
Knowledge-Based Systems 281 (2023) 111067

A
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Modularity-based approach for tracking communities in dynamic social
networks
Michele Mazza, Guglielmo Cola ∗, Maurizio Tesconi
Institute of Informatics and Telematics, National Research Council, Via G. Moruzzi, 1, 56124, Pisa, Italy

A R T I C L E I N F O

Keywords:
Community detection
Community tracking
Dynamic communities
Social network analysis

A B S T R A C T

Community detection is a crucial task to unravel the intricate dynamics of online social networks. The
emergence of these networks has dramatically increased the volume and speed of interactions among users,
presenting researchers with unprecedented opportunities to explore and analyze the underlying structure of
social communities. Despite a growing interest in tracking the evolution of groups of users in real-world
social networks, the predominant focus of community detection efforts has been on communities within static
networks. In this paper, we introduce a novel framework for tracking communities over time in a dynamic
network, where a series of significant events is identified for each community. Our framework adopts a
modularity-based strategy and does not require a predefined threshold, leading to a more accurate and robust
tracking of dynamic communities. We validated the efficacy of our framework through extensive experiments
on synthetic networks featuring embedded events. The results indicate that our framework can outperform the
state-of-the-art methods. Furthermore, we utilized the proposed approach on a Twitter network comprising
over 60,000 users and 5 million tweets throughout 2020, showcasing its potential in identifying dynamic
communities in real-world scenarios. The proposed framework can be applied to different social networks and
provides a valuable tool to gain deeper insights into the evolution of communities in dynamic social networks.
1. Introduction

With the rapid proliferation and evolution of various social net-
working systems, such as online social networks, mobile networks [1],
and collaboration networks [2], social network analysis has emerged
as a critical research topic. In this field, community detection plays a
key role in uncovering meaningful group structures within networks,
offering insights into the underlying social dynamics. Hence, various
community detection algorithms have been proposed, considering fac-
tors such as individual cooperative or hostile relationships [3], and
the utilization of local information to identify hidden communities [4].
Despite the significant attention that community detection has received
in recent literature, most approaches have focused on static networks,
overlooking the temporal properties inherent in real-world networks.
Traditional methods rely on aggregation to build a static network that
represents all the interactions over a specified period [5]. Inevitably,
such representation is unable to capture the evolving nature of com-
munities influenced by time-sensitive events. For example, in a Twitter
retweet network [6,7] the evolution of community structures can be
driven by factors like new users starting to retweet a specific account
or existing community members ceasing their interactions. Treating
these types of networks as static can lead to invalid associations and

∗ Corresponding author.
E-mail addresses: michele.mazza@iit.cnr.it (M. Mazza), guglielmo.cola@iit.cnr.it (G. Cola), maurizio.tesconi@iit.cnr.it (M. Tesconi).

an oversimplified representation of communities. A user may show
similarities with a community at a certain time and later move towards
a different community: this user would represent the only connection
between the two communities, and omitting the temporal properties
may lead to the aggregation of these communities as a single large
community. In addition, time can also affect content semantically. For
example, the meaning of the hashtag #MeToo changed dramatically
with the emergence of the #MeToo social movement. Thus, community
detection in such networks is crucial to enable a deeper understanding
of the underlying dynamics.

A dynamic network can be represented as a time series of static
networks called snapshots [8]. Each snapshot corresponds to the in-
teractions aggregated over a defined period, such as a week or an
hour. An intuitive method to detect communities in a dynamic net-
work partitioned into snapshots consists in employing well-studied
static community detection algorithms on each snapshot. Next, dy-
namic communities can be tracked by identifying the events that shape
the evolution of a community over time [9–11]. This step involves
matching the communities found at different snapshots through an
algorithm, usually based on the similarity of community members.
Therefore, an arbitrary threshold is required to determine if two or
vailable online 9 October 2023
950-7051/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.knosys.2023.111067
Received 14 February 2023; Received in revised form 27 September 2023; Accepte
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 5 October 2023

https://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
mailto:michele.mazza@iit.cnr.it
mailto:guglielmo.cola@iit.cnr.it
mailto:maurizio.tesconi@iit.cnr.it
https://doi.org/10.1016/j.knosys.2023.111067
https://doi.org/10.1016/j.knosys.2023.111067
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2023.111067&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.

M
h
m
c
T
t
e

c
i
p
t
m
f
a
o

n
R
t
o
t
i

i
t
a
e
a
f
a

more communities found at different snapshots are indeed the result
of the evolution of the same community over time. The main draw-
back is that the final result may change drastically depending on the
selected threshold: a high similarity threshold leads to less tolerance
for fluctuating members, whereas setting a too-low similarity threshold
leads to the merge of dissimilar communities. The scarcity of threshold-
free frameworks negatively affects their real-world implementation,
which could instead prove useful in countering threats that plague
online social platforms such as disinformation [12,13] and information
manipulation [14,15].

In this paper, we introduce a threshold-free framework crafted
to track the evolution and structure of communities across multiple
snapshots of a dynamic network. Given the communities detected
across all snapshots, we represent the entire network as a similarity
network, where the nodes are the static communities found and the
weight of the edges corresponds to their similarity. By applying Local
odularity Optimization [16], we reveal the groups of nodes having
igh modularity and similarity. In this manner, we turn the community
atching task into a modularity optimization problem where dynamic

ommunities are found by optimizing modularity locally on all nodes.
he node groups found embody the evolution of a community over
ime. Finally, each group is disentangled to reconstruct the temporal
volution of the represented dynamic community.

Notably, by constructing a single network encompassing all static
ommunities across snapshots, our approach avoids sequential match-
ng, which struggles to track intermittent communities that may not be
resent in consecutive snapshots. Through local modularity optimiza-
ion, we derive groups of communities with robust interconnections and
arked similarities, at the same time preserving a desirable degree of

lexibility between them. Importantly, our threshold-free design guar-
ntees consistent and trustworthy outcomes, promoting the application
f our framework in real-world scenarios.

For the evaluation of our framework, we used four synthetic dy-
amic networks [9] embedded with distinct communities and events.
esults indicate that, in most cases, our approach performs better than

he state-of-the-art community tracking methods. In the second part of
ur evaluation, we show how the proposed approach can be applied
o a real-world co-hashtag Twitter network [17] to extract relevant
nformation about dynamic communities.

The main contributions of our work can be summarized as follows:

• We propose a novel framework for tracking the evolution and
structure of communities in dynamic networks, leveraging local
modularity optimization. The ability to track communities in
dynamic networks is of paramount importance to fully understand
the underlying social dynamics of real-world networks, like online
social networks.

• Our framework offers a significant advantage over existing meth-
ods by eliminating the need for setting a specific threshold,
leading to more accurate and robust tracking of dynamic com-
munities.

• The evaluation of our novel framework on four synthetic datasets
demonstrates its superior performance compared to the state of
the art.

• We showcase the practical application of our framework on a
Twitter dataset generated by real malicious accounts, illustrating
its potential to extract relevant and suggestive information about
dynamic communities.

The subsequent section offers a brief overview of existing research
n dynamic community tracking. In Section 3, we provide founda-
ional concepts pertinent to dynamic networks. Section 4 delves into

comprehensive description of our proposed framework. Section 5
ncompasses both the evaluation and comparison of our framework
gainst other methodologies and the presentation of results derived
rom a real-world network. Finally, Section 6 wraps up the paper with
concise summary and potential avenues for future research.
2

2. Related work

The inherent dynamic nature of most social networks [18] has
spurred significant research interest in studying their evolution in
recent years. In this section, we briefly review works that, similar to
our approach, adapt existing static community detection algorithms
to capture the temporal dynamics of social networks [19]. This ap-
proach is particularly suitable for social networks with highly dynamic
community structures [20]. While here we provide an overview of the
key contributions from each work, a detailed examination of selected
studies is provided in Section 5.

One pioneering work that utilized static network snapshots to track
community evolution over time is presented in [21]. The authors
proposed a method based on agglomerative hierarchical clustering
to identify and track stable clusters over time. In [22], the clique
percolation method was extended to monitor events in the evolution
of dynamic networks. They built joint graphs for pairs of consecutive
snapshots and then matched the clique-based communities obtained
using an autocorrelation function to find overlap between two states
of a community. The work presented in [23] introduced a strategy,
implemented as bit operations, to identify events between communities
found in two consecutive snapshots. Another efficient approach to
identify and track dynamic communities across multiple snapshots is
described in [9]. The authors employed a community matching strategy
based on weighted bipartite matching. A framework proposed by [20]
offers an event-based approach for detecting transitions between com-
munities in consecutive snapshots. In a later work from the same
authors [10], the event definition formula has been improved to track
community transitions throughout the observation time, no longer
restricting it to consecutive snapshots. The Group Evolution Discovery
(GED) framework, introduced by [11], takes into account not only the
similarity of community members but also the positions and importance
of nodes within the community. This approach facilitates matching
communities and tracking their evolution across consecutive snapshots.
More recent studies [24,25] proposed a method to detect and model the
evolution of a community using a novel similarity measure termed ‘‘mu-
tual transition’’. In [19], a method for the Identification of Community
Evolution by Mapping (ICEM) has been presented. In their approach,
the evolution of a community is tracked by representing community
members within a hash map.

We provide a more detailed description and analysis of [9–11,19,20,
24,25] in Section 5, where we compare the strengths and weaknesses
of these methods with respect to our novel framework.

3. Foundational concepts on dynamic networks

Before delving into our framework, let us first introduce founda-
tional concepts pertinent to dynamic social networks.

3.1. Dynamic communities

A dynamic social network can be represented as a series of 𝑛
graphs G = {𝐺1, 𝐺2,… , 𝐺𝑛}, where 𝐺𝑖 represents the graph at the
𝑖th snapshot, encompassing only the nodes and edges present at that
particular time. Next, we define as C𝑖 = {𝐶 𝑖

1, 𝐶
𝑖
2,… , 𝐶 𝑖

𝑘𝑖
} the set of 𝑘𝑖

static communities found at the 𝑖th snapshot. Our objective is to find
a set of 𝑚 dynamic communities D = {𝐷1, 𝐷2,… , 𝐷𝑚} that occur in
one or more snapshots. Each dynamic community 𝐷𝑗 is represented
by a timeline of its constituent static communities ordered in time.
Fig. 1 shows an example of timelines for five dynamic communities.
When dynamic communities, such as 𝐷2 and 𝐷3 or 𝐷4 and 𝐷5, have
interconnected static communities within them, we can either treat
these dynamic communities independently or merge them into a single
entity that encompasses all their constituent static communities. In the

latter case, they become 𝐷(2,3) and 𝐷(4,5).

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.
Fig. 1. Example of five dynamic communities tracked over five snapshots, featuring
growth, contraction, merging, splitting, and death events.

3.2. Critical events

In order to track communities and their structural changes over
time, we need to define structural events to describe the evolutionary
behavior of dynamic social networks. In [22,23], some types of events
are proposed, but they do not cover all the possible ways in which
a community can evolve. This paper uses the same models of critical
events as proposed in [9]: Growth (a community gains new members),
Contraction (a community loses some members), Merging (two or more
communities merge into a new one), Splitting (a community is split into
two or more new ones), Birth (a new community appears), Death (a
community disappears).

Examples of these events are illustrated in Fig. 1:

• The community in 𝐷1 grows at the 2nd snapshot.
• The community in 𝐷4 contracts at the 3rd snapshot.
• The community in 𝐷3 merges with the community in 𝐷2 at the

4th snapshot.
• The community in 𝐷4 splits into two communities at the 5th

snapshot, one still in 𝐷4 and the other in 𝐷5.
• The communities in 𝐷1, 𝐷2, and 𝐷4 were born at the 1st snapshot,

whereas the community in 𝐷3 emerged at the 2nd snapshot and
the community in 𝐷5 was formed at the 5th snapshot.

• The community in 𝐷1 experienced a death event at the 4th
snapshot.

It is worth noting that a community may not manifest at every
snapshot. Considering the example in Fig. 1, the community in 𝐷2 is
observed at the 1st snapshot and then again at the 3rd snapshot. This
‘‘intermittence’’ can be caused by the behavior of community members
or depend on the duration granularity of each snapshot.

3.3. Similarity

When tracking dynamic communities and the evolutionary events
of their constituent communities, the key to finding relationships be-
tween communities from different snapshots is similarity. Most existing
methods require setting a similarity threshold: communities are deemed
related only if their similarity exceeds the threshold. In evolving dy-
namic social networks, unstable communities might undergo member
shifts, losing original members and gaining new ones over time. Hence,
setting the similarity threshold too high fails to identify these evolving
3

communities, while a threshold set too low may erroneously link unre-
lated communities. As detailed in the following section, our framework
utilizes similarity without requiring a predefined threshold.

4. Proposed framework to track dynamic communities

Fig. 2 provides an outline of our framework. We initiate the process
by segmenting the initial network into snapshots. Next, we apply a
static community detection method to each snapshot. Subsequently, we
construct the community similarity network, where each static commu-
nity is represented as a node. In this phase, we disregard the origin of
the static communities, enabling matches between communities from
non-consecutive snapshots. We then identify dynamic communities by
optimizing modularity locally across all nodes. Lastly, for each dynamic
community, we reorder its constituent communities to reconstruct
its temporal evolution and identify the events that occurred across
snapshots.

4.1. Community similarity network

In our framework, the matching step relies on a weighted undirected
community similarity network 𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐 ,𝑊𝑐) where the vertex set
(nodes) 𝑉𝑐 encompasses the static communities found at each snapshot,
the edge set 𝐸𝑐 consists of links connecting these communities, and
𝑊𝑐 assigns weights to these edges based on the similarity values of the
connected communities. Notably, an edge is established between two
communities only if they originate from distinct snapshots and share a
non-zero similarity.

We compute similarity as the overlap coefficient between two com-
munities. Let C𝑖 and C𝑗 denote the sets of communities found at the
snapshots 𝑖 and 𝑗, where 𝑖 ≠ 𝑗. Further, let 𝛼 ∈ C𝑖 and 𝛽 ∈ C𝑗 . The
overlap coefficient between two communities, 𝛼 and 𝛽, is calculated as
follows:

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝛼, 𝛽) =
|𝛼 ∩ 𝛽|

𝑚𝑖𝑛(|𝛼|, |𝛽|)
(1)

where |𝛼| and |𝛽| are the number of members, respectively, in 𝛼
and 𝛽, while |𝛼 ∩ 𝛽| is the number of shared members. The proposed
framework is not tied to any specific similarity metric. For example,
one could employ the Jaccard similarity, as shown in [9].

4.2. Local modularity optimization

After building the similarity network, we identify groups of similar
nodes by optimizing modularity locally on all nodes. Modularity is
a leading metric for evaluating community structures [26]. Scaled
between [−0.5, 1], it quantifies the density of intra-community links
compared to inter-community links. By optimizing modularity, we
seek a community assignment for each node in the network such that
modularity 𝑀 is maximized using the function defined by:

𝑀 = 1
2𝑚

∑

𝑥𝑦

[

𝐴𝑥𝑦 −
𝑘𝑥𝑘𝑦
2𝑚

]

𝛿(𝑐𝑥, 𝑐𝑦) (2)

where 𝐴 is the adjacency matrix with 𝐴𝑥𝑦 representing the weight of the
edge between the vertices 𝑥 and 𝑦, 𝑘𝑥 and 𝑘𝑦 are the sum of the weights
of the edges attached to vertices 𝑥 and 𝑦, respectively, 𝑐𝑥 and 𝑐𝑦 are
the communities to which vertices 𝑥 and 𝑦 belong, 𝛿 is the Kronecker
delta function (𝛿(𝑐𝑥, 𝑐𝑦) returns 1 if 𝑐𝑥 = 𝑐𝑦 and 0 otherwise), and 𝑚
is the sum of the weights of all edges in the graph. In modularity
optimization, edge weights, which represent the connection strength,
guide the optimization process. Initially, each vertex in the network is
assigned to its own community. Then, each vertex 𝑥 is removed from
its community and moved to the community of each neighbor vertex 𝑦.

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.
Fig. 2. Workflow of the proposed approach. Starting from a network, we divide it into snapshots. Then, we apply a static community detection algorithm to each snapshot. We
construct the community similarity network using the communities found at the previous step. Dynamic communities are subsequently identified using local modularity optimization.
Finally, for each dynamic community, we reorder its static communities based on their originating snapshots to highlight critical events.
When a vertex is assigned to a new community, the modularity increase
is calculated:

𝛥𝑀 =
[𝛴𝑖𝑛 + 2𝑘𝑥,𝑖𝑛

2𝑚
−
(

𝛴𝑡𝑜𝑡 + 𝑘𝑥
2𝑚

)2]

−

[

𝛴𝑖𝑛
2𝑚

−
(

𝛴𝑡𝑜𝑡
2𝑚

)2
−
(

𝑘𝑥
2𝑚

)2] (3)

where 𝛴𝑖𝑛 is the sum of all the weights of the links within the commu-
nity to which 𝑥 is moving, 𝛴𝑡𝑜𝑡 is the sum of all the weights of the links
to nodes in the community to which 𝑥 is moving, 𝑘𝑥 is the weighted
degree of 𝑥, 𝑘𝑥,𝑖𝑛 is the sum of the weights of the edges between 𝑥
and the other nodes in the community to which 𝑥 is moving, and 𝑚
is the sum of the weights of all edges in the network. Then, once 𝛥𝑀
is calculated for all communities connected to 𝑥, the community that
resulted in the most significant increase in modularity encompasses
𝑥. If there is no increase in modularity, vertex 𝑥 stays in its initial
community. The process described above is applied to all vertices
until there is no further increase in modularity. While our approach
aligns with the initial phase of the Louvain algorithm [16], the latter
then transitions to a second phase, building a new network where
the vertices represent the communities found at the previous phase.
Next, it applies the first phase to this new network, further optimizing
modularity. A complete run of both phases is called a pass. Such passes
are carried out repeatedly until a maximum of modularity is achieved.
As our goal is to aggregate vertices with high similarity rather than
maximizing modularity, we only employ the first step. Furthermore,
because of the intrinsic properties of the community similarity network,
using Louvain’s complete procedure might yield communities with low
granularity, potentially leading to clusters where certain members are
poorly related to each other. Therefore, by solely applying local modu-
larity optimization to the vertices of the community similarity network,
4

we obtain clusters with high modularity and thus composed of similar
communities. These clusters correspond to the dynamic communities
featured in the dynamic network.

4.3. Identify dynamic communities over time

The pseudocode to identify and track dynamic communities over
time is presented in Algorithm 1. First, the community similarity net-
work 𝐺𝑐 is initialized as an empty graph (Line 1). For each community
within all snapshots, all subsequent snapshots are traversed to find
communities with a similarity value greater than 0 (lines 2–7). When
two communities exhibit a positive similarity, they are introduced
as vertices in 𝐺𝑐 , connected by an edge weighted by this similarity
value (lines 8–9). Subsequently, a community set is initialized, where
each node in 𝐺𝑐 is assigned to its own distinct community (line 10).
Local modularity optimization is then applied, evaluating each vertex
to determine if its movement to another community would bolster
network modularity (lines 11–20). The final result is a collection of
sets of communities, each of these sets being an identified dynamic
community. By reordering the communities in each set based on time,
we can uncover the events that shaped the evolution of the dynamic
community.

4.4. Events reconstruction

Once the dynamic communities have been found from the commu-
nity similarity network, we proceed with the identification of the events
that describe their evolutionary behavior. Given a dynamic community
𝐷, which is a set of static communities found across snapshots, let us
define more formally each critical event as follows:

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.

e
t
s
e

5

a
s
t
f
p
n
t
s
w
m

q

𝑁

w

Algorithm 1: Tracking dynamic communities
Input : S (List of sets of static communities contained at each

snapshot)
Output: O (Collection of sets, each set being an identified

dynamic community)
1 𝐺𝑐 ← {} ; // initialize 𝐺𝑐 with an empty network
/* compare each community with all communities

belonging to subsequent sets (snapshots) */
2 for C𝑖 ∈ 𝑆 do
3 for 𝛼 ∈ C𝑖 do
4 𝑆𝑗 ← all subsequent snapshots of C𝑖;
5 for C𝑗 ∈ 𝑆𝑗 do
6 for 𝛽 ∈ C𝑗 do
7 𝑠𝑖𝑚 = 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝛼, 𝛽);
8 if 𝑠𝑖𝑚 > 0 then
9 add an edge in 𝐺𝑐 between 𝛼 and 𝛽, with

weight 𝑠𝑖𝑚;
/* optimize local modularity of 𝐺𝑐 */

10 𝑂 ← {{𝑣}|𝑣 ∈ 𝐺𝑐 (𝑉)}; // initialize each node of 𝐺𝑐
with its own community

11 while one or more nodes are moved to a different community
do

12 for 𝑥 ∈ 𝐺𝑐 (𝑉) do
13 𝑏𝑒𝑠𝑡𝑞 ← −∞;
14 𝑏𝑒𝑠𝑡𝑐 ← community of 𝑥;
15 for all neighboring nodes 𝑦 of 𝑥 do
16 𝑔𝑎𝑖𝑛𝑞 ← 𝛥𝑀 moving 𝑥 to the community of 𝑦;
17 if 𝑏𝑒𝑠𝑡𝑞 ≤ 𝑔𝑎𝑖𝑛𝑞 then
18 𝑏𝑒𝑠𝑡𝑞 ← 𝑔𝑎𝑖𝑛𝑞 ;
19 𝑏𝑒𝑠𝑡𝑐 ← community of 𝑦;
20 𝑂 ← place 𝑥 in 𝑏𝑒𝑠𝑡𝑐 ;
21 return 𝑂;

• Growth – A community 𝐶 𝑖 ∈ 𝐷 grows if there is a community
𝐶𝑗 ∈ 𝐷 at a prior snapshot (𝑖 > 𝑗) that shares members with 𝐶 𝑖

and is smaller in size

𝑔𝑟𝑜𝑤𝑡ℎ(𝐶 𝑖) = 1 𝑖𝑓

∃ 𝐶𝑗 ∈ 𝐷 ∶ 𝑖 > 𝑗, |𝐶 𝑖 ∩ 𝐶𝑗
| > 0, |𝐶 𝑖

| > |𝐶𝑗
| .

• Contraction – A community 𝐶 𝑖 ∈ 𝐷 contracts if there is a
community 𝐶𝑗 ∈ 𝐷 at a prior snapshot (𝑖 > 𝑗) that shares
members with 𝐶 𝑖 and is larger in size.

𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡(𝐶 𝑖) = 1 𝑖𝑓

∃ 𝐶𝑗 ∈ 𝐷 ∶ 𝑖 > 𝑗, |𝐶 𝑖 ∩ 𝐶𝑗
| > 0, |𝐶 𝑖

| < |𝐶𝑗
| .

• Merging – A community 𝐶 𝑖 ∈ 𝐷 results from a merge if there is
a set of communities 𝐶𝑗

𝑠𝑒𝑡 ∈ 𝐷 from a prior snapshot (𝑖 > 𝑗) such
that each community in 𝐶𝑗

𝑠𝑒𝑡 shares members with 𝐶 𝑖

𝑚𝑒𝑟𝑔𝑒(𝐶 𝑖) = 1 𝑖𝑓

∃ 𝐶𝑗
𝑠𝑒𝑡 = {𝐶𝑗

1 , 𝐶
𝑗
2 ,… , 𝐶𝑗

𝑛} ∶ 𝑖 > 𝑗,

∀ 𝐶𝑗 ∈ 𝐶𝑗
𝑠𝑒𝑡 ∶ |𝐶 𝑖 ∩ 𝐶𝑗

| > 0 .

• Split – A community 𝐶 𝑖 ∈ 𝐷 results from a split if it is part of a set
of communities 𝐶 𝑖

𝑠𝑒𝑡 ∈ 𝐷 at snapshot 𝑖 and there is a community
𝐶𝑗 ∈ 𝐷 from a prior snapshot (𝑖 > 𝑗) such that each community
in 𝐶 𝑖

𝑠𝑒𝑡 shares members with 𝐶𝑗

𝑠𝑝𝑙𝑖𝑡(𝐶 𝑖) = 1 𝑖𝑓

∃ 𝐶 𝑖
𝑠𝑒𝑡 = {𝐶 𝑖

1, 𝐶
𝑖
2,… , 𝐶 𝑖

𝑛} ∶ 𝑖 > 𝑗,
𝑖 𝑖 𝑖 𝑗
5

∀ 𝐶 ∈ 𝐶𝑠𝑒𝑡 ∶ |𝐶 ∩ 𝐶 | > 0 . a
• Birth – A community 𝐶 𝑖 ∈ 𝐷 is born if there is no community
𝐶𝑗 ∈ 𝐷 from any prior snapshot (𝑖 > 𝑗) that shares members with
𝐶 𝑖

𝑏𝑖𝑟𝑡ℎ(𝐶 𝑖) = 1 𝑖𝑓

∄ 𝐶𝑗 ∈ 𝐷 ∶ 𝑖 > 𝑗, |𝐶 𝑖 ∩ 𝐶𝑗
| > 0 .

• Death – A community 𝐶 𝑖 ∈ 𝐷 dies if there is no community
𝐶𝑗 ∈ 𝐷 from any subsequent snapshot (𝑗 > 𝑖) that shares members
with 𝐶 𝑖

𝑑𝑒𝑎𝑡ℎ(𝐶 𝑖) = 1 𝑖𝑓

∄ 𝐶𝑗 ∈ 𝐷 ∶ 𝑗 > 𝑖, |𝐶 𝑖 ∩ 𝐶𝑗
| > 0 .

5. Experiments and results

In this section, we detail the experiments conducted to compare
our framework with state-of-the-art methods. Additionally, we present
an example utilizing real-world data to demonstrate our framework’s
capability in extracting valuable insights from social interactions.

5.1. Synthetic datasets

To evaluate our framework, we employed the synthetic networks
derived from the four benchmark datasets proposed in [9]. These syn-
thetic networks have been constructed through a dynamic extension
of the static LFR benchmark [27] to model different types of evolu-
tionary behaviors of communities over time. Each dataset, consisting
of 15,000 vertices, contains five static networks (snapshots), simulating
evolving communities. For each snapshot, the ground truth about static
communities is available. In each of the four synthetic networks, nodes
have an average degree of 20, a maximum degree of 40, and a mixing
parameter, 𝜇 = 0.2, that controls community overlap. Furthermore, at
ach snapshot, 20% of the nodes change their memberships, mirroring
he natural migration of members between communities over time. The
ynthetic networks were designed to encompass all types of community
volution events:

• BirthDeath: 40 new communities are constructed to replace 40
existing communities.

• ExpandContract : 40 randomly selected communities expand or
contract their size by 25% at each snapshot.

• MergeSplit : 40 communities are randomly selected to be split,
while another set of 40 undergoes merging, combining two com-
munities into one.

• Intermittent : at each snapshot, 10% of the communities are inter-
mittently concealed, making them unobservable.

.2. Evaluation metric and experimental setup

To achieve a fair evaluation, we utilized the Louvain algorithm [16]
s the static community detection approach for all the methods. We
elected the hierarchical level that best matched the number of ground-
ruth static communities at the initial snapshot. To evaluate the per-
ormance in dynamic community tracking, we adopted an approach
artially inspired by [9,28,29]. For each evaluated competitor, dy-
amic communities were found considering two scenarios: (i) using
he ground-truth static communities at each snapshot; (ii) using the
tatic communities derived by Louvain as mentioned above. Then,
e employed Normalized Mutual Information (NMI) to compare the
emberships to dynamic communities found in both scenarios.

NMI is a common entropy measure in information theory that
uantifies the similarity between two clusters. It is defined as:

𝑀𝐼(𝑋, 𝑌) =
𝐻(𝑋) +𝐻(𝑌) −𝐻(𝑋, 𝑌)

(𝐻(𝑋) +𝐻(𝑌))∕2
(4)

here 𝐻(𝑋) is the entropy of the random variable 𝑋 associated with
n identified community, 𝐻(𝑌) is the entropy of the random variable

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.

(
S
c
a
s
i

e
s
f
f
n
e
d
s
a

𝑠

A
A
𝑡
s
a
w
s
w

t

𝑠

f
v
m
t

𝐼

n
s
c
t
r

t
c
T
o

t
t
m
c
l

Table 1
NMI values obtained by the Greene framework.
Dataset Threshold

0.1 0.3 0.5

BirthDeath 0.984 0.948 0.926
ExpandContract 0.986 0.940 0.921
MergeSplit 0.969 0.949 0.936
Intermittent 0.981 0.936 0.913

𝑌 associated with a ground truth, and 𝐻(𝑋, 𝑌) is the joint entropy. A
higher NMI value, nearing 1, indicates that the dynamic community
detection is more resilient against noise in the static community infor-
mation at each snapshot. This resilience is crucial for ensuring reliable
dynamic community tracking in real-world datasets.

For each dataset, we calculated the NMI in five sequential exper-
iments, one per available snapshot. The first NMI value was found
considering only the first snapshot, then for subsequent experiments
we added one snapshot at a time. Hence, the last experiment employed
the entire ‘‘timeline’’ made of five snapshots. As mentioned above,
we compared our framework with other state-of-the-art approaches
using the same Louvain-derived static community sets for unbiased
comparison. Since some of these approaches require a threshold to be
set, we tested them with different threshold values: (0.1; 0.3; 0.5). To
select a threshold value, we calculated the average of the five NMI
values for each dataset (see Tables 1–5). Then, for each approach, we
selected the threshold yielding the highest average NMI.

5.3. State-of-the-art approaches

In this section, we describe the state-of-the-art approaches that we
compared against our framework: Greene [9], Takaffoli [10,20], Brodka
GED) [11], Tajeuna [24,25], and Mohammadmosaferi (ICEM) [19].
imilar to our framework, these methods begin by analyzing the static
ommunities detected at each snapshot using a community detection
lgorithm. Each of these approaches employs different strategies and
imilarity measures to track the evolution of communities over time,
.e., across snapshots.
Greene et al. [9] proposed a heuristic threshold-based method that

nables many-to-many mappings between communities across different
napshots. The strategy proceeds as follows. First, an algorithm to
ind static communities is applied at each snapshot. Each community
rom the first snapshot is assigned to a dedicated dynamic commu-
ity. Subsequently, communities at each snapshot are compared with
ach dynamic network’s front community. The front community of a
ynamic network is the community found at the most recent snap-
hot belonging to that dynamic community. To perform matching, the
uthors used the Jaccard coefficient for binary sets [30]:

𝑖𝑚(𝛼, 𝛽) =
|𝛼 ∩ 𝛽|
|𝛼 ∪ 𝛽|

. (5)

pair is considered a match if its similarity surpasses a threshold 𝑘.
dditionally, it is assumed that a community appearing at snapshot
is deemed dissolved if it lacks a match for 𝑑 consecutive snap-

hots. This condition allows the discovery of evolving communities
t non-consecutive snapshots. In our evaluation of this framework,
e assumed 𝑑 = 𝑖𝑛𝑓 to enable matching with all non-consecutive

napshots. According to our experiments, the best result is obtained
ith 𝑘 = 0.1.
Takaffoli et al. [10,20] used the following similarity measure to iden-

ify critical events in both consecutive and non-consecutive snapshots:

𝑖𝑚(𝛼, 𝛽) =

⎧

⎪

⎨

⎪

|𝛼 ∩ 𝛽|
𝑚𝑎𝑥(|𝛼|, |𝛽|) 𝑖𝑓 |𝛼 ∩ 𝛽|

𝑚𝑎𝑥(|𝛼|, |𝛽|) ≥ 𝑘
. (6)
6

⎩

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 b
Table 2
NMI values obtained by the Takaffoli framework.
Dataset Threshold

0.1 0.3 0.5

BirthDeath 0.941 0.950 0.921
ExpandContract 0.943 0.946 0.913
MergeSplit 0.921 0.928 0.909
Intermittent 0.940 0.941 0.903

Table 3
NMI values obtained by the GED framework (Brodka et al.).
Dataset Threshold

0.1 0.3 0.5

BirthDeath 0.933 0.931 0.923
ExpandContract 0.936 0.932 0.925
MergeSplit 0.925 0.923 0.917
Intermittent 0.926 0.923 0.918

The similarity threshold 𝑘 was automatically determined using a text-
mining approach since it was assessed on networks with content infor-
mation. Given our use of synthetic networks, we could not determine
the threshold automatically. From our experiments, we obtained the
best results using 𝑘 = 0.3 for this method.

Brodka et al. [11] introduced the group evolution discovery (GED)
ramework, designed to identify overlapping communities. Unlike pre-
ious methods that solely relied on a similarity metric to track com-
unity changes, this approach extends the measure by incorporating a

opological metric:

(𝛼, 𝛽) =
|𝛼 ∩ 𝛽|
|𝛼|

⋅

∑

𝑥∈(𝛼∩𝛽) 𝑁𝐼𝛼(𝑥)
∑

𝑥∈(𝛼) 𝑁𝐼𝛼(𝑥)
(7)

where 𝑁𝐼𝛼(𝑥) represents the importance of node 𝑥 within the commu-
ity 𝛼. This value can be any centrality metric, e.g., degree centrality,
ocial position, betweenness centrality, or PageRank. Although the
omparison is made at consecutive snapshots, the inclusion effect helps
o track overlapping and non-overlapping communities. The method
equires two threshold values, 𝑘 and 𝑗. We used the same value for
𝑘 and 𝑗 and obtained the best results for 𝑘, 𝑗 = 0.1.

Tajeuna et al. [24,25] characterized each community using a transi-
tion probability vector. These vectors encapsulate the extent of shared
membership between different communities across time. To assess
similarity between communities, the method compares their respective
transition probability vectors. Given two communities 𝛼 and 𝛽 and
their transition probability vectors 𝑣𝛼 and 𝑣𝛽 , the similarity between
the communities is calculated as:

𝑠𝑖𝑚(𝛼, 𝛽) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑𝑁𝑐
𝑥=1 2

𝑝𝛼,𝑥 ⋅ 𝑝𝛽,𝑥
𝑝𝛼,𝑥 + 𝑝𝛽,𝑥

𝑖𝑓
∑𝑁𝑐

𝑥=1 2
𝑝𝛼,𝑥 ⋅ 𝑝𝛽,𝑥
𝑝𝛼,𝑥 + 𝑝𝛽,𝑥

> 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

where 𝑝𝛼,𝑥 and 𝑝𝛽,𝑥 are components of the transition probability vectors
𝑣𝛼 and 𝑣𝛽 , respectively, and 𝑁𝑐 is the total number of communities in
he dynamic network. The threshold value 𝑘 is determined automati-
ally as the approximated point of intersection of two Gamma curves.
hese curves derive from the non-zero similarity values between pairs
f transition probability vectors.
Mohammadmosaferi et al. [19] introduced a novel method for Iden-

ification of Community Evolution by Mapping (ICEM). In this method,
he members of each community are mapped using a hash map. This
ap associates members with a pair consisting of the snapshot and a

ommunity index. From the second snapshot, ICEM builds a similarity
ist for each community and determines the evolution of a community
ased on that list. Besides identifying common critical events, the

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.
Fig. 3. NMI of the proposed dynamic community tracking framework and state-of-the-art methods on the four synthetic datasets.
Table 4
NMI values obtained by the Tajeuna framework.
Dataset Threshold

Automatically set

BirthDeath 0.965
ExpandContract 0.968
MergeSplit 0.929
Intermittent 0.965

Table 5
NMI values obtained by the ICEM framework (Mohammadmosaferi et al.).
Dataset Threshold

0.1 0.3 0.5

BirthDeath 0.973 0.972 0.936
ExpandContract 0.975 0.970 0.930
MergeSplit 0.935 0.956 0.923
Intermittent 0.974 0.967 0.922

authors introduced the concept of partial events. These events are
identified based on the partial similarity between two communities:

𝑠𝑖𝑚(𝛼, 𝛽) =
|𝛼 ∩ 𝛽|
|𝛼|

(9)

𝑠𝑖𝑚(𝛽, 𝛼) =
|𝛼 ∩ 𝛽|
|𝛽|

(10)

where 𝛼 is a community from the 𝑖th snapshot and 𝛽 a community from
the 𝑗th snapshot, where 𝑖 < 𝑗. The communities 𝛼 and 𝛽 are partially
similar if 𝑠𝑖𝑚(𝛼, 𝛽) > 𝑘 and 𝑠𝑖𝑚(𝛽, 𝛼) > 𝑘, while they are very similar if
𝑠𝑖𝑚(𝛼, 𝛽) > 𝑣. Therefore, 𝑘 and 𝑣 are the thresholds to identify partially
similar and very similar communities, respectively. Since our concern
is not to distinguish different types of critical events in this evaluation,
we set 𝑣 = 0.5 and obtained the best results for 𝑘 = 0.1.
7

Table 6
NMI values obtained by our framework.

Dataset Snapshot

1 2 3 4 5

BirthDeath 0.971 0.968 0.985 0.985 0.979
ExpandContract 0.971 0.993 0.995 0.993 0.987
MergeSplit 0.971 0.988 0.977 0.979 0.966
Intermittent 0.971 0.973 0.991 0.991 0.979

5.4. Results of the evaluation and comparison

Table 6 displays the NMI values achieved by our framework across
all datasets and snapshots. Notably, it secured high NMI values (above
0.96) in every experiment.

Fig. 3 contrasts our results with the state-of-the-art methods on
the four synthetic datasets. Our approach offers the best performance
in most scenarios, although Greene and ICEM occasionally achieve a
slightly higher NMI value. Overall, Greene, ICEM, and Tajeuna, exhibit
strong results, whereas Takaffoli and particularly GED fall short in
most experiments. GED’s underwhelming performance may stem from
its inability to link non-consecutive communities. Interestingly, all the
evaluated methods achieve their worst performance with the MergeS-
plit dataset. Merge and split events significantly distort the dynamic
community structures, making them challenging to track. Nevertheless,
our method consistently achieves an NMI score above 0.96 even for
this dataset. Among others, only Greene managed to retain NMI values
above 0.94 in this dataset, while ICEM and Tajeuna show a degrad-
ing performance as the number of available snapshots increases. For
scenarios with less complex evolutionary patterns, the efficacy of our
method becomes more pronounced with the inclusion of more than
two snapshots. A similar trend is also observed with Greene. With the
expansion of the community similarity network, pinpointing analogous

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.
Fig. 4. Number of dynamic communities found on the MergeSplit synthetic dynamic
network, by the proposed dynamic community tracking method and state-of-the-art
methods, relative to the ground-truth number of dynamic communities.

Fig. 5. Circles represent dynamic communities, plotted with the overall number of
members on the 𝑥 axis against the days of activity on the 𝑦 axis. The color of each
circle encodes its average hashtags overlap value.

community clusters with higher precision becomes more feasible. In
contrast, some competing methods exhibit increased vulnerability to
community matching errors as the snapshot count grows.

Fig. 4 offers a distinct perspective on the performance of the eval-
uated methods within the MergeSplit dataset. It contrasts the count of
ground-truth dynamic communities in each snapshot with those iden-
tified by the various methods. Our method, together with Tajeuna and
Takaffoli, closely mirrors the ground truth in terms of the number of dy-
namic communities. The discrepancy observed with Greene and ICEM
could be attributed to the low threshold value employed, which results
in increased community matches and subsequent merging. In contrast,
GED, as previously mentioned, suffers from its limited comparison
scope, restricted to consecutive snapshot communities.

In summary, the proposed framework excels in handling dynamic
community tracking by focusing on local modularity optimization and
setting aside the temporal component. This unique design choice allows
the framework to adapt to structural changes in dynamic communities,
consistently delivering strong results. Unlike most competitors, our
approach operates without the need to set a threshold value. Although
this entails the drawback that an unsatisfactory result cannot be al-
tered by varying the threshold value, it is crucial to acknowledge that
community tracking is a complex process with no universally correct
outcomes. As such, the absence of a threshold can be seen as an advan-
tage, preventing misleading adjustments. While methods that permit
threshold adjustments might yield seemingly satisfactory results, they
may not truly reflect the genuine evolution of dynamic communities.
Additionally, by leveraging a denser community similarity network, our
framework achieves enhanced performance when using more than two
snapshots.
8

Table 7
Execution time of the proposed framework on networks with different characteristics.

Dataset characteristics Time

snapshots nodes communities

5
1,000 438 < 1 s
10,000 4,369 21 s
100,000 43,704 34 m 45 s

10
1,000 872 1 s
10,000 8,738 1 m 33 s
100,000 87,559 2 h 31 m 53 s

5.5. Complexity analysis

We excluded the computational cost of network representation and
static community detection from our complexity analysis, as our frame-
work builds upon communities derived from any given static com-
munity detection method. In our framework, each static community
is compared with all others in subsequent snapshots, yielding a time
complexity of 𝑂(𝑐2), with 𝑐 representing the total number of static com-
munities. The local modularity optimization phase takes 𝑂(𝑐). Thus,
the total time and memory complexity of the framework is 𝑂(𝑐2). To
assess the scalability of our framework, we employed the synthetic
graph generator proposed by [9] to create progressively larger dynamic
networks. Table 7 reports the properties of the datasets along with
the corresponding execution times. We generated synthetic dynamic
networks in two sets: one with five snapshots and another with ten.
The number of nodes ranges from 1,000 to 100,000, which determines
the number of static communities handled by the framework. We used
a Python implementation of the proposed framework and executed the
experiments using a single core of a machine with an Intel Xeon Proces-
sor (2.2 GHz) and 64 GB of RAM. For a dynamic network with 100,000
nodes across five snapshots, the processing time is under 35 min.
However, with ten snapshots, it increases to approximately two and
a half hours. The execution time is heavily influenced by the number
of snapshots in the dynamic network, given its positive correlation
with the count of static communities. Since most computations, such
as determining the similarity between two communities, can operate
independently, there is potential to boost computational performance
through parallelization. Further improvements could be achieved by
combining Minhashing [31] and Local Sensitive Hashing (LSH) [32]
to identify approximate nearest neighbors in the Jaccard space. This
would significantly reduce the number of comparisons, edging closer
to linear time complexity.

5.6. Application to a real-world dataset

For our second evaluation, we assessed the behavior of the proposed
framework using a real dataset described by [17]. This dataset com-
prises the activity of 63,358 fake Twitter accounts, which produced
5,457,758 tweets during 2020. The term ‘‘fake account’’ refers to social
media accounts that contain false information or pretend to be a real
person or organization [33]. This dataset is ideal for our experiments
because the tweets were not confined to specific languages or topics,
providing a broad range of content that included, for instance, politics
and cryptocurrency [34]. We set snapshot granularity to one day of
activity, and produced a weighted undirected graph for each snapshot.
Daily graphs were derived from a co-hashtag network, in which two
users are linked if they both used the same hashtag on a given day. The
weight of each edge is given by the number of hashtags used in common
between two users. To find the static communities at each snapshot,
we used the Order Statistics Local Optimization Method (OSLOM) [35],
which is based on measuring the significance of communities compared
to a null model without community structure [36]. After OSLOM
identifies statistically significant communities by grouping neighbor-
ing nodes, it undergoes multiple iterations of adjustments, like node

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.
Fig. 6. Alluvial diagram representing the structure of the analyzed dynamic community.
addition or deletion, to enhance the significance of communities. We
selected OSLOM due to its noted efficacy in detecting communities
within online social networks [37,38]. A possible drawback of OSLOM
is its tendency to identify smaller static communities [39], which may
not properly capture the community structure of a network [40]. This
concern is not relevant to the experiment, as the identified static com-
munities are joined into bigger dynamic communities by the proposed
framework.

We applied our framework to the static communities identified by
OSLOM, obtaining 103 dynamic communities. To investigate the tem-
poral behavior of the identified dynamic communities, we identified the
hashtags used daily within each static community. Then, we introduced
a new metric related to a dynamic community: the average hashtags
overlap. Given two sets of hashtags ℎ1 and ℎ2, the hashtags overlap is
found as:

𝐻𝑎𝑠ℎ𝑡𝑎𝑔𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =
|ℎ1 ∩ ℎ2|

𝑚𝑖𝑛(|ℎ1|, |ℎ2|)
. (11)

The average hashtags overlap for a dynamic community 𝐷 is calculated
by averaging the hashtags overlaps across all its constituent static
communities. An acceptable alternative metric might have been the
one used in [10], where instead of keywords or hashtags, the authors
relied on topics. Given that this dataset captures the activity of sold fake
accounts over a year, it is plausible that communities employed varied
hashtag sets on different days. Despite this, a set of hashtags effectively
represents a community on a specific day.

Averaging the hashtags overlap values for all static communities
within a dynamic community allows us to gain insights into the char-
acteristics of the identified dynamic communities. Fig. 5 plots the
identified dynamic communities, with the overall number of members
on the 𝑥 axis and the days of activity on the 𝑦 axis. Moreover, through
color, we reported the average hashtags overlap of each dynamic com-
munity. This plot reveals a correlation between the number of members
and days of activity; specifically, communities with more users tend to
be active for more days, and vice versa. In addition, dynamic commu-
nities with high values in terms of members and days of activity also
exhibit a low value of average hashtags overlap, meaning that during
the one-year period, these dynamic communities discussed disparate
topics. A low value of average hashtags overlap does not imply that a
9

dynamic community is not relevant, as this metric may be affected by
other factors, such as the strategy employed.

Fig. 6 provides a glimpse into a dynamic community’s activity
from February 9 to February 13, 2020. To better understand temporal
behavior, for each constituent community we show the ten most used
hashtags. Initially, there is only one community using mostly generic
hashtags such as #relax, #beach, and #nature and some more specific
ones such as #apple and #iphone. The next day, this community split
into two communities, one of which turns out to be larger than the
initial one due to the arrival of new users. This community resumes
the hashtags used on the previous day regarding Apple products, in-
troducing new ones such as #iphone11 and #iphone12. Instead, the
other community focuses on cryptocurrency and blockchain technology
through the hashtags #btc, #bitcoin, and #blockchain. On the follow-
ing day, a portion of users from these two communities merge into
a new community centered on hemp-related topics: #cannabis, #cbd,
#cannabisnews. However, this community expands on the subsequent
day, reverting to more generic hashtags. This behavior continues the
next day, where we find #funny as well as #valentines_day since it is
Valentine’s Eve.

This example highlights the variability in topics that users of an
online social network can address from one day to the next. Observing
this kind of phenomenon and, more generally, studying the behavior
of a community over time is only possible by taking into account its
temporal properties, that is, by analyzing it as a dynamic community.
By extending the framework’s application to similar datasets [41,42],
analysts could gain new time-related insights into various phenomena
on social media platforms, such as coordinated inauthentic behaviors.

6. Conclusions

In this paper, we introduced a framework designed to track the
evolution of dynamic communities over time. Unlike most existing
frameworks, our community matching phase operates without a thresh-
old value. Instead, it employs modularity optimization applied to a
weighted, undirected community similarity network, where the tem-
poral component is omitted. We assessed our framework using syn-
thetic graphs with embedded events and benchmarked our results

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.

d
F

against other state-of-the-art frameworks. Our method excelled in han-
dling structural changes in dynamic communities, yielding consistently
strong results across diverse scenarios. The absence of a threshold fur-
ther ensures the consistency of these results. Moreover, our framework
is agnostic to the specific community detection algorithm used, offering
flexibility in algorithm choice based on network properties, such as
whether the network is weighted or unweighted, directed or undi-
rected. We also conducted a preliminary evaluation of the proposed
framework on a real-world Twitter network, uncovering 103 dynamic
communities with distinct characteristics. This finding suggests that
dynamic communities, particularly those derived from online social
media, can show considerable variability in the topics they encompass.
When applied to online social media analysis, our framework shows
promising potential in identifying user groups with aligned interests or
behaviors. By tracking dynamic communities, our approach can also
enhance the temporal analysis of influencers and key opinion leaders,
offering valuable insights for research applications.

CRediT authorship contribution statement

Michele Mazza: Writing – review & editing, Writing – original
raft, Visualization, Validation, Software, Methodology, Investigation,
ormal analysis, Conceptualization. Guglielmo Cola: Writing – review

& editing, Writing – original draft, Supervision, Conceptualization.
Maurizio Tesconi: Writing – review & editing, Supervision, Project
administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by : the European Union – NextGener-
ationEU – National Recovery and Resilience Plan (Piano Nazionale
di Ripresa e Resilienza, PNRR) – Project: ‘‘SoBigData.it – Strength-
ening the Italian RI for Social Mining and Big Data Analytics’’ –
Prot. IR0000013 – Avviso n. 3264 del 28/12/2021; project SERICS
(PE00000014) under the NRRP MUR program funded by the EU -
NGEU.

References

[1] B. Wu, Q. Ye, S. Yang, B. Wang, Group CRM: A New Telecom CRM Framework
from Social Network Perspective, CNIKM ’09, Association for Computing Machin-
ery, New York, NY, USA, 2009, pp. 3–10, http://dx.doi.org/10.1145/1651274.
1651277.

[2] M.E.J. Newman, The structure of scientific collaboration networks, Proc. Natl.
Acad. Sci. 98 (2) (2001) 404–409, http://dx.doi.org/10.1073/pnas.98.2.404.

[3] C. Xia, Y. Luo, L. Wang, H.-J. Li, A fast community detection algorithm based
on reconstructing signed networks, IEEE Syst. J. 16 (1) (2022) 614–625, http:
//dx.doi.org/10.1109/JSYST.2021.3065378.

[4] Y. Luo, L. Wang, S. Sun, C. Xia, Community detection based on local information
and dynamic expansion, IEEE Access 7 (2019) 142773–142786, http://dx.doi.
org/10.1109/ACCESS.2018.2878674.

[5] S. Wasserman, K. Faust, Social Network Analysis: Methods and Ap-
plications, Cambridge University Press, 1994, http://dx.doi.org/10.1017/
CBO9780511815478.

[6] M. Cinelli, S. Cresci, W. Quattrociocchi, M. Tesconi, P. Zola, Coordinated
inauthentic behavior and information spreading on Twitter, Decis. Support Syst.
160 (2022) 113819, http://dx.doi.org/10.1016/j.dss.2022.113819.

[7] P. Zola, G. Cola, M. Mazza, M. Tesconi, Interaction strength analysis to model
retweet cascade graphs, Appl. Sci. 10 (23) (2020) http://dx.doi.org/10.3390/
10

app10238394.
[8] T.Y. Berger-Wolf, J. Saia, A framework for analysis of dynamic social networks,
in: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, Association for Computing Machinery,
New York, NY, USA, 2006, pp. 523–528, http://dx.doi.org/10.1145/1150402.
1150462.

[9] D. Greene, D. Doyle, P. Cunningham, Tracking the evolution of communities
in dynamic social networks, in: Proceedings of the International Conference on
Advances in Social Networks Analysis and Mining, IEEE, 2010, pp. 176–183,
http://dx.doi.org/10.1109/ASONAM.2010.17.

[10] M. Takaffoli, F. Sangi, J. Fagnan, O.R.Z. ane, Community evolution mining
in dynamic social networks, Procedia - Soc. Behav. Sci. 22 (2011) 49–58,
http://dx.doi.org/10.1016/j.sbspro.2011.07.055, Dynamics of Social Networks.

[11] P. Bródka, S. Saganowski, P. Kazienko, GED: The method for group evolution
discovery in social networks, Soc. Netw. Anal. Min. 3 (1) (2013) 1–14, http:
//dx.doi.org/10.1007/s13278-012-0058-8.

[12] A. Martín, J. Huertas-Tato, Á. Huertas-García, G. Villar-Rodríguez, D. Camacho,
FacTeR-Check: Semi-automated fact-checking through semantic similarity and
natural language inference, Knowl.-Based Syst. 251 (2022) 109265, http://dx.
doi.org/10.1016/j.knosys.2022.109265.

[13] K.A. Qureshi, R.A.S. Malick, M. Sabih, H. Cherifi, Deception detection on social
media: A source-based perspective, Knowl.-Based Syst. 256 (2022) 109649,
http://dx.doi.org/10.1016/j.knosys.2022.109649.

[14] G. Suchacka, J. Iwański, Identifying legitimate web users and bots with different
traffic profiles — An information Bottleneck approach, Knowl.-Based Syst. 197
(2020) 105875, http://dx.doi.org/10.1016/j.knosys.2020.105875.

[15] S. Li, J. Yang, G. Liang, T. Li, K. Zhao, SybilFlyover: Heterogeneous graph-based
fake account detection model on social networks, Knowl.-Based Syst. 258 (2022)
110038, http://dx.doi.org/10.1016/j.knosys.2022.110038.

[16] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, J. Stat. Mech. Theory Exp. 2008 (10) (2008)
P10008, http://dx.doi.org/10.1088/1742-5468/2008/10/p10008.

[17] M. Mazza, G. Cola, M. Tesconi, Ready-to-(ab)use: From fake account trafficking
to coordinated inauthentic behavior on Twitter, Online Soc. Netw. Media 31
(2022) 100224, http://dx.doi.org/10.1016/j.osnem.2022.100224.

[18] M.E.J. Newman, J. Park, Why social networks are different from other types of
networks, Phys. Rev. E 68 (2003) 036122, http://dx.doi.org/10.1103/PhysRevE.
68.036122.

[19] K. Kadkhoda Mohammadmosaferi, H. Naderi, Evolution of communities in
dynamic social networks: An efficient map-based approach, Expert Syst. Appl.
147 (2020) 113221, http://dx.doi.org/10.1016/j.eswa.2020.113221.

[20] M. Takaffoli, F. Sangi, J. Fagnan, O. Zaıane, A framework for analyzing dynamic
social networks, in: Proceedings of the 7th Conference on Applications of Social
Network Analysis, ASNA, 2010, URL https://webdocs.cs.ualberta.ca/~zaiane/
postscript/ASNA10.pdf.

[21] J. Hopcroft, O. Khan, B. Kulis, B. Selman, Tracking evolving communities in
large linked networks, Proc. Natl. Acad. Sci. 101 (suppl 1) (2004) 5249–5253,
http://dx.doi.org/10.1073/pnas.0307750100.

[22] G. Palla, A.-L. Barabási, T. Vicsek, Quantifying social group evolution, Nature
446 (7136) (2007) 664–667, http://dx.doi.org/10.1038/nature05670.

[23] S. Asur, S. Parthasarathy, D. Ucar, An event-based framework for characterizing
the evolutionary behavior of interaction graphs, ACM Trans. Knowl. Discov. Data
(TKDD) 3 (4) (2009) 1–36, http://dx.doi.org/10.1145/1631162.1631164.

[24] E.G. Tajeuna, M. Bouguessa, S. Wang, Tracking the evolution of community struc-
tures in time-evolving social networks, in: Proceedings of the IEEE International
Conference on Data Science and Advanced Analytics, DSAA, IEEE, 2015, pp.
1–10, http://dx.doi.org/10.1109/DSAA.2015.7344876.

[25] E.G. Tajeuna, M. Bouguessa, S. Wang, Tracking communities over time in
dynamic social network, in: Proceedings of the International Conference on
Machine Learning and Data Mining in Pattern Recognition, Springer, 2016, pp.
341–345, http://dx.doi.org/10.1007/978-3-319-41920-6_25.

[26] M. Chen, T. Nguyen, B.K. Szymanski, On measuring the quality of a network
community structure, in: Proceedings of the International Conference on Social
Computing, IEEE, 2013, pp. 122–127, http://dx.doi.org/10.1109/SocialCom.
2013.25.

[27] A. Lancichinetti, S. Fortunato, Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities, Phys.
Rev. E 80 (2009) 016118, http://dx.doi.org/10.1103/PhysRevE.80.016118.

[28] J. He, D. Chen, C. Sun, Y. Fu, W. Li, Efficient stepwise detection of communities
in temporal networks, Physica A 469 (2017) 438–446, http://dx.doi.org/10.
1016/j.physa.2016.11.019.

[29] F. Folino, C. Pizzuti, An evolutionary multiobjective approach for community
discovery in dynamic networks, IEEE Trans. Knowl. Data Eng. 26 (8) (2014)
1838–1852, http://dx.doi.org/10.1109/TKDE.2013.131.

[30] P. Jaccard, The distribution of the flora in the alpine zone, New Phytologist 11
(2) (1912) 37–50, URL http://www.jstor.org/stable/2427226.

[31] A. Broder, On the resemblance and containment of documents, in: Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171), 1997,
pp. 21–29, http://dx.doi.org/10.1109/SEQUEN.1997.666900.

http://dx.doi.org/10.1145/1651274.1651277
http://dx.doi.org/10.1145/1651274.1651277
http://dx.doi.org/10.1145/1651274.1651277
http://dx.doi.org/10.1073/pnas.98.2.404
http://dx.doi.org/10.1109/JSYST.2021.3065378
http://dx.doi.org/10.1109/JSYST.2021.3065378
http://dx.doi.org/10.1109/JSYST.2021.3065378
http://dx.doi.org/10.1109/ACCESS.2018.2878674
http://dx.doi.org/10.1109/ACCESS.2018.2878674
http://dx.doi.org/10.1109/ACCESS.2018.2878674
http://dx.doi.org/10.1017/CBO9780511815478
http://dx.doi.org/10.1017/CBO9780511815478
http://dx.doi.org/10.1017/CBO9780511815478
http://dx.doi.org/10.1016/j.dss.2022.113819
http://dx.doi.org/10.3390/app10238394
http://dx.doi.org/10.3390/app10238394
http://dx.doi.org/10.3390/app10238394
http://dx.doi.org/10.1145/1150402.1150462
http://dx.doi.org/10.1145/1150402.1150462
http://dx.doi.org/10.1145/1150402.1150462
http://dx.doi.org/10.1109/ASONAM.2010.17
http://dx.doi.org/10.1016/j.sbspro.2011.07.055
http://dx.doi.org/10.1007/s13278-012-0058-8
http://dx.doi.org/10.1007/s13278-012-0058-8
http://dx.doi.org/10.1007/s13278-012-0058-8
http://dx.doi.org/10.1016/j.knosys.2022.109265
http://dx.doi.org/10.1016/j.knosys.2022.109265
http://dx.doi.org/10.1016/j.knosys.2022.109265
http://dx.doi.org/10.1016/j.knosys.2022.109649
http://dx.doi.org/10.1016/j.knosys.2020.105875
http://dx.doi.org/10.1016/j.knosys.2022.110038
http://dx.doi.org/10.1088/1742-5468/2008/10/p10008
http://dx.doi.org/10.1016/j.osnem.2022.100224
http://dx.doi.org/10.1103/PhysRevE.68.036122
http://dx.doi.org/10.1103/PhysRevE.68.036122
http://dx.doi.org/10.1103/PhysRevE.68.036122
http://dx.doi.org/10.1016/j.eswa.2020.113221
https://webdocs.cs.ualberta.ca/~zaiane/postscript/ASNA10.pdf
https://webdocs.cs.ualberta.ca/~zaiane/postscript/ASNA10.pdf
https://webdocs.cs.ualberta.ca/~zaiane/postscript/ASNA10.pdf
http://dx.doi.org/10.1073/pnas.0307750100
http://dx.doi.org/10.1038/nature05670
http://dx.doi.org/10.1145/1631162.1631164
http://dx.doi.org/10.1109/DSAA.2015.7344876
http://dx.doi.org/10.1007/978-3-319-41920-6_25
http://dx.doi.org/10.1109/SocialCom.2013.25
http://dx.doi.org/10.1109/SocialCom.2013.25
http://dx.doi.org/10.1109/SocialCom.2013.25
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1016/j.physa.2016.11.019
http://dx.doi.org/10.1016/j.physa.2016.11.019
http://dx.doi.org/10.1016/j.physa.2016.11.019
http://dx.doi.org/10.1109/TKDE.2013.131
http://www.jstor.org/stable/2427226
http://dx.doi.org/10.1109/SEQUEN.1997.666900

Knowledge-Based Systems 281 (2023) 111067M. Mazza et al.
[32] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards removing the
curse of dimensionality, in: Proceedings of the ACM Symposium on Theory of
Computing, STOC ’98, Association for Computing Machinery, New York, NY,
USA, 1998, pp. 604–613, http://dx.doi.org/10.1145/276698.276876.

[33] M. Mazza, M. Avvenuti, S. Cresci, M. Tesconi, Investigating the difference
between trolls, social bots, and humans on Twitter, Comput. Commun. (2022)
http://dx.doi.org/10.1016/j.comcom.2022.09.022.

[34] G. Cola, M. Mazza, M. Tesconi, From tweet to theft: Tracing the flow of
stolen cryptocurrency, in: F. Buccafurri, E. Ferrari, G. Lax (Eds.), Proceeding
of the Italian Conference on Cyber Security, ITASEC 2023, in: CEUR Workshop
Proceedings, (no. 3488) 2023, URL https://ceur-ws.org/Vol-3488/paper11.pdf.

[35] A. Lancichinetti, F. Radicchi, J.J. Ramasco, S. Fortunato, Finding statistically
significant communities in networks, PLOS One 6 (4) (2011) 1–18, http://dx.
doi.org/10.1371/journal.pone.0018961.

[36] M. Molloy, B. Reed, A critical point for random graphs with a given degree
sequence, Random Struct. Algorithms 6 (2–3) (1995) 161–180, http://dx.doi.
org/10.1002/rsa.3240060204.

[37] D. Darmon, E. Omodei, J. Garland, Followers are not enough: A multifaceted
approach to community detection in online social networks, PLOS One 10 (8)
(2015) 1–20, http://dx.doi.org/10.1371/journal.pone.0134860.
11
[38] W. Silva, Á. Santana, F. Lobato, M. Pinheiro, A methodology for community
detection in Twitter, in: Proceedings of the International Conference on Web
Intelligence, WI ’17, Association for Computing Machinery, New York, NY, USA,
2017, pp. 1006–1009, http://dx.doi.org/10.1145/3106426.3117760.

[39] P. Kumar, S. Gupta, B. Bhasker, An upper approximation based community
detection algorithm for complex networks, Decis. Support Syst. 96 (2017)
103–118, http://dx.doi.org/10.1016/j.dss.2017.02.010.

[40] C. Shi, Y. Cai, D. Fu, Y. Dong, B. Wu, A link clustering based overlapping
community detection algorithm, Data Knowl. Eng. 87 (2013) 394–404, http:
//dx.doi.org/10.1016/j.datak.2013.05.004.

[41] G. Cola, M. Mazza, M. Tesconi, Twitter newcomers: Uncovering the behavior
and fate of new accounts through early detection and monitoring, IEEE Access
11 (2023) 55223–55232, http://dx.doi.org/10.1109/ACCESS.2023.3282580.

[42] E. Chen, E. Ferrara, Tweets in time of conflict: A public dataset tracking the
Twitter discourse on the war between Ukraine and Russia, in: Proceedings of
the International AAAI Conference on Web and Social Media, Vol. 17, 2023, pp.
1006–1013, http://dx.doi.org/10.1609/icwsm.v17i1.22208.

http://dx.doi.org/10.1145/276698.276876
http://dx.doi.org/10.1016/j.comcom.2022.09.022
https://ceur-ws.org/Vol-3488/paper11.pdf
http://dx.doi.org/10.1371/journal.pone.0018961
http://dx.doi.org/10.1371/journal.pone.0018961
http://dx.doi.org/10.1371/journal.pone.0018961
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1002/rsa.3240060204
http://dx.doi.org/10.1371/journal.pone.0134860
http://dx.doi.org/10.1145/3106426.3117760
http://dx.doi.org/10.1016/j.dss.2017.02.010
http://dx.doi.org/10.1016/j.datak.2013.05.004
http://dx.doi.org/10.1016/j.datak.2013.05.004
http://dx.doi.org/10.1016/j.datak.2013.05.004
http://dx.doi.org/10.1109/ACCESS.2023.3282580
http://dx.doi.org/10.1609/icwsm.v17i1.22208

	Modularity-based approach for tracking communities in dynamic social networks
	Introduction
	Related work
	Foundational concepts on dynamic networks
	Dynamic communities
	Critical events
	Similarity

	Proposed framework to track dynamic communities
	Community similarity network
	Local modularity optimization
	Identify dynamic communities over time
	Events reconstruction

	Experiments and results
	Synthetic datasets
	Evaluation metric and experimental setup
	State-of-the-art approaches
	Results of the evaluation and comparison
	Complexity analysis
	Application to a real-world dataset

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

