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Abstract

Complex or hostile environments can sometimes inhibit the movement capabilities of diffusive
particles or active swimmers, who may thus become stuck in fixed positions. This occurs, for example,
in the adhesion of bacteria to surfaces at the initial stage of biofilm formation. Here we analyze the
dynamics of active particles in the presence of trapping regions, where irreversible particle
immobilization occurs at a fixed rate. By solving the kinetic equations for run-and-tumble motion in
one space dimension, we give expressions for probability distribution functions, focusing on
stationary distributions of blocked particles, and mean trapping times in terms of physical and
geometrical parameters. Different extensions of the trapping region are considered, from infinite to
cases of semi-infinite and finite intervals. The mean trapping time turns out to be simply the inverse of
the trapping rate for infinitely extended trapping zones, while it has a nontrivial form in the semi-
infinite case and is undefined for finite domains, due to the appearance of long tails in the trapping
time distribution. Finally, to account for the subdiffusive behavior observed in the adhesion processes
of bacteria to surfaces, we extend the model to include anomalous diffusive motion in the trapping
region, reporting the exact expression of the mean-square displacement.

1. Introduction

Trapping processes are quite ubiquitous in nature. Molecules can be adsorbed when they diffuse onto reactive
substrates, cells can die when they move through harmful environments, living organisms can be captured by
predators while foraging in hostile areas. More recently interesting studies focused on trapping of photokinetic
bacteria in structured light fields [1]. Modeling stochastic motion in trapping environments is then of great
interest [2—5]. In particular, the study of active systems, composed by self-propelled particles, can give us a very
general view of the process, which applies to many interesting physical and biological phenomena [6, 7],
allowing diffusive motion to be obtained as a limiting case. Understating the evolution of particles density or
trapping time properties and their dependence on the physical and geometrical parameters, can give us better
insights into trapping processes. In this regard, it could be very useful to determine exact expressions of these
quantities in simplified models that allow analytical treatment.

In this paper we analyze the behavior of active particles, performing run-and-tumble motion [8—17], in the
presence of trapping regions in one space dimension. In recent years, many studies have focused on the analysis
of trapping processes consisting of the confinement of active particles due to various causes: presence of
obstacles in crowded environments [18-21], external fields or effective confining potentials induced by space-
dependent motility parameters [22—-26], confining boundaries [27], porous environments [28, 29]. In all these
cases the term trapping indicates that the particle experiences confinement due to the presence of some kind of
external cause that prevents, hinders or reduces its free motion. This trapping is also usually non-permanent: the
particle can escape from local entrapment and continue its motion. In this work, instead, we want to treat a
different kind of trapping, and by this term we mean that the particle can undergo a sudden irreversible stopping
of its motion when it passes through a certain region (irreversible immobilization or irreversible trappingin a
slow dynamic phase). This is, for example, the case of bacterial adhesion to surfaces, occurring in the early stage
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of biofilms formation [30—-33]. Biofilms are complex aggregates of microorganisms that often form on surfaces
and are held together by an extracellular polymeric matrix. The complex emergent properties of this ubiquitous
microbial community are of great interest from a theoretical and practical point of view. Understanding the
functional mechanisms of this ensemble of cooperating cells, involving mechanical and physicochemical
processes, is not only a fascinating topic for physicists and biologists, but also an urgent task for physicians, as
biofilms are often the cause of persistent infections in living organisms [34]. The first step of biofilm formation is
the adhesion of cells to surfaces. This process, after an initial reversible phase, is essentially irreversible and the
bacteria become stuck in quasi-fixed positions on surfaces. As a first approximation, we can therefore describe
this phenomenon as an irreversible trapping process, occurring at a given fixed rate, during the random active
motion of the cell on the surface. We describe here such an irreversible adhesion process using a simplified one-
dimensional model, which encodes the main ingredients of bacteria motion (run-and-tumble dynamics mimic
E.colimotion [7]) and trapping process (irreversible arrest). Despite its simplicity, the run-an-tumble model has
been shown to capture many new and interesting phenomena of active matter, often allowing exact analytical
expressions of many quantities of interest. In this work we use such a model to study irreversible trapping
processes considering different extensions of trapping zones, from the simple infinite case, where the trapping
region extends all over the space, to the more interesting case of semi-infinite and finite trapping zones. By
solving the kinetic equations governing the evolution of probability distribution functions, we are able to obtain
analytical expressions of various quantities, such as particles distributions, survival probabilities, mean-square
displacements, trapping time distributions and mean-trapping times. At the end, to account for the behaviors
observed in some experiments with bacteria, we relax the assumption of particle immobilization in the trapping
phase and include the possibility of subdiffusive motion, described by fractional-type diffusion equations.

The paper is organized as follow. In section 2 we define and introduce the model. In section 3 we analyze the
case of an infinitely extended trapping region. The semi-infinite case is treated in section 4 and the case of finite
trapping interval is discussed in section 5. In section 6 we extend the model to describe subdiffusion in the
trapping phase, considering fractional-type equations. Conclusions are drawn in section 7.

2. Run-and-tumble model in trapping regions

We consider a run-and-tumble particle moving at constant speed v and reorienting its direction of motion with
rate . We are interested in describing the particle motion when immersed in absorbing environments which
cause the irreversible trapping of the particle with a given rate 7(x), which, in general, is a space-dependent
quantity. We denote with P, (x, t) and P, (x, t) the probability density functions (PDF) of right-oriented and
left-oriented active (moving) particles and with P, (x, t) the PDF of blocked (trapped, immobilized) particles.
The general equations describing the time evolution of the PDFs are

OP oP

S D = vk ) — %PR@, £ + %PL(x, £ — Y ()P, (x, 1), (1)
OP OP «a o
L = y—L - —P —P - P
o (x, t) vax (x, t) 5 (%, 1) + 5 (%, 1) — v(x) P, (x, 1), 2)
P,
o (%, t) = y(x)[P(x, ) + P,(x, t)]. 3)

For y = 0 the first two equations reduce to the standard equations describing run-and-tumble particles [8—17].
In the following we analyze different cases, from the homogeneous one in which a particle moves in a infinitely
extended trapping region (yis constant throughout the whole space) to more complex heterogeneous situations
in which the trapping zones have finite or semi-infinite extension (yis a space-dependent step function). In all
the investigated cases we will consider a particle that symmetrically starts its motion at the origin,

P,(x, 0) = P (x, 0) = 6(x)/2,anditisimmersed in a symmetric environment, i.e., Y( — x) = y(x).

3. Infinitely extended trapping region

We first consider the case of a run-and-tumble particle moving in a infinitely extend trapping region (see
figure 1). The model is described by the following equations with non-vanishing and constant y(x) = -y (for the
sake of simplicity we do not indicate the dependence on space and time variables)

0P, 0P, « a
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extensions of the intervals where an irreversible immobilization of particles occurs at rate .

Figure 1. Sketch of the trapping zones in the three cases analyzed in this study, corresponding to infinite, semi-infinite and finite

OP
= = y(P, + P).
Y 7( )

By defining the PDF of active particles P = P, + P, and the current ] = v(P, — P,) we have

op = I P,
ot Ox

9 _ _ 0P _
o = Ve @tk

OP,
—5 — AP,
ot 7

with the normalization f dx(P+ P) =1
By using the Laplace transform

BGs) = LIP(D](s) = j; Tt et P(),

and consideringinitial conditions P(x, 0) = §(x), J(x, 0) = 0, P,(x, 0) = 0, we have

T~ 56— s+ b,
Ox
L Y 2
Ox
p,=21p.
N

By combining the first two equations we obtain the second order differential equation for P
Jge

V26_P —G+Nc+a+NP=—6+a+7) ),

Ox?
P(x, s) = Lfjstaty exp (—cll),
2v s+

v =(s+ (s + a+ 7).

whose solution is

where c(s) is

(6)

)

®

)

(10)

€3))

(12)
(13)

(14)

15)

(16)

We note that the active particle PDF (15) is the Laplace-shifted solution of the classical one-dimensional PDF

of arun-and-tumble particle in free space Py, P(x, s) = Py(x, s + ), asitis also evident by noting that

equations (11), (12) and (14) are identical to those of standard run-and-tumble particles in free (non-trapping)
space with the substitution s — s + 7y (see equations (15), (16) of [14]). Therefore, in the time domain, we have
that P(x, t) = exp(—~t)Py(x, t). The free solution Py(x, t) is well known in the literature (see, for example,

[9, 12]) and then we can write the explicit expression of P(x;, t) as
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e—OrHa/t
P(x, t)= f{é(x — vt) + 6(x + vi)
a alA(x, t) at al(x, t) _
+ [21/ IO( 2v ) + 2A(x, t) Il( 2v )]Q(Vt lxl)}’ (17)

where I, I; are modified Bessel functionsand A = +v2t? — x2.
The PDF of blocked particles is obtained as time-integral of P, being their Laplace transforms related
through equation (13):

t
P,(x, 1) = v f dt' P(x, t'). (18)
0
After some algebra we finally obtain

P(x, )= - e<v+a/2>qo(M)
2v 2y

/
+(y+a) fliw dr’ e<v+a/2>t’10(%)]e(w — Ix. (19)

The stationary distribution of blocked particles is given by PIE“') (x) = lim, oo P,(x, t) = lim,_¢sP,(x, s),
leading to

1 ||
P (x) = —e (—) 20
0 = S5 exp -1 (20)
where we have introduced the characteristic length A
A= (21

Pt

Figure 2 shows the stationary distribution (20), along with those for semi-infinite and finite trapping zones (see
following sections). We note that, in the diffusive limit, v, v — oo with finite diffusion constant D = v?/a, the
characteristic length reads Apir. = /D/~y and the stationary distribution (20) reduces to that obtained in [35]:

Pg;';f‘(x) = %\/g exp (—\/glad). (22)

We now study the probability distribution ¢ (f) of the trapping time, which is related to the survival probability
P(¢),1.e., the probability that the active particle has not been trapped until time ¢

oP
o) = ——(@. (23)
ot
The survival probability is obtained as an integration over space of the active particles PDF
P(t) = f dx P(x, 1). (24)
By using (15), the Laplace transform is given by
B(s) = ——, (25)
s+
corresponding, in the time domain, to
P(t) = exp(—1). (26)
The trapping times are then exponentially distributed
@(t) = v exp(=1), 27)
and the mean trapping time
7= f dr t (1), (28)
0
is simply the inverse of the trapping rate
T = l (29)
Y

Another interesting quantity to calculate is the mean-square displacement (MSD) of particles, i.e. the second
moment of the total particle distribution function P 4 P,

4
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Figure 2. Stationary probability distributions P,(: ™) (x) of blocked particles in trapping regions (where y > 0, highlighted red zones
along the x axis). (a) The trapping zone extends all over the space, equation (20). (b) The case of semi-infinite trapping regions, |x| > 4,
witha/\ = 1, equation (50). (¢) The case of finite trapping intervals, a < |x| < b, witha/X = 1and b/\ = 4, equation (70). We set
a=1lLv=1landy=1.

ﬂm:fmwﬁwmn+gmm. (30)

Working in the Laplace domain, using (15) and (13), we have

2v2

r2(s) = . (31)
sCHNE+7+a)
Inverting the Laplace transform we finally obtain the expression of the MSD
2 2v? —t —t —at
ri(t) = —————[a(l — ™) — 7" (1 — e )] (32)
ay(a +7)

We note that, for v = 0, the above expression reduces to the usual one for run-and-tumble free particles [9]
) 2v? o
r(t):—z[at—l—l—e“], v — 0. (33)
!

The asymptotic limit of (32) is finite
2
. 020 _ 2v ,
v(a+7)

which is, indeed, the second moment of the blocked particles distribution in the stationary regime (20). We
finally observe that, in the diffusive limit, the MSD reads

t — 00, (34)

r]%iff_(t) = %(1 —e ), v, @ — oo with D = v¥/q, (35)

which, for v — 0, reduces to the standard form in the free space
rh (1) = 2Dt, v — 0. (36)

In figure 3 the MSD (32) is shown for four different values of the trapping parameter .
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Figure 3. Mean-square displacement r*(¢) in the case of infinitely extended trapping region for different values of the trapping rate:
¥ = 0 (absence of trapping), y = 10,4 = 1and y = 10. One observes ballistic behavior 7 ~ * at short times (t < min(a1, y71)),
possibly diffusive one 1* ~ tatintermediate times (&' < t < 4~ ")and saturation r* — r2 atlong times (¢ > max(a~, 7). We
seta = landv = 1.

4. Semi-infinite trapping region

We now consider the case in which the trapping region is |x| > a (see figure 1). We have to solve two sets of
equations (1)—(3). In the free region (I) |x| < a we have y = 0:

[0} ()

op opP a0 o
o~ ok 2t t2te 47
(W] (W]
OP OP a. .o a0
L =yt — P —P . 38
ot ! 0x 2t * 2 F %)
In the trapping region (II) |x| > a we have y > 0:
op"" op""
et e L R (39)
an an
OP OP ) )
Tl el S S o)
OP, o a
8: =yP, +P, ). (41)

We note that blocked particles are present only in the trapping region (II). The corresponding differential
equations for the probability density P = P, 4+ P, in the two zones are then given by (14) with 7y = 0 in the free
zone (I) and with y > 0 in the trapping zone (II). By imposing continuity condition for P and discontinuity for
0,Pin |x| = a (continuity of the current J) we finally obtain, in the Laplace domain

P(I)(x, s) = Af exp (¢ |x]) + Ail) exp (—c|x]), for |x| < a, (42)
ﬁm)(x, 5) = A" exp (—clx]), for |x| > a, (43)
ls,g(x, s) = %ﬁm)(x, s), for |x| > a, (44)
where
vi2=(G+76+a+7), (45)
vl =5(s + a), (46)
and

® o cFc,q
Ay =F— -
4s ccosh(c,a) + c¢,q sinh(c,a)

exp(Fc,a), (47)




10P Publishing

Phys. Scr. 98 (2023) 125013 L Angelani
10° T — -
S —- infinite ]
- S~ ) -=+ semi-infinite -
107 N . — finite _|

10

T
-

IS
-
Lo,
)
=
D)
oVl

L N
10 10

Figure 4. Trapping time distributions ((#) for the cases of infinite, semi-infinite and finite extension of trapping regions. The curve for
the infinite case is the exponential (27), while the curves for the semi-infinite and finite cases are calculated numerically inverting the
Laplace transform expressions (52) and (72). The distributions of semi-infinite and finite cases are different from zero only for times
longer that the minimum time ¢, = a/vrequired for the particle to reach the border x = a of the trapping zone, while the small
discontinuous drop present in the finite case corresponds to the first exit at f;, = b/v from the outer border x = b of the trapping
domain. Weseta = 1,v=1,y=1,a/A = landb/A =4 (\ = 1//2).

an czq 1
A_ =2 - , exp(ca) (48)
2s ccosh(c,a) + ¢,q sinh(c,a)
with
= M. (49)
s+«

The stationary distribution of blocked particles is obtained as P f;t') (x) = lim,_¢sP,(x, s) = lim,_oP v ((x, 5),
giving rise to (see figure 2)

1 |x| — a
PO (x) — e (_7), for |x| > a, 50
S(x) 3\ Xp \ I 0

with A given by (21). For a = 0 the above expression reduces to (20), valid in the case of infinite trapping region.
Also in this case we can calculate the mean trapping time. Let us first study the trapping time distribution.
The survival probability (24) is given by

P(t) = z[j; dx P (x, t) + foo dx P (x, t)] =1- 2f°° dx P,(x, ), (51)

where we have used the normalization condition and the symmetry of the problem. In the Laplace domain,
using the relation p(s) = 1 — sP(s) and (44), we obtain the following expression of the trapping time
distribution

c

P(s) = 2 foo dx P (x, 5) = -1 (52)

s+ v ccosh(c,a) + c,qsinh(c,a) '
Some examples of trapping time distributions () are reported in figure 4.
The mean trapping time is obtained from 7 = —0,o(s)|s = ¢:

2
T:l+a_az+z/m_ (53)
¥ 2v v y

This expression is valid for generic particle’s properties (c, v) and environmental parameters (-, a). We now
discuss some interesting limits.

First of all, we note that, for a = 0, we recover the previous result of infinite trapping regions, 7= 1/+.
Instead, for a — 0o or ¥ — 0, the problem reduces to that of a free particles in an unbounded domain without
trapping, resulting, trivially, in an infinite trapping time.

We now analyze the two interesting limiting cases of non-tumbling particles and diffusive particles. The
former is obtained in the limit o« — 0 (wave limit) giving rise to

7



10P Publishing

Phys. Scr. 98 (2023) 125013 L Angelani

o=t 4l (54)
v
which is, precisely, the sum of the time it takes for the non-tumbling particle to arrive at the a boundary of the
trapping zone and the average trapping time 1/inside it.

The diffusive limit is obtained for o, v — oo with finite diffusion constant D = v*/«. In such a case the
(Laplace transformed) trapping time distribution reads

- Y 1
Py (8) = ; (55)
o NS+ s+ ycosh(ays/D) + s sinh(as/D)
and the mean trapping time is
1 a? a
Tpr = — + — + . 56
Diff. 5 2D \/’Y_D ( )

4.1. First-passage problem as a limiting case v — oo

Here we show how it is possible to obtain the solution of the free run-and-tumble motion in a finite domain
[—a, a] with perfectly absorbing boundaries taking the limit v — oo of the previous results. Indeed, in this limit,
the particle is instantaneously absorbed when arriving at the edge x = =+ a of the trapping zone and we then geta
first-passage problem. The firs-passage time distribution is then obtained from (52)

1
() = ,
cosh(c,a) + /H;a sinh(c,a)

retrieving previous results in the literature (see equation (64) of [ 14] with € = 1). The mean first-passage time is
obtained from (53) and we have [14, 24]

Y — 00, (57)

2
T:%+E, vy — Q. (58)
w2y
Similarly, we obtain the first-passage time distribution of a diffusive particle in a finite domain [—a, a] with
perfectly absorbing boundaries by taking the limit of (55)

1
P, (8) = —————, ¥ — 00, (59)
i cosh (a+/s/D)
and the mean first-passage time now reads
a2
Tpig. = 5, ¥ — o0. (60)

5. Finite trapping region

Thelast case we analyze is that of a finite trapping interval a < |x| < b (see figure 1). We have now to solve three
sets of equations, two in the free regions (I) |x| < aand (II) |x| > bwith v = 0, like equations (37)—(38), and one
in the trapping region (I) a < |x| < bwith y > 0, like equations (39)—(41). Following similar arguments as in the
previous sections, we can write the solutions, in the Laplace domain, as

p(l)(x, s) = Af exp (¢ |x]) + Ail) exp (—c|x]), for |x| < a, (61)
p" (x, 5) = Af) exp (¢ Ix1) + Aim exp(—clxl), fora < Ixl <b, (62)
~ (1) Im
P (x,5) =A_ exp(—c,x]), for|x| > b, (63)
P(x, s) = lﬁ(n)(x, s), fora < |x| <b, (64)
s
where ¢(s) and ¢, (s) are given by (45- 46), and
[0} c ck_ + Coqk
A, =F2L + ex c.a), 65
* :F4s ck_cosh(c,a) — c,qk sinh(c,a) P (6)
2
c
A ! exp(—ca), (66)

25 ck_cosh(c,a) — c gk, sinh(c,a)

8
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A" — q 1 — kg : exp(ca), (67)
25 ck_cosh(c,a) — c,qk sinh(c,a)

() Coqu 1
A =-— - explc,b + c(b — a)], (68)
s(c — ¢,q) ck_cosh(c,a) — c,qk_sinh(c,a)

with q(s) given by (49) and
c+c,q
c—c¢,q
As before, we can obtain an exact expression for the stationary distribution of blocked particles in the trapping
regiona < |x| < b, obtaining (see figure 2)

1 cosh[(b — |x])/A]
2\ sinh[(b — a)/\]

ki =1+ .exp[2c(b — a)] (69)

P}(Bst.)(x) _ fora < |x| < b, (70)

where Ais the characteristic length (21). We note that for b — oo we recover the previous semi-infinite case (50).
We now study the distribution of trapping time. The survival probability is given by

b
P(t) =1 — zf dx P,(x, 1). 71)

By using the expressions (64) and (62) and the relation p(s) = 1 — sIP(s), we have that the trapping time
distribution in the Laplace domain reads
v (1 — e D) (1 — k, — =)

; (72)
s+  ck_cosh(c,a) — c,qk_sinh(c,a)

P(s) =

where L = b — a. For small s we have that
@(s) ~1 —AJs — Bs, (73)

with prefactors A and B depending on the system and geometrical parameters. We have:

A= [0 (74)
ay  sinh(L/)\)

B:l_’_a_az_'_c?sh(L/)\)ﬁ at+y  a+ty ‘ 1 ‘ 75)
v 2v*  sinh(L/ M)\ v ol ay sinh(L/)\)
At small s the survival probability diverges as P(s) ~ s!/2. From the Tauberian theoremes we have that, in time

domain, P(t) ~ t~'/2for large t [36]. This implies that the trapping time distribution, given by
p(t) = —0,P(t), behaves asymptotically as

and

o(t) ~ 4 t=3/2, t — 00, (76)
2I°(1/2)

where I'(x) is the Gamma function (see figure 4). We then conclude that the mean trapping time (28) diverges, as
a consequence of the infinite extension of the free zone, resulting in a slower trapping of particles. It is worth
noting that, in the limit of semi-infinite trapping region (b — 0o ) the prefactor A in (73) vanishes (see (74) for
L — 00 ) and equation (72) reduces to (52). The mean trapping time is then finite and it is given by the term Bin
(75) for L — o0, that coincides with the expression (53). Finally, we note that the case of a particle starting its
motion at the center of a finite trapping zone [—b, b] is simply obtained by taking the limit a — 0 of the previous
results.

6. Modeling anomalous diffusion in the trapping region

Bacterial adhesion to surfaces often occurs through complex and nontrivial mechanisms. For example in [31] it
was shown that the cell adhesion to glass surfaces involves multiple reversibly-binding tethers that detach and
successively re-attach, resulting in a slowing down of the dynamics of attached bacteria. The mean-square
displacement of several bacterial strains was found to have a subdiffusive trend at long times, r* ~ t” with v < 1
[31]. In thislast section we extend our model to take into account in an effective way such a subdiffusive
character of the bacterial dynamics in the trapping regions. To this end, we make use of fractional diffusion
models, which are known to generate subdiffusive dynamics at long times [36—41]. For the sake of simplicity,
here we analyze only the case of infinitely extended trapping zone (see section 3). The model describes a run-
and-tumble particle that, at fixed rate, irreversibly switches to a phase characterized by anomalous diffusion. By
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introducing the time-fractional derivative of order v € (0, 1),

OF o oy = n—2f
o 0 =1 E (x, 1), 77)

where I'* is the Riemann-Liouville fractional intergral

_ 1 ! _ —1
" (x, t)——F(M) j; dr(t — 1), g0, (78)

we can generalize the equation (9) for the PDF of particles in the trapping regions including fractional diffusion

in the following manner
OPg ) 0*Pg
| ZE _ 4p|=DpLEE, (79)
( o 07
The equations for Pand J are the same as (7) and (8). We note that in the case of null diffusion, D = 0, we recover

the original case of immobilized particles, equation (9), as I' ~“f = 0 implies f = 0. Instead, in the limit v — 1, we
have that I'~“f — f, and we obtain the case of normal diffusion

oP o2p
a_tB:DaxZB + AP, v— 1. (80)

Proceeding as in section 3, we can write the equation (79) in the Laplace domain as

s'P, = DZZ} + ysv~ 1P, (81)
having used the fact that
e = L2, (82)
Performing now the Fourier transform
foo=rrenm = [ dx Ry, (53
the equation (81) becomes
(s + Dk» B, = ~s~1P. (84)

The PDF in the RHS can be obtained from equation (14) (we remind that the equation for Pis the same as in
section 3) leading to

o sty+a . (85)
s+ NG+ v+ o) + vi?
We have then obtained the exact expressions of P, equation (85) and Pg, from equation (84), in the Laplace-
Fourier domain, thus allowing us to compute the mean-square displacement thorough
- 0% =2 2
r{(s) =——P+P . 86
©=—gz®rh| (86)
After some algebra we finally obtain
- 212 29D - -
r(s) = v di = r’(s) + ri(s), (87)

_|_
s+NGE+y+a s+ )

which generalizes equation (31) to the present case of fractional diffusion. With respect to the original
expression, we note here the presence of a second term, which takes into account the anomalous diffusion of
trapped particles. The mean-square displacement in the time domain is obtained by performing the inverse-
Laplace transform of the previous expression

SOESHOREHOS (88)
with the first term that is the same obtained in section 3, equation (32),
2 2v? —t —t —at
ri(t) = —————[a(l —e™) — e (1 — e )], (89)
ay(a +7)
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and the second term that can be expressed as

ri(t) = % v e d(v + 1, v+ 25 )
_ % A D1, v 25 1), (90)
where we have introduced the degenerate (confluent) hypergeometric function [42]
e = W#ﬁj)ﬁ)zwfoz de't?" !z — 0t = BB s 2), oD
with I'(z) = fO ™ t2=1 ¢~ dt the Euler Gamma function, and we have used the property
OB, 3 2) = € O — B, p5 —2). (92)

Let us analyze the asymptotic behaviors. In the long time regime the dominant terms in equation (87) are
obtained for small s,

~ D 2
r2(s) ~ 2 v l, s — 0, (93)
s'TL A (y+5) s
corresponding in the time domain to
2D 212 2D
r2(t) ~ tV + d ~ Y, t — oo. (94)
I'ov+1) Yyvy+a) T@+1)

We then obtain, asymptotically, anomalous diffusion with exponent v. We note that, for immobilized particles,
D = 0, the dominant term is the constant one, and the MSD develops a plateau (34). The same asymptotic trend
can be inferred directly from the expression (90). Indeed, by manipulating the integral in the hypergeometric
function, we can write (90) in the form

2vD 4 2D
B = [ dre (1 -/~ oo, (95)
I'v+1) 0 I'w+1
as the integral converges to 1/ in the asymptotic limit.
At short times the dominant terms are obtained for large s,
~ 29D 2v?
206\ s
(s) e R § — 00, (96)
corresponding to
2vD 2vD
r2(t) ~ TS BRI B 28 § t— 0. (97)
I'v+2) L' +2)

In figure 5 we report the mean-square displacement (88) for the case of exponent v = 0.2 (close to typical values
obtained in experiments [31]). The curves (full lines) correspond to two different values of the trapping rate,

v = landy= 0.1. For comparison we report also the corresponding cases of immobilized particles in the
trapping zone, D = 0 (dashed lines), studied in section 3. It is evident an anomalous subdiffusive behavior t" at
long time, a superdiffusive behavior t""!at short time and possible intermediate regimes (ballistic, diffusive or
plateau-like) depending on the parameters values.

7. Conclusions

In this work we studied the problem of active particles in trapping environments, describing the irreversible
adhesion processes that take place, for example, in the early stage of biofilms formation. In particular, we
considered 1D run-and-tumble particles in the presence of trapping regions where particles absorption takes
place at rate . Different extension of the trapping regions are investigated: infinite, semi-infinite and finite. By
solving the kinetic equations for the probability density functions we are able to provide exact expressions of
several interesting quantities. The case of infinite trapping interval is fully solvable in the time domain. We report
expressions of PDFs of moving and blocked particles, mean-square displacement, trapping time distribution
and mean trapping time, which turns out to be simply the inverse of the trapping rate 1/+. In the case of semi-
infinite trapping region we are able to solve the problem in the Laplace domain, allowing us to give exact
expressions of stationary distribution of blocked particles (50) and mean trapping time (53). Several limiting
cases are also analyzed, such as diffusive motions and first-passage problems in a finite domain. Finally, we
analyze the case of a finite trapping region, reporting again the spatial distribution of blocked particles in the
stationary regime (70) and discussing the behavior of the trapping time distribution, whose long tail at large ¢
leads to divergent mean trapping time. A last section is devoted to extend the model to the case of anomalous
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Figure 5. Mean-square displacement 7*(¢) for the fractional diffusion model in the case of infinite extension of the trapping region. We
consider fractional derivative exponent v = 0.2. Black and red continuous lines correspond, respectively, to trapping rates y = 1 and
~ = 0.1. Dashed lines are the corresponding curves in the case of complete blocking of particles, i.e., D = 0 (see section 3). We set
a=1Lv=1,D=1.

diffusion of trapped particles, in accordance with some experimental observations on bacterial adhesion to glass
surfaces [31]. By resorting to fractional diffusion models we are able to derive exact expressions of the MSD,
resulting in subdiffusive behaviors * ~ t“ with v < 1 in the long time regime and non-trivial trends in the
intermediate regimes.

It would be of interest to extend the present analysis in different directions. A first implementation might be
to consider reversible trapping, that is, the possibility for the particle to reactivate itself after trapping [43]. Other
possible extensions could be the analysis of planar motions [12, 44—47] or considering more complex
environments, such as those described by a continuously variable trapping rate, by a periodic sequence of
trapping intervals [4, 5] or by the presence of generic boundaries [48]. A final possible direction of investigation
might be to consider different combinations of particle motion in the two phases, before and after trapping. In
the present study we investigated the case of active motion before trapping and arrested phase or anomalous
diffusive phase after it. It would be interesting to consider also, for the initial active phase, fractional processes
[40,41,49] or generalized g-fractional motions [50, 51], extending, for example, the recent investigation on
subdiffusive processes with particles immobilization [35]. A final remark concerns the modeling of the entire
biofilm formation process. It could be of great importance to implement the described run-and-tumble models
in more realistic contexts (also using numerical simulations), considering both irreversible adhesion and cellular
replication [52].
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