
list of topics we provide and then the first mentioned topic. This strategy is adopted in 
response to Mixtral’s issue with retaining all topics in the list, aiming to enhance memory 
recall and focus. During topic filtering, the prompts’ length stayed within the LLM’s maxi-
mum context length.

Stance detection (Prompt 2) - We ensure that the combined length of the prompt and 
the output sequence do not exceed the maximum context size for the current LLM. If the 
length of the prompt exceeds this maximum context size, we selectively remove the oldest 
tweets from the block of tweets until an appropriate size is achieved.

5 � Results and discussion

Figure 3 shows the F1 and MAE scores over all nine elections respectively. Table 4 indi-
cates the four general optimal settings across the elections by varying the number of labels 
and the metric considered.

5.1 � RQ1: What are the performances and insights of T2S?

The optimal settings for T2S in nine election datasets were identified through a two-step 
process focusing on minimizing MAE and maximizing F1, prioritizing MAE. Initially, set-
tings were chosen based on algorithm (Alg) and threshold (th) adjustments. The perfor-
mance of T2S (Fig. 3) was found to be superior to baselines, with F1 scores between 0.23 
and 0.49 and MAE scores from 0.94 to 1.45. The preferred algorithms were Alg3 and Alg4, 
showing that aggregating tweet contributions results in better detection accuracy than aver-
aging sentence scores. However, the optimal filtering thresholds, dataset time periods, and 
language models for the ZSC varied significantly across datasets.

These differences can be attributed to two intertwined factors: i) the diverse topic 
knowledge of different language models and ii) the manner and timing of a user’s (political 
party’s) expression on social media, which influences T2S stance detections. The choice 
of the language model is crucial, as models not trained or fine-tuned on the topics in the 
dataset struggle to assign accurate scores to texts containing those topics. As shown by the 
experiments in response to RQ3 - Sect. 5.3, this issue is mitigated by using GPT-4 model 
within the T2S framework.

15  https://​www.​micro​soft.​com/​en-​us/​workl​ab/​why-​using-a-​polite-​tone-​with-​ai-​matte​rs

14  https://​www.​linke​din.​com/​pulse/​prompt-​engin​eering-​educa​tors-​making-​gener​ative-​ai-​work-​danny-​liu

https://www.microsoft.com/en-us/worklab/why-using-a-polite-tone-with-ai-matters
https://www.linkedin.com/pulse/prompt-engineering-educators-making-generative-ai-work-danny-liu
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Regarding user expression, there are three challenges for T2S: 1) detecting stance on 
unmentioned topics from conferences, possibly leading to neither agree, nor disagree 
assignments; 2) potential errors with unknown language model expressions, and 3) dataset 
time variability affecting topic relevance. Obtaining the user’s full timeline, not just limited 
periods, could help, as discussed in our earlier study (Gambini et al., 2022). For three-level 
stance detection, F1 scores are notably closer (around 0.6) to top literature scores (Ghosh 
et al., 2019; Mohammad et al., 2016).

5.2 � RQ2: Can T2S generalize over diverse political contexts?

To determine an optimal setting for T2S across nine election datasets, average F1 and 
MAE performances were calculated, leading to the selection of the top four settings based 
on these metrics for either three or five stance values (Table 4). The analysis revealed that 
the dataset’s time period Di and the filtering threshold th have a minimal impact on perfor-
mance. Effective settings often utilize majority voting and neutral label assignment based 
on the presence of a certain number of relevant tweets. The most successful language mod-
els for zero-shot classification (ZSC) are either fine-tuned with numerous hypothesis-prem-
ise pairs or pre-trained on tweets. The presence of mentions, hashtags, and emojis showed 
little effect on outcomes. These four settings nearly matched the best individual election 
performances, outdoing baselines and lesser settings, though T2S’s performance still var-
ies significantly across datasets, with up to 0.2 points in F1 and 0.8 in MAE differences. 
This variation is linked to the unique ways political parties communicate their platforms on 
social media.

In summary, although sacrificing some performance, a general framework setting can 
achieve satisfactory results across different political contexts, consistently outperforming 
random and assign-highest-value baselines.

5.3 � RQ3: How well do LLMs perform in user stance detection tasks 
without fine‑tuning?

Table 3 summarizes the results for each combination of the two T2S’s steps (Topic Filter-
ing and Agreement Detection) implemented either with ZSC or by leveraging an advanced 
LLM (GPT-4 or Mixtral). The performance of the original T2S is related to the optimal 
setting over the F1 score (see the first and third rows of Table 4).

Implementing the Agreement Detector with an advanced LLM yields a superior aver-
age MAE score compared to the original T2S, indicating closer alignment with Ground 
Truth stances. However, Mixtral appears to lag in correctly identifying stances when using 
in-topic tweets filtered with the original T2S. Conversely, GPT-4 demonstrates stronger 
performance in five-level stance classification; yet, it encounters challenges in three-level 
stance tasks, often misinterpreting positive stances (’agree’, ’completely agree’) as nega-
tive (’disagree’, ’completely disagree’), and vice versa, alongside mislabeling both as neu-
tral stances more frequently. Moreover, replacing the Topic Filtering with an advanced 
LLM yields comparable or lower performance than the original T2S. The filtering using 
Mixtral seems more aligned with the T2S’s Agreement Detector (using DeBERTa as ZSC). 
Even in this setting, the average MAE is lower compared to T2S; however, the significantly 
lower F1 scores on the three-level stance (both derived and computed) may indicate that 
this configuration mislabeled the positive/negative stance with the neutral one more fre-
quently. Last but not least, replacing both the Topic Filtering and the Agreement Detector 
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with an advanced LLM brought the most interesting results. Mixtral still lacks stance detec-
tion capabilities on the five-level stance, even though it may be a good Topic Filterer as 
shown in the "Topic Filtering w/Mixtral + T2S Agreement Detector" experiment. None-
theless, it now presents a good stance detection ability in recognizing a three-level stance, 
as the MAE scores exhibit. Furthermore, GPT-4 can greatly increase/decrease the F1/MAE 
score of five-level stance detection by 0.12/0.64 points flat and the three-level stance by 
0.09/0.32. Integrating advanced Large Language Models (LLMs) such as GPT-4 and Mix-
tral significantly improves the T2S framework. Proprietary LLMs like GPT-4 enhance the 
framework’s accuracy, while open-source LLMs like Mixtral also prove to be effective, 
particularly in distinguishing between three levels of stance.

5.4 � Potential and limitations

Tweets2Stance detects political orientation in election campaigns, aiding in spotting radi-
calization on topics like vaccines or immigration. While it extends beyond X(Twitter) to 
platforms like Facebook, adapting to new contexts poses some challenges. Domain adap-
tation is essential due to varied topics, and biased pre-trained models can skew results. 
Limited vocabulary raises issues with domain-specific terms, and overfitting on small 
datasets reduces generalizability. Moreover, multilingualism adds complexity, requiring 
multilingual training or translation methods. Experiments have shown that transitioning 
from zero-shot learning (ZSL) models to Large Language Models (LLMs) significantly 
enhances the T2S framework’s performance. LLMs excel in their intricate understand-
ing of texts, adeptly processing diverse writing styles, including slang and ironic expres-
sions. This intrinsic capability substantially improves T2S’s filtering steps and evaluation 
agreement on topic-related texts, leading to a significant reduction in evaluation errors for 

Table 3   Performance of T2S by replacing each module (Topic Filtering and Agreement Detector) with 
either GPT-4 or Mixtral. Derived implies the 3-labelled stance is derived from the computed 5-labelled 
stance, whereas computed means that the 3-labelled stance is computed from scratch. The avg F1|MAE is 
computed by averaging over the F1|MAE of the nine political elections

Method avg F1 avg MAE

5 labels 3 labels 5 labels 3 labels

derived computed derived computed

original T2S 0.29 0.53 – 1.56 0.85 –
T2S Topic Filtering + Agreement Detector 

w/ Mixtral
0.19 0.47 0.46 1.23 0.69 0.67

T2S Topic Filtering + Agreement Detector 
w/ GPT-4

0.34 0.50 0.50 1.07 0.63 0.63

Topic Filtering w/ Mixtral + T2S Agree-
ment Detector

0.28 0.47 – 1.54 0.89 –

Topic Filtering w/ GPT-4 + T2S Agree-
ment Detector

0.22 0.37 – 1.39 0.82 –

Topic Filtering and Agreement Detector 
w/Mixtral

0.24 0.57 0.58 1.13 0.61 0.59

Topic Filtering and Agreement Detector 
w/GPT-4

0.41 0.62 0.62 0.94 0.53 0.54
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individual texts and across a user’s entire timeline. A critical aspect to consider is that an 
LLM’s prediction quality depends on its complexity, which can have economic implica-
tions (e.g., GPT-4 is a paid service) and computational impacts. While ZSL models offer 
acceptable accuracy levels with the advantage of being freely available and less computa-
tionally costly, LLM models provide better accuracy and superior multilingual capabilities 
but generally entail higher implementation costs. However, the T2S framework offers flex-
ibility in choosing the best solution-whether a ZSL or an LLM model-based on the needs 
and context of the application.

6 � Conclusion

The main purpose of this work was to devise and probe the specific and generalizing capa-
bilities of Tweets2Stance, an unsupervised stance detection framework based on Zero-Shot 
Learning that detects a five-level user’s stance about specific social-political statements by 
analyzing content-based analysis of its X (Twitter) timeline only. The T2S version leverag-
ing a Zero-Shot Classifier outperformed the baselines (random and assign-highest-stance-
value) on all nine election datasets and demonstrated its ability to generalize across diverse 
political contexts with an average MAE of 1.56 and an average F1 of 0.29. However, the 
scarcity of relevant posts to socio-political statements and the language model’s limita-
tions (domain adaptation, data bias, and limited vocabulary) pose constraints on the T2S 
framework’s capabilities. To address these limitations, we implemented either the Topic 
Filtering or Agreement Detection module, and then both, utilizing a state-of-the-art LLM 
such as GPT-4 or Mixtral: implementing both modules with an LLM enhances T2S’s capa-
bilities from an average F1|MAE score of 0.29/1.56 to 0.41/0.94. T2S fills the SOTA gap 
of unsupervised stance detection models of multiple unrelated targets using content fea-
tures and innovative language models. While SOTA user-based methods achieve higher 
F1 scores, they focus on simpler targets (e.g., pro or anti-Trump) with limited stance levels 
(from two to three); besides, they use a straightforward filtering approach (e.g., exclud-
ing tweets mentioning a specific person or organization) or focus on interconnected users 
through keywords, URLs, and hashtags. In contrast, the T2S framework detects the five-
level stance of a user on multiple and diverse targets in various contexts, leveraging the 
unfiltered social media timeline (filtering applied automatically).
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Appendix A Prompts
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Prompt 2   Stance Detection with LLM. The notation < A|B > signifies that one should 
select either option A or option B to replace < A|B > . <Folded_Hands_Emoji> must be 
replaced by the real emoji. Every < tweet1 > must be replaced with the text from the ith 
tweet.
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Appendix B

RQ1‑RQ2 results

See Fig. 3 and Table 4

Fig. 3   F1 and MAE scores for all nine elections across baselines (assign-highest-value and random), best 
and worst setting for each election, and general optimal setting. The green boxes display the best setting for 
each election
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Appendix C

Illustrative examples of stance detection from tweets

See Table 5

Table 4   The four optimal settings over no. of labels and metric 

no. of metric D
i

model alg th avg F1 avg MAE
labels

5 F1 D
3

DeBERTa alg
4

0.9 0.29 1.56
min no. of tweets: 3

5 MAE D
4

Covid-twitter-BERT alg
3

0.9 0.20 1.43
with # and emojis

3 F1 D
3

DeBERTa alg
4

0.6 0.53 0.85
min no. of tweets: 3

3 MAE D
5

DeBERTa alg
3

0.9 0.49 0.82
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