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Abstract
Complex or hostile environments can sometimes inhibit themovement capabilities of diffusive
particles or active swimmers, whomay thus become stuck infixed positions. This occurs, for example,
in the adhesion of bacteria to surfaces at the initial stage of biofilm formation.Herewe analyze the
dynamics of active particles in the presence of trapping regions, where irreversible particle
immobilization occurs at afixed rate. By solving the kinetic equations for run-and-tumblemotion in
one space dimension, we give expressions for probability distribution functions, focusing on
stationary distributions of blocked particles, andmean trapping times in terms of physical and
geometrical parameters. Different extensions of the trapping region are considered, from infinite to
cases of semi-infinite andfinite intervals. Themean trapping time turns out to be simply the inverse of
the trapping rate for infinitely extended trapping zones, while it has a nontrivial form in the semi-
infinite case and is undefined for finite domains, due to the appearance of long tails in the trapping
time distribution. Finally, to account for the subdiffusive behavior observed in the adhesion processes
of bacteria to surfaces, we extend themodel to include anomalous diffusivemotion in the trapping
region, reporting the exact expression of themean-square displacement.

1. Introduction

Trapping processes are quite ubiquitous in nature.Molecules can be adsorbedwhen they diffuse onto reactive
substrates, cells can die when theymove through harmful environments, living organisms can be captured by
predators while foraging in hostile areas.More recently interesting studies focused on trapping of photokinetic
bacteria in structured lightfields [1].Modeling stochasticmotion in trapping environments is then of great
interest [2–5]. In particular, the study of active systems, composed by self-propelled particles, can give us a very
general view of the process, which applies tomany interesting physical and biological phenomena [6, 7],
allowing diffusivemotion to be obtained as a limiting case. Understating the evolution of particles density or
trapping time properties and their dependence on the physical and geometrical parameters, can give us better
insights into trapping processes. In this regard, it could be very useful to determine exact expressions of these
quantities in simplifiedmodels that allow analytical treatment.

In this paperwe analyze the behavior of active particles, performing run-and-tumblemotion [8–17], in the
presence of trapping regions in one space dimension. In recent years,many studies have focused on the analysis
of trapping processes consisting of the confinement of active particles due to various causes: presence of
obstacles in crowded environments [18–21], external fields or effective confining potentials induced by space-
dependentmotility parameters [22–26], confining boundaries [27], porous environments [28, 29]. In all these
cases the term trapping indicates that the particle experiences confinement due to the presence of some kind of
external cause that prevents, hinders or reduces its freemotion. This trapping is also usually non-permanent: the
particle can escape from local entrapment and continue itsmotion. In this work, instead, wewant to treat a
different kind of trapping, and by this termwemean that the particle can undergo a sudden irreversible stopping
of itsmotionwhen it passes through a certain region (irreversible immobilization or irreversible trapping in a
slow dynamic phase). This is, for example, the case of bacterial adhesion to surfaces, occurring in the early stage
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of biofilms formation [30–33]. Biofilms are complex aggregates ofmicroorganisms that often formon surfaces
and are held together by an extracellular polymericmatrix. The complex emergent properties of this ubiquitous
microbial community are of great interest from a theoretical and practical point of view.Understanding the
functionalmechanisms of this ensemble of cooperating cells, involvingmechanical and physicochemical
processes, is not only a fascinating topic for physicists and biologists, but also an urgent task for physicians, as
biofilms are often the cause of persistent infections in living organisms [34]. Thefirst step of biofilm formation is
the adhesion of cells to surfaces. This process, after an initial reversible phase, is essentially irreversible and the
bacteria become stuck in quasi-fixed positions on surfaces. As afirst approximation, we can therefore describe
this phenomenon as an irreversible trapping process, occurring at a given fixed rate, during the randomactive
motion of the cell on the surface.We describe here such an irreversible adhesion process using a simplified one-
dimensionalmodel, which encodes themain ingredients of bacteriamotion (run-and-tumble dynamicsmimic
E.colimotion [7]) and trapping process (irreversible arrest). Despite its simplicity, the run-an-tumblemodel has
been shown to capturemany new and interesting phenomena of activematter, often allowing exact analytical
expressions ofmany quantities of interest. In this workwe use such amodel to study irreversible trapping
processes considering different extensions of trapping zones, from the simple infinite case, where the trapping
region extends all over the space, to themore interesting case of semi-infinite andfinite trapping zones. By
solving the kinetic equations governing the evolution of probability distribution functions, we are able to obtain
analytical expressions of various quantities, such as particles distributions, survival probabilities,mean-square
displacements, trapping time distributions andmean-trapping times. At the end, to account for the behaviors
observed in some experiments with bacteria, we relax the assumption of particle immobilization in the trapping
phase and include the possibility of subdiffusivemotion, described by fractional-type diffusion equations.

The paper is organized as follow. In section 2we define and introduce themodel. In section 3we analyze the
case of an infinitely extended trapping region. The semi-infinite case is treated in section 4 and the case offinite
trapping interval is discussed in section 5. In section 6we extend themodel to describe subdiffusion in the
trapping phase, considering fractional-type equations. Conclusions are drawn in section 7.

2. Run-and-tumblemodel in trapping regions

Weconsider a run-and-tumble particlemoving at constant speed v and reorienting its direction ofmotionwith
rateα.We are interested in describing the particlemotionwhen immersed in absorbing environments which
cause the irreversible trapping of the particle with a given rate γ(x), which, in general, is a space-dependent
quantity.We denotewith P x t,

R
( ) and P x t,

L
( ) the probability density functions (PDF) of right-oriented and

left-oriented active (moving) particles andwith P x t,
B
( ) the PDF of blocked (trapped, immobilized)particles.

The general equations describing the time evolution of the PDFs are
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For γ= 0 the first two equations reduce to the standard equations describing run-and-tumble particles [8–17].
In the followingwe analyze different cases, from the homogeneous one inwhich a particlemoves in a infinitely
extended trapping region (γ is constant throughout thewhole space) tomore complex heterogeneous situations
inwhich the trapping zones have finite or semi-infinite extension (γ is a space-dependent step function). In all
the investigated cases wewill consider a particle that symmetrically starts itsmotion at the origin,

d= =P x P x x, 0 , 0 2
R L
( ) ( ) ( ) , and it is immersed in a symmetric environment, i.e., γ(− x)= γ(x).

3. Infinitely extended trapping region

Wefirst consider the case of a run-and-tumble particlemoving in a infinitely extend trapping region (see
figure 1). Themodel is described by the following equationswith non-vanishing and constant γ(x)= γ (for the
sake of simplicity we do not indicate the dependence on space and time variables)

a a
g

¶
¶

= -
¶
¶

- + -
P

t
v

P

x
P P P

2 2
, 4R R

R L R ( )

a a
g

¶
¶

=
¶
¶

- + -
P

t
v

P

x
P P P

2 2
, 5L L

L R L ( )

2

Phys. Scr. 98 (2023) 125013 LAngelani



g
¶
¶

= +
P

t
P P . 6B

R L( ) ( )

By defining the PDF of active particles = +P P P
R L

and the current = -J v P P
R L

( )wehave
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with the normalization ò + =dx P P 1
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By using the Laplace transform

òº =
¥

-P s P t s dt e P t , 10st

0

˜( ) [ ( )]( ) ( ) ( )

and considering initial conditionsP(x, 0)= δ(x), J(x, 0)= 0, =P x, 0 0
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By combining the first two equationswe obtain the second order differential equation for P̃
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where c(s) is

g a g= + + +v c s s . 162 2 ( )( ) ( )

Wenote that the active particle PDF (15) is the Laplace-shifted solution of the classical one-dimensional PDF
of a run-and-tumble particle in free space P0, g= +P x s P x s, ,0˜( ) ˜ ( ), as it is also evident by noting that
equations (11), (12) and (14) are identical to those of standard run-and-tumble particles in free (non-trapping)
spacewith the substitution s→ s+ γ (see equations (15), (16) of [14]). Therefore, in the time domain, we have
that g= -P x t t P x t, exp ,0( ) ( ) ( ). The free solution P0(x, t) is well known in the literature (see, for example,
[9, 12]) and thenwe canwrite the explicit expression ofP(x, t) as

Figure 1. Sketch of the trapping zones in the three cases analyzed in this study, corresponding to infinite, semi-infinite andfinite
extensions of the intervals where an irreversible immobilization of particles occurs at rate γ.
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where I0, I1 aremodified Bessel functions andD = -v t x2 2 2 .
The PDF of blocked particles is obtained as time-integral ofP, being their Laplace transforms related

through equation (13):
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After some algebrawefinally obtain
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The stationary distribution of blocked particles is given by = =¥ P x P x t sP x slim , lim ,st
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wherewe have introduced the characteristic lengthλ
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Figure 2 shows the stationary distribution (20), alongwith those for semi-infinite andfinite trapping zones (see
following sections).We note that, in the diffusive limit,α, v→∞withfinite diffusion constantD= v2/α, the
characteristic length reads l g= DDiff . and the stationary distribution (20) reduces to that obtained in [35]:
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Wenow study the probability distributionj(t) of the trapping time, which is related to the survival probability
 t( ), i.e., the probability that the active particle has not been trapped until time t
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The survival probability is obtained as an integration over space of the active particles PDF
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By using (15), the Laplace transform is given by
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corresponding, in the time domain, to
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The trapping times are then exponentially distributed
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and themean trapping time
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Another interesting quantity to calculate is themean-square displacement (MSD) of particles, i.e. the second
moment of the total particle distribution function +P P

B
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Working in the Laplace domain, using (15) and (13), we have
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Inverting the Laplace transformwefinally obtain the expression of theMSD
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Wenote that, for γ= 0, the above expression reduces to the usual one for run-and-tumble free particles [9]
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g a g
=

+
 ¥¥r

v
t

2
, , 342

2

( )
( )

which is, indeed, the secondmoment of the blocked particles distribution in the stationary regime (20).We
finally observe that, in the diffusive limit, theMSD reads
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which, for γ→ 0, reduces to the standard form in the free space
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Infigure 3 theMSD (32) is shown for four different values of the trapping parameter γ.

Figure 2. Stationary probability distributions P xst.
B

( )( ) of blocked particles in trapping regions (where γ > 0, highlighted red zones
along the x axis). (a)The trapping zone extends all over the space, equation (20). (b)The case of semi-infinite trapping regions, |x| > a,
with a/λ = 1, equation (50). (c)The case offinite trapping intervals, a < |x| < b, with a/λ = 1 and b/λ = 4, equation (70).We set
α = 1, v = 1 and γ = 1.
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4. Semi-infinite trapping region

Wenow consider the case inwhich the trapping region is |x|> a (see figure 1).We have to solve two sets of
equations (1)–(3). In the free region (I) |x|< awehave γ= 0:
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In the trapping region (II) |x|> awehave γ> 0:
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Wenote that blocked particles are present only in the trapping region (II). The corresponding differential
equations for the probability density = +P P P

R L
in the two zones are then given by (14)with γ= 0 in the free

zone (I) andwith γ> 0 in the trapping zone (II). By imposing continuity condition for P and discontinuity for
∂xP in |x|= a (continuity of the current J)wefinally obtain, in the Laplace domain
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Figure 3.Mean-square displacement r2(t) in the case of infinitely extended trapping region for different values of the trapping rate:
γ = 0 (absence of trapping), γ = 10−3, γ = 1 and γ = 10.One observes ballistic behavior r2 ∼ t2 at short times (  a g- -t min ,1 1( )),
possibly diffusive one r2 ∼ t at intermediate times (α−1 < t < γ−1) and saturation  ¥r r2 2 at long times (  a g- -t max ,1 1( )).We
setα = 1 and v = 1.
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The stationary distribution of blocked particles is obtained as g= = P x sP x s P x slim , lim ,st
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withλ given by (21). For a= 0 the above expression reduces to (20), valid in the case of infinite trapping region.
Also in this casewe can calculate themean trapping time. Let us first study the trapping time distribution.

The survival probability (24) is given by
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wherewe have used the normalization condition and the symmetry of the problem. In the Laplace domain,
using the relationj = - s s s1˜ ( ) ˜ ( ) and (44), we obtain the following expression of the trapping time
distribution
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Some examples of trapping time distributionsj(t) are reported infigure 4.
Themean trapping time is obtained from t j= -¶ =ss s 0˜ ( )∣ :
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This expression is valid for generic particle’s properties (α, v) and environmental parameters (γ, a).We now
discuss some interesting limits.

First of all, we note that, for a= 0, we recover the previous result of infinite trapping regions, τ= 1/γ.
Instead, for a→∞ or γ→ 0, the problem reduces to that of a free particles in an unbounded domainwithout
trapping, resulting, trivially, in an infinite trapping time.

Wenow analyze the two interesting limiting cases of non-tumbling particles and diffusive particles. The
former is obtained in the limitα→ 0 (wave limit) giving rise to

Figure 4.Trapping time distributionsj(t) for the cases of infinite, semi-infinite andfinite extension of trapping regions. The curve for
the infinite case is the exponential (27), while the curves for the semi-infinite andfinite cases are calculated numerically inverting the
Laplace transform expressions (52) and (72). The distributions of semi-infinite andfinite cases are different from zero only for times
longer that theminimum time ta = a/v required for the particle to reach the border x = a of the trapping zone, while the small
discontinuous drop present in thefinite case corresponds to thefirst exit at tb = b/v from the outer border x = b of the trapping
domain.We setα = 1, v = 1, γ = 1, a/λ = 1 and b/λ = 4 (l = 1 2 ).
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which is, precisely, the sumof the time it takes for the non-tumbling particle to arrive at the a boundary of the
trapping zone and the average trapping time 1/γ inside it.

The diffusive limit is obtained forα, v→∞withfinite diffusion constantD= v2/α. In such a case the
(Laplace transformed) trapping time distribution reads
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4.1. First-passage problemas a limiting caseγ→∞
Herewe showhow it is possible to obtain the solution of the free run-and-tumblemotion in afinite domain
[−a, a]with perfectly absorbing boundaries taking the limit γ→∞ of the previous results. Indeed, in this limit,
the particle is instantaneously absorbedwhen arriving at the edge x=± a of the trapping zone andwe then get a
first-passage problem. Thefirs-passage time distribution is then obtained from (52)
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retrieving previous results in the literature (see equation (64) of [14]with ò= 1). Themeanfirst-passage time is
obtained from (53) andwe have [14, 24]
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Similarly, we obtain the first-passage time distribution of a diffusive particle in a finite domain [−a, a]with
perfectly absorbing boundaries by taking the limit of (55)
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5. Finite trapping region

The last case we analyze is that of afinite trapping interval a< |x|< b (seefigure 1).We have now to solve three
sets of equations, two in the free regions (I) |x|< a and (III) |x|> bwith γ= 0, like equations (37)–(38), and one
in the trapping region (II) a< |x|< bwith γ> 0, like equations (39)–(41). Following similar arguments as in the
previous sections, we canwrite the solutions, in the Laplace domain, as

= + - <+ -P x s A c x A c x x a, exp exp , for , 61
I I

0

I

0
˜ ( ) ( ∣ ∣) ( ∣ ∣) ∣ ∣ ( )

( ) ( ) ( )

= + - < <+ -P x s A c x A c x a x b, exp exp , for , 62
II II II˜ ( ) ( | |) ( | |) | | ( )

( ) ( ) ( )

= - >-P x s A c x x b, exp , for , 63
III III

0
˜ ( ) ( ∣ ∣) ∣ ∣ ( )

( ) ( )

g
= < <P x s

s
P x s a x b, , , for , 64B

II˜ ( ) ˜ ( ) ∣ ∣ ( )
( )

where c(s) and c s
0
( ) are given by (45- 46), and

 =


-
- +

- +

A
c

s

ck c qk

ck c a c qk c a
c a

4 cosh sinh
exp , 65

I
0 0

0 0 0

0( ) ( )
( ) ( )

( )

= -
-

-+
- +

A
c q

s ck c a c qk c a
ca

2

1

cosh sinh
exp , 66

2
II

0

0 0 0( ) ( )
( ) ( )

( )
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=
-
--

+

- +

A
c q

s

k

ck c a c qk c a
ca

2

1

cosh sinh
exp , 67

2
II

0

0 0 0( ) ( )
( ) ( )

( )

= -
- -

+ --
- +

A
c cq

s c c q ck c a c qk c a
c b c b a

1

cosh sinh
exp , 68

2
III

0

0 0 0 0

0( ) ( ) ( )
[ ( )] ( )

( )

with q(s) given by (49) and

= 
+
-

-k
c c q

c c q
c b a1 .exp 2 690

0

[ ( )] ( )

As before, we can obtain an exact expression for the stationary distribution of blocked particles in the trapping
region a< |x|< b, obtaining (seefigure 2)

l
l
l

=
-
-

< <P x
b x

b a
a x b

1

2

cosh

sinh
, for , 70st .

B
( ) [( ∣ ∣) ]

[( ) ]
∣ ∣ ( )( )

whereλ is the characteristic length (21).We note that for b→∞ we recover the previous semi-infinite case (50).
We now study the distribution of trapping time. The survival probability is given by

ò= - t dx P x t1 2 , . 71
a

b

B( ) ( ) ( )

By using the expressions (64) and (62) and the relationj = - s s s1˜ ( ) ˜ ( ), we have that the trapping time
distribution in the Laplace domain reads

j
g
g

=
+

- - -
-

- -
+

-

- +

s
s

c e k e

ck c a c qk c a

1 1

cosh sinh
, 72

c b a c b a

0 0 0

˜ ( ) ( ) ( )
( ) ( )

( )
( ) ( )

where L= b− a. For small swe have that

j ~ - -s A s Bs1 , 73˜ ( ) ( )

with prefactorsA andB depending on the system and geometrical parameters.We have:

a g
ag l

=
+

A
L

1

sinh
, 74

( )
( )

and

⎜ ⎟
⎛
⎝

⎞
⎠g

a l
l

a g
g

a g
ag l

= + +
+

-
+

B
a

v

L

L

a

v L

1

2

cosh

sinh

1

sinh
. 75

2

2

( )
( ) ( )

( )

At small s the survival probability diverges as ~ - s s 1 2˜ ( ) . From the Tauberian theoremeswe have that, in time
domain, ~ - t t 1 2( ) for large t [36]. This implies that the trapping time distribution, given by
j = -¶ t tt( ) ( ), behaves asymptotically as

j ~
G

 ¥-t
A

t t
2 1 2

, , 763 2( )
( )

( )

whereΓ(x) is theGamma function (see figure 4).We then conclude that themean trapping time (28) diverges, as
a consequence of the infinite extension of the free zone, resulting in a slower trapping of particles. It is worth
noting that, in the limit of semi-infinite trapping region (b→∞ ) the prefactorA in (73) vanishes (see (74) for
L→∞ ) and equation (72) reduces to (52). Themean trapping time is thenfinite and it is given by the termB in
(75) for L→∞ , that coincides with the expression (53). Finally, we note that the case of a particle starting its
motion at the center of afinite trapping zone [−b, b] is simply obtained by taking the limit a→ 0 of the previous
results.

6.Modeling anomalous diffusion in the trapping region

Bacterial adhesion to surfaces often occurs through complex and nontrivialmechanisms. For example in [31] it
was shown that the cell adhesion to glass surfaces involvesmultiple reversibly-binding tethers that detach and
successively re-attach, resulting in a slowing down of the dynamics of attached bacteria. Themean-square
displacement of several bacterial strains was found to have a subdiffusive trend at long times, r2∼ t νwith ν< 1
[31]. In this last sectionwe extend ourmodel to take into account in an effective way such a subdiffusive
character of the bacterial dynamics in the trapping regions. To this end, wemake use of fractional diffusion
models, which are known to generate subdiffusive dynamics at long times [36–41]. For the sake of simplicity,
here we analyze only the case of infinitely extended trapping zone (see section 3). Themodel describes a run-
and-tumble particle that, at fixed rate, irreversibly switches to a phase characterized by anomalous diffusion. By
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introducing the time-fractional derivative of order ν ä (0, 1),

¶
¶

=
¶
¶

n

n
n-f

t
x t I

f

t
x t, , , 771( ) ( ) ( )

where Iμ is the Riemann-Liouville fractional intergral

òm
t t t m=

G
- >m m-I f x t d t f x,

1
, , 0, 78

t

0

1( )
( )

( ) ( ) ( )

we can generalize the equation (9) for the PDF of particles in the trapping regions including fractional diffusion
in the followingmanner

⎛
⎝

⎞
⎠

g
¶
¶

- =
¶
¶

n-I
P

t
P D

P

x
. 79B B1

2

2
( )

The equations forP and J are the same as (7) and (8).We note that in the case of null diffusion,D= 0, we recover
the original case of immobilized particles, equation (9), as I1− νf= 0 implies f= 0. Instead, in the limit ν→ 1, we
have that I1− νf→ f, andwe obtain the case of normal diffusion

g n
¶
¶

=
¶
¶

+ 
P

t
D

P

x
P, 1. 80B B

2

2
( )

Proceeding as in section 3, we canwrite the equation (79) in the Laplace domain as

g=
¶
¶

+n n-s P D
P

x
s P, 81

2

2
1

B
B˜ ˜ ˜ ( )

having used the fact that

=n
n

-
-

 I f t s
f s

s
. 821

1
[ ( )]( )

˜ ( ) ( )

Performing now the Fourier transform

òº =
-¥

+¥
f k f x k dx e f x , 83ikxˆ ( ) [ ( )]( ) ( ) ( )

the equation (81) becomes

g+ =n n-s Dk P s P. 842 1
B( ) ˜̂ ˜̂ ( )

The PDF in the RHS can be obtained from equation (14) (we remind that the equation forP is the same as in
section 3) leading to

g a
g g a

=
+ +

+ + + +
P

s

s s v k
. 85

2 2
˜̂

( )( )
( )

Wehave then obtained the exact expressions ofP, equation (85) andPB, from equation (84), in the Laplace-
Fourier domain, thus allowing us to compute themean-square displacement thorough

= -
¶
¶

+
=

r s
k

P P . 86
k

2
2

2
0

B
˜ ( ) ( ˜̂ ˜̂ ) ( )

After some algebrawefinally obtain

g g a
g

g
=

+ + +
+

+
º +

n+
r s

v

s s s

D

s s
r s r s

2 2
, 872

2

1
2 2
A B

˜ ( )
( )( ) ( )

˜ ( ) ˜ ( ) ( )

which generalizes equation (31) to the present case of fractional diffusion.With respect to the original
expression, we note here the presence of a second term, which takes into account the anomalous diffusion of
trapped particles. Themean-square displacement in the time domain is obtained by performing the inverse-
Laplace transformof the previous expression

= +r t r t r t , 882 2 2
A B

( ) ( ) ( ) ( )

with thefirst term that is the same obtained in section 3, equation (32),

ag a g
a g=

+
- - -g g a- - -r t

v
e e e

2
1 1 , 89t t t2

2

A
( )

( )
[ ( ) ( )] ( )
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and the second term that can be expressed as

g
n

n n g

g
n

n g

=
G +

F + +

=
G +

F + -

n g

n

+ -

+

r t
D

t e t

D
t t

2

2
1, 2;

2

2
1, 2; , 90

t2 1

1

B
( )

( )
( )

( )
( ) ( )

wherewe have introduced the degenerate (confluent) hypergeometric function [42]

òb m
m

b m b
b mF =

G
G G -

- ºm b m b- - - -z z dte t z t F z, ; ; ; , 91
z

t1

0

1 1
1 1( ) ( )

( ) ( )
( ) ( ) ( )

with òG =
¥ - -z t e dtz t

0
1( ) the EulerGamma function, andwe have used the property

b m m b mF = F - -z e z, ; , ; . 92z( ) ( ) ( )
Let us analyze the asymptotic behaviors. In the long time regime the dominant terms in equation (87) are
obtained for small s,

g g
~ +

+


n+
r s

D

s

v

s s
s

2 2 1
, 0, 932

1

2˜ ( )
( )

( )

corresponding in the time domain to

n g g a n
~

G +
+

+
~

G +
 ¥n nr t

D
t

v D
t t

2

1

2 2

1
, . 942

2

( )
( ) ( ) ( )

( )

We then obtain, asymptotically, anomalous diffusionwith exponent ν.We note that, for immobilized particles,
D= 0, the dominant term is the constant one, and theMSDdevelops a plateau (34). The same asymptotic trend
can be inferred directly from the expression (90). Indeed, bymanipulating the integral in the hypergeometric
function, we canwrite (90) in the form

/ò
g
n

t t
n

=
G +

- ~
G +

 ¥n gt n n-r t
D

t d e t
D

t t
2

1
1

2

1
, , 95B

t
2

0
( )

( )
( )

( )
( )

as the integral converges to 1/γ in the asymptotic limit.
At short times the dominant terms are obtained for large s,

g
~ +  ¥

n+
r s

D

s

v

s
s

2 2
, , 962

2

2

3
˜ ( ) ( )

corresponding to

g
n

g
n

~
G +

+ ~
G +

n n+ +r t
D

t v t
D

t t
2

2

2

2
, 0. 972 1 2 2 1( )

( ) ( )
( )

Infigure 5we report themean-square displacement (88) for the case of exponent ν= 0.2 (close to typical values
obtained in experiments [31]). The curves (full lines) correspond to two different values of the trapping rate,
γ= 1 and γ= 0.1. For comparisonwe report also the corresponding cases of immobilized particles in the
trapping zone,D= 0 (dashed lines), studied in section 3. It is evident an anomalous subdiffusive behavior t ν at
long time, a superdiffusive behavior t ν+1 at short time and possible intermediate regimes (ballistic, diffusive or
plateau-like) depending on the parameters values.

7. Conclusions

In this workwe studied the problemof active particles in trapping environments, describing the irreversible
adhesion processes that take place, for example, in the early stage of biofilms formation. In particular, we
considered 1D run-and-tumble particles in the presence of trapping regionswhere particles absorption takes
place at rate γ. Different extension of the trapping regions are investigated: infinite, semi-infinite and finite. By
solving the kinetic equations for the probability density functionswe are able to provide exact expressions of
several interesting quantities. The case of infinite trapping interval is fully solvable in the time domain.We report
expressions of PDFs ofmoving and blocked particles,mean-square displacement, trapping time distribution
andmean trapping time, which turns out to be simply the inverse of the trapping rate 1/γ. In the case of semi-
infinite trapping regionwe are able to solve the problem in the Laplace domain, allowing us to give exact
expressions of stationary distribution of blocked particles (50) andmean trapping time (53). Several limiting
cases are also analyzed, such as diffusivemotions and first-passage problems in afinite domain. Finally, we
analyze the case of afinite trapping region, reporting again the spatial distribution of blocked particles in the
stationary regime (70) and discussing the behavior of the trapping time distribution, whose long tail at large t
leads to divergentmean trapping time. A last section is devoted to extend themodel to the case of anomalous
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diffusion of trapped particles, in accordance with some experimental observations on bacterial adhesion to glass
surfaces [31]. By resorting to fractional diffusionmodels we are able to derive exact expressions of theMSD,
resulting in subdiffusive behaviors r2 ∼ t νwith ν< 1 in the long time regime and non-trivial trends in the
intermediate regimes.

It would be of interest to extend the present analysis in different directions. Afirst implementationmight be
to consider reversible trapping, that is, the possibility for the particle to reactivate itself after trapping [43]. Other
possible extensions could be the analysis of planarmotions [12, 44–47] or consideringmore complex
environments, such as those described by a continuously variable trapping rate, by a periodic sequence of
trapping intervals [4, 5] or by the presence of generic boundaries [48]. Afinal possible direction of investigation
might be to consider different combinations of particlemotion in the two phases, before and after trapping. In
the present studywe investigated the case of activemotion before trapping and arrested phase or anomalous
diffusive phase after it. It would be interesting to consider also, for the initial active phase, fractional processes
[40, 41, 49] or generalized g-fractionalmotions [50, 51], extending, for example, the recent investigation on
subdiffusive processes with particles immobilization [35]. Afinal remark concerns themodeling of the entire
biofilm formation process. It could be of great importance to implement the described run-and-tumblemodels
inmore realistic contexts (also using numerical simulations), considering both irreversible adhesion and cellular
replication [52].

Acknowledgments

I thankRobertoGarra for useful discussions. I acknowledge financial support from the ItalianMinistry of
University andResearch (MUR) under PRIN2020GrantNo. 2020PFCXPE.

Data availability statement

Nonewdatawere created or analysed in this study.

ORCID iDs

LucaAngelani https://orcid.org/0000-0001-5753-1126

References

[1] FrangipaneG,Dell’ArcipreteD, Petracchini S,Maggi C, Saglimbeni F, Bianchi S, Vizsnyiczai G, BernardiniML andDi LeonardoR
2018ELife 7 e36608

[2] Redner S 2001AGuide to First-Passage Processes (CambridgeUniversity Press) (https://doi.org/10.1017/CBO9780511606014)
[3] Bressloff PC 2021 Stochastic Processes in Cell BiologyVol. 1-2 (Springer)
[4] Pozzoli G andDeBruyne B 2021 J. Stat.Mech. 2021 123203

Figure 5.Mean-square displacement r2(t) for the fractional diffusionmodel in the case of infinite extension of the trapping region.We
consider fractional derivative exponent ν = 0.2. Black and red continuous lines correspond, respectively, to trapping rates γ = 1 and
γ = 0.1. Dashed lines are the corresponding curves in the case of complete blocking of particles, i.e.,D = 0 (see section 3).We set
α = 1, v = 1,D = 1.

12

Phys. Scr. 98 (2023) 125013 LAngelani

https://orcid.org/0000-0001-5753-1126
https://orcid.org/0000-0001-5753-1126
https://orcid.org/0000-0001-5753-1126
https://orcid.org/0000-0001-5753-1126
https://doi.org/10.1017/CBO9780511606014


[5] Pozzoli G andDeBruyne B 2022 J. Stat.Mech. 2022 113205
[6] Bechinger C,Di Leonardo R, LöwenH, Reichhardt C, VolpeG andVolpeG 2016Rev.Mod. Phys. 88 045006
[7] BergHC2004E. Coli inMotion (Springer-Verlag)
[8] SchnitzerM J 1993Phys. Rev.E 48 2553
[9] WeissGH2002Phys. A (Amsterdam,Neth.) 311 381
[10] Masoliver J, Porrà JM andWeiss GH1992Phys. Rev.A 45 2222
[11] CatesME2012Rep. Prog. Phys. 75 42601
[12] Martens K, Angelani L,Di Leonardo R andBocquet L 2012Eur. Phys. J.E 35 84
[13] Tailleur J andCatesME2008Phys. Rev. Lett. 100 218103
[14] Angelani L 2015 J. Phys. A:Math. Theor. 48 495003
[15] Angelani L 2017 J. Phys. A:Math. Theor. 50 325601
[16] EvansMR andMajumdar SN2018 J. Phys.A 51 475003
[17] Malakar K, JemseenaV, KunduA, KumarKV, Sabhapandit S,Majumdar SN, Redner S andDharA 2018 J. Stat.Mech. 2018 043215
[18] BertrandT, Zhao Y, BénichouO, Tailleur J andVoituriez R 2018Phys. Rev. Lett. 120 198103
[19] Rizkallah P, SarracinoA, BénichouO and Illien P 2022Phys. Rev. Lett. 128 038001
[20] ZeitzM,Wolff K and StarkH2017Eur. Phys. J.E 40 23
[21] Chepizhko1O and Peruani F 2013Phys. Rev. Lett. 111 160604
[22] Bressloff PC 2021 arXiv:2102.10372
[23] DharA, KunduA,Majumdar SN, Sabhapandit S and SchehrG 2019Phys Rev.E 99 032132
[24] Angelani L, Di LeonardoR and PaoluzziM2014Eur. Phys. J.E 37 59
[25] Sevilla F J, Arzola AV andCital E P 2019Phys Rev.E 99 012145
[26] Angelani L andGarra R 2019Phys. Rev.E 100 052147
[27] MoenEQZ,OlsenK S, Rønning J andAngheluta L 2022Phys. Rev. Research 4 043012
[28] Bhattacharjee T andDatta S S 2019Nat. Commun. 10 2075
[29] LohrmannC andHolmC2023Phys, Rev. E 108 054401
[30] FlemmingHC et al 2016Nat. Rev.Microbiol. 14 563
[31] Sjollema J et al 2017 Sci. Rep. 7 4369
[32] Vissers T et al 2018 Sci. Adv. 4 eaao1170
[33] SantoreMM2022Adv. Colloid Interface Sci. 304 102665
[34] Costerton JW, Stewart P S andGreenberg E P 1999 Science 284 1318
[35] Kosztołowicz T 2023Phys. Rev. E 108 014132
[36] Klafter J and Sokolov IM2011 First Steps in RandomWalks: FromTools to Applications (OxfordUniversity Press) (https://doi.org/

10.1093/acprof:oso/9780199234868.001.0001)
[37] CompteA andMetzler R 1997 J. Phys. A:Math. Gen. 30 7277
[38] Metzler R and J Klafter J 2000PhysicaA 278 107
[39] RangarajamG andDingM2000Phys. Rev.E 62 120
[40] Masoliver J 2016Phys. Rev.E 93 052107
[41] Angelani L andGarra R 2020 J. Phys. A:Math. Theor. 53 085204
[42] Gradshteyn I S andRyzhik IM2007Table of Integrals, Series and Products (Academic Press)
[43] Peruani F andChaudhuri D 2023 arXiv:2306.05647
[44] Angelani L 2022 J. Stat.Mech. 2022 123207
[45] BasuU,Majumdar SN, RossoA, Sabhapandit S and SchehrG 2020 J. Phys. A:Math. Theor. 53 09LT01
[46] SmithNR, LeDoussal P,Majumdar SN and SchehrG 2022Phys. Rev. E 106 054133
[47] Orsingher E,Garra R andZeifmanT 2020Markov Process. Relat. Fields 26 381
[48] Angelani L 2023 J. Phys. A:Math. Theor. 56 455003
[49] DeanD S,Majumdar SN and SchaweH2021Phys. Rev.E 103 012130
[50] Angelani L andGarra R 2023Phys. Rev.E 107 014127
[51] Angelani L andGarra R 2023 Fractal Fract. 7 235
[52] HallatschekO et al 2023Nat. Rev. Phys. 5 407

13

Phys. Scr. 98 (2023) 125013 LAngelani

https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1103/PhysRevE.48.2553
https://doi.org/10.1016/S0378-4371(02)00805-1
https://doi.org/10.1103/PhysRevA.45.2222
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1103/PhysRevLett.100.218103
https://doi.org/10.1088/1751-8113/48/49/495003
https://doi.org/10.1088/1751-8121/aa734c
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1103/PhysRevLett.120.198103
https://doi.org/10.1103/PhysRevLett.128.038001
https://doi.org/10.1140/epje/i2017-11510-0
https://doi.org/10.1103/PhysRevLett.111.160604
http://arxiv.org/abs/2102.10372
https://doi.org/10.1103/PhysRevE.99.032132
https://doi.org/10.1140/epje/i2014-14059-4
https://doi.org/10.1103/PhysRevE.99.012145
https://doi.org/10.1103/PhysRevE.100.052147
https://doi.org/10.1103/PhysRevResearch.4.043012
https://doi.org/10.1038/s41467-019-10115-1
https://doi.org/10.1103/PhysRevE.108.054401
https://doi.org/10.1038/nrmicro.2016.94
https://doi.org/10.1038/s41598-017-04703-8
https://doi.org/10.1016/j.cis.2022.102665
https://doi.org/10.1126/science.284.5418.1318
https://doi.org/10.1093/acprof:oso/9780199234868.001.0001
https://doi.org/10.1093/acprof:oso/9780199234868.001.0001
https://doi.org/10.1088/0305-4470/30/21/006
https://doi.org/10.1016/S0378-4371(99)00503-8
https://doi.org/10.1103/PhysRevE.62.120
https://doi.org/10.1103/PhysRevE.93.052107
https://doi.org/10.1088/1751-8121/ab64a3
http://arxiv.org/abs/2306.05647
https://doi.org/10.1088/1751-8121/ab6af0
https://doi.org/10.1088/1751-8121/ad009e
https://doi.org/10.1103/PhysRevE.103.012130
https://doi.org/10.1103/PhysRevE.107.014127
https://doi.org/10.3390/fractalfract7030235
https://doi.org/10.1038/s42254-023-00593-0

	1. Introduction
	2. Run-and-tumble model in trapping regions
	3. Infinitely extended trapping region
	4. Semi-infinite trapping region
	4.1. First-passage problem as a limiting case γ → ∞ 

	5. Finite trapping region
	6. Modeling anomalous diffusion in the trapping region
	7. Conclusions
	Acknowledgments
	Data availability statement
	References



