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Abstract 

Background  Osteoarthritis (OA) is a multifactorial, hypertrophic, and degenerative condition involving the whole 
joint and affecting a high percentage of middle-aged people. It is due to a combination of factors, although the piv-
otal mechanisms underlying the disease are still obscure. Moreover, current treatments are still poorly effective, 
and patients experience a painful and degenerative disease course.

Methods  We used an integrative approach that led us to extract a consensus signature from a meta-analysis of three 
different OA cohorts. We performed a network-based drug prioritization to detect the most relevant drugs targeting 
these genes and validated in vitro the most promising candidates. We also proposed a risk score based on a minimal 
set of genes to predict the OA clinical stage from RNA-Seq data.

Results  We derived a consensus signature of 44 genes that we validated on an independent dataset. Using net-
work analysis, we identified Resveratrol, Tenoxicam, Benzbromarone, Pirinixic Acid, and Mesalazine as putative drugs 
of interest for therapeutics in OA for anti-inflammatory properties. We also derived a list of seven gene-targets 
validated with functional RT-qPCR assays, confirming the in silico predictions. Finally, we identified a predictive subset 
of genes composed of DNER, TNFSF11, THBS3, LOXL3, TSPAN2, DYSF, ASPN and HTRA1 to compute the patient’s risk 
score. We validated this risk score on an independent dataset with a high AUC (0.875) and compared it with the same 
approach computed using the entire consensus signature (AUC 0.922).

Conclusions  The consensus signature highlights crucial mechanisms for disease progression. Moreover, these genes 
were associated with several candidate drugs that could represent potential innovative therapeutics. Furthermore, 
the patient’s risk scores can be used in clinical settings.
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Background
Osteoarthritis (OA) is the predominant joint disease 
in middle-aged and older people, and the risk of being 
affected dramatically increases with aging [1–4]. Often 
labeled “wear and tear” disorder, it is defined as a hyper-
trophic, complex, and multifactorial condition affecting 
the whole joint (cartilage, subchondral bone, synovial 
membrane and fluid, ligaments, adjacent joint muscles), 
characterized by stiffness, resulting in reduced function, 
pain on movements and crepitus [2, 4]: the most affected 
sites are knees, hips, hands, and spine likewise multiple 
joints are commonly involved [4]. Overall, recent studies 
show that 18% of women and 9.6% of men over 60 have 
symptomatic OA [2], where most people over 75 show 
radiographic evidence of the disease [3]. Obesity, female 
gender, prior joint trauma, performing specific activi-
ties, and acquired or congenital anatomic abnormalities 
represent additional factors of risk. However, the causes 
of the onset of the disease are complex and multifacto-
rial, encompassing biochemical, environmental, genetic, 
and systemic factors [2]. Evidence of a genetic influence 
comes from several sources, including epidemiological 
studies of family history and exploration of rare genetic 
disorders related to OA, like chondrodysplasias: altera-
tions in genes such as VDR, COL2A, AGC1, IGF-1 are 
supposed to be involved in the hereditability component 
of the disorder, which is overall estimated to be greater 
than 50% [5]. The impact of the environment and lifestyle 
can also be determinant. Indeed, diet, alcohol consump-
tion, and smoking can also have a role, but additional 
studies are needed to assess the actual influence of these 
factors on the OA outbreak [2]. People affected have a 
painful and degenerative course in most cases. Currently, 
available treatments aim for pain control and improved 
quality of life, still not being entirely adequate [6]. This 
scenario forces the patient to experience an extremely 
disabling condition, both physically and psychologically. 
Indeed, OA represents a pathology with a high social 
impact, also burdening the healthcare system [1].

Research in the field of OA focuses on different topics: 
on the one hand, it is crucial to understand the funda-
mental mechanisms underlying the onset and evolution 
of OA. On the other hand, the research on new therapeu-
tics and strategies for effective patient treatments remain 
urgent. To date, the use of different technologies, encom-
passing the exploration of various omics, has made it 
possible to shed some light on the pivotal processes 
involved. It has been established that inflammatory sign-
aling and extracellular matrix (ECM) remodeling are the 
predominant activated mechanisms [1].

Numerous studies have demonstrated the presence 
of a considerable number of Single Nucleotide Poly-
morphisms (SNPs) associated with the onset of OA 

pathology, particularly in non-coding regions [7]: this 
represents evidence of the decisive part played by tran-
scription dysregulation in the establishment and devel-
opment of the OA phenotype, where modifications of 
the methylation pattern and chromatin accessibility 
of these specific loci are determinant [8, 9]. The role of 
non-coding transcripts is also relevant. Several studies 
confirmed miRNAs as modulators of cartilage homeo-
stasis, down-regulated in the affected patients. Some of 
these, like miR-204, miR-211 miR-335-5, and miR-93 
activate the autophagic process and inhibit the inflam-
matory response, interfering with the TNF-α and inter-
leukins mediated pathways [10–13]. Across the biological 
programs potentially altered in the OA patient, TGFβ 
and WNT signaling are crucial: the TGFβ-FOXO1 axis 
activated by TAK1 and the TGFβ-pSMAD2/3-FBXO6 
axis are involved in the development and homeostasis of 
healthy joint cartilage, regulating autophagy and ubiqui-
tination [14–16] whereas hyperactivation of the WNT 
program has been associated with chondrocyte hyper-
trophy and OA [16, 17]. Regarding clinical research, in 
recent years, scientists have focused on regenerative 
therapy, where various studies report how the use of 
stem cells (both deriving from healthy tissue and mesen-
chyma) can bring the joint in the initial stage of OA to a 
good level of regeneration [18–21].

Despite the achievements and results, it has not been 
clarified yet which genes involved in the maintenance 
and progression of OA are the master regulators of a dys-
functional and degenerative phenotype and how they can 
be regulated using available drugs [22]. This gap can be 
due to the variability introduced by the various experi-
mental strategies and the specificities of the different 
cohorts analyzed. Our study, using a meta-analysis of 
three available cohorts, identified a “consensus” signature 
of 44 differentially expressed genes in OA that recapitu-
late the main OA patient’s transcriptional profile. Based 
on such a signature, we performed two types of analysis: 
disease–centric and patient–centric. In the disease–cen-
tric approach, we built a Protein–Protein Interaction 
(PPI) network encompassing both consensus genes and 
relevant drug targets, revealing interesting drug-genes 
interactions and suggesting potential novel treatments. 
Based on the network, we also selected a list of genes for 
in vitro validation on human chondrocytes. The patient–
centric strategy aimed to define a risk score using the 
transcriptional data to estimate the severity of the OA 
disease of each patient. Indeed, for this purpose, we iden-
tified a more incisive sub-signature of eight genes to pre-
dict the OA status effectively and rapidly, suggesting its 
potential use in clinical applications. Our results indicate 
that the selected genes retain the main features of the OA 
transcriptional profile. Moreover, further studies on the 
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prioritized drugs can also help the clinical research for 
new therapeutics.

Materials and methods
Figure 1 illustrates the workflow proposed in this work. 
Starting from a meta-analysis of RNA-seq datasets from 
three different cohorts, we set up two pipelines for study-
ing the profile of the OA patients from two points of 
view: a disease–centric approach, in which we prioritized 
potential drug targets among the differentially expressed 
genes, and a patient–centric strategy, aimed to propose 
a risk score associated with the severity of the disease 
based on the expression of few relevant genes. We con-
firmed the biological findings using an independent data-
set and experimentally validated the expression of 7 of 
the 44 genes in vitro on human OA chondrocytes.

As a preliminary step, we collected data from the three 
cohorts in Table  1 (Dataset 1–3), independently pre-
processed, and identified differentially expressed genes 
(DE) associated with OA. In the meta-analysis phase, we 
integrated the three lists of genes from the DE analysis 
to return a consensus signature of genes able to capture 
biological information about the OA transcriptomic 
profile. For reproducibility purposes, we have created a 
repository accessible at https://​github.​com/​cecca​relli​lab/​
MEDIA​proje​ct. The repository contains code related to 
all the pre-processing steps (enriched by further explor-
atory analyses), the consensus signature extraction, 
enrichment analyses, and the patient-centric approach 
workflow. The user will find a dedicated vignette and 
related useful files for each section to support the analy-
ses. We provided in the repository an R markdown and a 

Python notebook with the related code to reproduce the 
disease-centric approach. Further, we added details about 
the software for the network construction.

Single‑cell RNA‑Seq cohort (Dataset 1) data collection 
and pre‑processing
We downloaded the raw gene expression count matrix, 
genes, and barcodes from Gene Expression Omnibus 
(GEO), id: GSE152805 [23]. This cohort includes data 
from three patients (one male and two females) suffering 
from knee OA, with an average age of 67.7 years. These 
patients had been previously extracted by chance from 
a cohort of 22 patients subjected to total knee replace-
ment for Medial Compartment OA [23]. For this work, 
we considered only the transcriptional profiles of 26,228 
chondrocytes. We grouped them into two conditions 
according to the available annotations: (i) derived from 
damaged tissue (medial region of the tibia, MT, 11,603 
cells) or (ii) from minimally damaged tissue (outer lat-
eral region of the tibia, OLT, 14,625 cells). After per-
forming quality control steps using the standard Seurat 
pipeline, we retained 23,752 cells [27–30]. After that, 

Fig. 1  Pipeline workflow. The workflow is summarized in this figure

Table 1  Datasets used in this study

For each dataset, the experiment design, cohort size, and reference are specified

Name Experiment Cohort References

Dataset 1 Single cell-paired 3 OA/N Chou et al. [23]

Dataset 2 Bulk-paired 12 OA/N Steinberg et al. [24]

Dataset 3 Bulk-unpaired 60 OA, 10 N Soul et al. [25]

Dataset 4/Valida-
tion

Bulk-unpaired 20 OA, 18 N Fisch et al. [26]

https://github.com/ceccarellilab/MEDIAproject
https://github.com/ceccarellilab/MEDIAproject
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we normalized and integrated the data to remove the 
potential batch effects by using the default procedure 
from the Seurat R package. For this aim, we extracted 
8,183 features to use as anchors for the integration by 
using the SelectIntegrationFeatures and FindIntegratio-
nAnchors functions, and we applied the IntegrateData 
function. Then, we applied scaling and dimension reduc-
tion. We used the pseudo-bulk approach in the R pack-
age muscat [31] with the raw RNA assay to identify DE 
genes between MT and OLT conditions; in particular, 
we aggregated the data for each patient using the aggre-
gateData function, with “sum” as the summary aggrega-
tion parameter. We created a DESeq2 object and used the 
patient identifier to deal with the patient effect and per-
form a DE analysis [32]. We adjusted the p-value using 
the BH correction (FDR) [33] and defined DE those genes 
with log2 Fold Change (FC) less than − 1.5 or greater than 
1.5 and adjusted p-value ≤ 0.05 . Detailed information 
about the computational procedure used to analyze this 
cohort is available at https://​github.​com/​cecca​relli​lab/​
MEDIA​proje​ct. The user could find additional explora-
tive analyses here.

Bulk RNA‑Seq data collection and pre‑processing
We collected bulk RNA-Seq data from two distinct 
cohorts. The first consists of a paired cohort (i.e., with 
healthy and OA samples from the same individual), and 
the second includes healthy and OA samples from inde-
pendent individuals. Additional details for each data-
set are provided in the following subsections. For more 
details about the procedure employed to analyze these 
cohorts, see the vignette (https://​github.​com/​cecca​relli​
lab/​MEDIA​proje​ct), where one can access other explora-
tive analyses (i.e., PCAs, Volcano plots, enrichment anal-
yses) done on DE genes for both the cohorts.

Paired bulk RNA‑Seq cohort (Dataset 2)
We downloaded the aligned (reference genome hg19) 
bam files from the European Genome-phenome Archive 
(EGA), id: EGAD00001001331 [24]. We quantified the 
gene expression raw counts using the featureCounts 
function from the R package Rsubread [34] using as 
annotation the hg19.ensGene.Chr.gtf.gz file downloaded 
from the UCSC genome browser.1 This cohort profiled 
paired samples (healthy and damaged cartilage/endo-
chondral bone) from 12 patients (2 females and 10 males) 
affected by hip and knee OA and underwent total joint 
replacement. According to the study by Steinberg and 
colleagues, these patients did not have any malignan-
cies, infections, or knee injuries in the previous 5 years. 

Additionally, they had not used glucocorticoids in the 
last 6 months [24]. We filtered out low-expressed genes 
from the count matrix, retaining only genes with a mini-
mum of 15 counts for at least 50% of the patients. Then, 
we retrieved the gene symbols using GenomicFeatures 
[35] and EnsDb.Hsapiens.v75 [36] as an annotation. To 
deal with gene symbol duplicates, we used the mean 
counts across the detected isoforms as gene counts for 
each sample. We accounted for the patient effect, includ-
ing the factor variable Donor in the design matrix, and 
then we applied the DESeq2 approach to perform a DE 
analysis. We corrected the p-value for multiple tests [33] 
and declared DE those genes with log2 FC ≤ −0.8 or 
log2 FC ≥ 0.8 and FDR ≤ 0.05.

Unpaired bulk RNA‑Seq cohort (Dataset 3)
We downloaded the raw-counts data related to cartilage 
tissues from the folder “data” in the GitHub repository2 
associated with the study of Soul and colleagues [25]. We 
used the txi.RData and patientDetails_all_withMed.csv 
files, i.e., the RNA-Seq data pre-processed with tximport 
R package [37] and associated patients’ meta-data. This 
cohort includes 60 Knee OA-affected patients (27 females 
and 33 males) and 10 non-OA-affected patients (9 males 
and 1 female) with peripheral vascular disease and no his-
tory or clinical sign of OA, joint disease, or joint trauma 
[25], with an overall average age of 70.7 years (55–86). All 
patients were subjected to total knee replacement and 
were diagnosed with predominant Medial compartment 
OA; as specified by Soul et al., affected samples were iso-
lated from the posterior lateral condyle (PLC), whereas 
non-OA aliquots were extracted from amputation above 
the knee [25]. We extracted the integer counts by using 
the DESeqDataSetFromTximport function, then we fil-
tered out the low-expressed genes, retaining those with 
a minimum of 5 counts in at least 50% of the samples. 
We retrieved the gene symbols using EnsDb.Hsapiens.
v79 [38] as an annotation. We processed all the dupli-
cated genes’ isoforms as done for Dataset 2. We removed 
the known batch effect by adding the Batches variable to 
the design matrix and used DESeq2 to apply a DE analy-
sis; we corrected the p-values [33] and selected the DE 
genes using the same criteria as in Dataset 1, and then 
we removed 5 genes for which DESeq2 did not provided 
a p-value. For the patient-centric pipeline, we retrieved 
transcript per million (TPM) values provided [25]. For 
more details on all the pre-processing steps on TPMs, see 
the “Data pre-processing to perform the patient-centric 
strategy” paragraph.

1  https://​genome.​ucsc.​edu. 2  https://​github.​com/​soulj/​OAStr​atifi​cation.

https://github.com/ceccarellilab/MEDIAproject
https://github.com/ceccarellilab/MEDIAproject
https://github.com/ceccarellilab/MEDIAproject
https://github.com/ceccarellilab/MEDIAproject
https://genome.ucsc.edu
https://github.com/soulj/OAStratification
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Validation cohort data collection and pre‑processing 
(Dataset 4)
As validation dataset, we downloaded the raw-counts as 
two spreadsheet files directly from GEO, id: GSE114007. 
This dataset, described by Fisch et  al. [26], comprises 
knee cartilage tissues from 18 healthy samples (5 females 
and 13 males with an average age of 38, with no history 
of knee injuries or joint diseases) and 20 OA-affected 
patients (12 females, 8 males, average age of 66). In par-
ticular, normal samples were collected from tissue banks, 
where they were processed from 24 h to 48 h post-mor-
tem. Affected aliquots were harvested during the knee 
replacement surgery procedure [26].

For this dataset, we collected the complete list of genes 
from the DE analysis (OA vs Normal) from the supple-
mentary file NIHMS992829−supplement−Suppl_matl.
pdf [26] considering DE those genes with log2 FC ≤ −1.5 
or log2 FC ≥ 1.5 and FDR ≤ 0.05. This list was crucial to 
validate the consensus signature we obtained (see next 
section) and also evaluate the robustness of the model 
implemented in the patient-centric approach (see “Mod-
els set-up for risk score computation” section).

Indeed, we used these data to compute a Venn plot 
between consensus signature and DE genes from this 
cohort by using the ggvenn function of the homonymous 
R package [39] and also to perform enrichment analysis 
(see “Enrichment analyses” section for details). Moreover, 
we validated the significance of the Venn plot results by 
the hypergeometric test [40]. For this dataset we retained 
genes with no less than 5 counts in at least the 50% of the 
samples, normalized for variance using the vst function 
from DESeq2 [32] and then batch-corrected these data 
for the condition variable using the removeBatchEffect 
function from the Limma R package [41].

To assess the validity of the consensus signature, we 
applied unsupervised clustering on the z-score trans-
formed normalized data of the consensus genes available 
for this cohort. We plotted the heatmap using the heat-
map3 R package [42], maintaining the default clustering 
parameters (distance calculation method = “euclidian” 
and hierarchical clustering method = “complete”). To 
estimate the validity of our risk score in this dataset, we 
also derived the TPM values using the raw-count data 
(see “Data pre-processing to perform the patient-centric 
strategy” section). More detailed information about these 
procedures and other explorative analyses are available 
in the vignette (https://​github.​com/​cecca​relli​lab/​MEDIA​
proje​ct).

Meta‑analysis and identification of a consensus signature
We performed a meta-analysis of the three cohorts 
(Dataset 1, Dataset 2, Dataset 3) by combining the 
p-values of the respective gene lists returned from the 

DE analysis using the Fisher approach [43]. Before com-
bining the p-values, we set to 0 the log2 FC of all the 
genes with a slight variation (i.e., −0.1 ≤ log2 FC ≤ 0.1 ). 
We replaced with 0 the NA log2 FCs of the genes miss-
ing in one of the three cohorts. This was done to com-
pute a weighted combined median log2 FC that would be 
smaller in absolute value than the same calculated by just 
averaging the only two log2 FC values available. By doing 
this, we accounted for the absence of a gene in one of the 
datasets. We flagged those genes with a difference in sign 
on the log2 FC across the case studies, and we removed 
those with no change for all three cohorts. We used 
Fisher’s combined probability test to combine the (not 
adjusted) p-values of all genes measured in at least two of 
the three datasets.

We set the combined p-value to 1 for those genes show-
ing discordant signs of log2 FC across the cohorts. Then, 
we assigned a combined log2 FC value as the median of 
the available log2 FC values from the respective DE anal-
yses. Finally, we corrected for multiplicity using the BH 
approach [33] and obtained adjusted combined p-values. 
Genes with an adjusted combined p-value (FDR) ≤ 0.01 
and a median combined log2 FC ≤ −1.5 or log2 FC ≥ 1.5 
are selected as part of the consensus signature (and 
declared as down and up-regulated genes in OA samples, 
respectively).

We added a dedicated vignette showing in detail the 
code used for these analyses (see “Materials and meth-
ods” section).

Enrichment analyses
To understand the molecular mechanisms leading to 
OA, we used the Gene Set Enrichment Analysis (GSEA) 
approach [44] to retrieve the GO:BP (Gene Ontology–
Biological Processes) terms and REACTOME pathways 
enriched for each of the three DE lists. To identify the 
biological programs enriched by the up-regulated con-
sensus genes, we applied an over-representation analysis 
(ORA) using the Hypergeometric test [40]. We set a value 
of 0.15 as the FDR cutoff for GSEA and 0.05 for the ORA 
[33]. We used Enrichplot [45], msigdbr [46], and cluster-
Profiler [47] to perform these analyses.

We assessed the enrichment of the consensus signa-
ture in the Validation cohort by obtaining the Running 
(Enrichment  Score) plot (FDR ≤ 0.01 ). We first per-
formed a GSEA analysis of the Validation DE genes using 
the consensus signature as the “gene set”, then we com-
puted the Running plot using the gseaplot2 function by 
clusterProfiler.

Disease‑centric approach: drug prioritization
To perform drug prioritization, we scored drugs based 
on their ability to induce an opposite transcriptional 

https://github.com/ceccarellilab/MEDIAproject
https://github.com/ceccarellilab/MEDIAproject
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response compared to that induced by the disease. This 
was achieved through a pathway-based approach, which 
enabled us to abstract the analysis from individual genes 
to molecular activities while also working around the 
problem of matching the gene expressions measured by 
different platforms. In particular, we adapted previously 
published related approaches that have been used to 
identify drugs inducing a desired transcriptional effect in 
a pathway-centric space instead of a gene-centric space. 
The performance of the pathway-centric approach has 
been previously assessed in diverse contexts, for exam-
ple, in the identification of small molecules increasing 
the efficiency of stem cell differentiation protocols [48] 
or inducing partial rescue of mutated proteins in a cel-
lular model of cystic fibrosis [49]. In further detail, this 
approach applies a GSEA-like algorithm to evaluate the 
enrichment of a large collection of pathways against 
a given gene expression profile. Once the enrichment 
scores are computed, they are used in place of the gene 
expression values to form a pathway-based expression 
profile (PEP). Techniques similar to those applied to 
gene-centric profiles can then be applied to the PEPs, 
including the GSEA, which can be renamed Pathway 
Set Enrichment Analysis (PSEA) in this context. The 
PSEA evaluates how much a set of pathways tends to fall 
towards the top or the bottom of a PEP. In this work, we 
adapted the PSEA methodology [49] to account for two 
sets of pathways simultaneously. We selected all the path-
ways from the GO:MF (Gene Ontology–Molecular Func-
tion) category involving any of the genes in the consensus 
signature. In particular, we performed this selection sepa-
rately for the up-regulated (“up set”) and down-regulated 
(“down set”) genes. Next, using the Gep2Pep R package 
[50], we scored the drug-induced gene expression profiles 
from the Connectivity Map (CMap), applying PSEA sep-
arately against the up and down sets. We then ranked all 
the CMap drugs according to their PSEA scores so that 
the top drugs had positive (negative) enrichment values 
for the pathways involving down- (up-) regulated genes. 
Finally, we obtained a single score for each drug by com-
puting the average of such ranks.

Network analysis
To elucidate the potential mechanisms of action of inter-
est characterizing the top prioritized drugs, we connected 
the molecular context with the consensus signature. For 
this purpose, we extracted drug target information from 
the Therapeutic Target Database [51]. Next, we used 
the STRING [52] PPI network to find paths connecting 
each gene in the signature to each known gene target 
of the top 50 drugs. To have more reliable protein link-
ages, we considered only interactions whose combined 
score was greater than 500 in a range of values [0, 1000] 

representing the 9.6% of the full proteins interactions. 
Starting with the gene targets of the prioritized drugs and 
with the genes of the consensus signature, we find the 
intersections between these two lists and the genes in the 
PPI. The results of this intersection were plotted using 
Gephi (ver 0.10.1),3a software for graph visualization. The 
codes for the drug prioritization and the construction of 
the network are available at the repository https://​github.​
com/​cecca​relli​lab/​MEDIA​proje​ct.

Selection of the consensus genes for validation in vitro 
experiments
Starting from the 39 up-regulated genes of the consen-
sus signature, we selected the 10 genes closest to the drug 
targets over the network (directly connected), and those 
still unknown in the literature for experimental validation 
on human articular chondrocytes.

Primary cell cultures
Human Cryopreserved chondrocytes, Osteoarthritis 
(#CDD-H-2610-OA, CliniSciences) and Human Cryo-
preserved chondrocytes, Normal (#CDD-H-2610-N, 
CliniSciences) were cultured in Chondrocyte Growth 
Medium with 10% Human Serum supplement (#M2600-
10HS, CliniSciences) according to manufacture recom-
mendations. The cells were maintained in an incubator at 
37 °C and 5% CO2 in a fully humidified atmosphere.

RNA extraction and real‑time PCR
Total RNA was isolated from primary cell cultures using 
Trizol Reagent (Invitrogen, Carlsbad, CA, USA) and 
quantified using NanoPhotometer NP80 (Implen, USA). 
One µ g of RNA was reverse-transcribed in cDNA using 
SuperScript VILO (#11754050, Invitrogen) according 
to the manufacturer’s protocol. The mRNA levels of the 
analyzed genes were measured by RT-qPCR amplification 
using iQ SYBR GREEN Supermix (#1708882, Bio-Rad 
Laboratories) according to the manufacturer’s instruc-
tions. We performed RT-qPCR experiments using C1000 
Touch Thermal Cycler (Bio-Rad, Hercules, California, 
CA, USA). The reaction volume was 25 µ L. Each reac-
tion was performed in duplicate. We quantified mRNA 
expression using the comparative �� Ct method, and we 
used the Ribosomal Protein S18 gene (RPS18) as a con-
trol to normalize the gene expressions. Two independent 
experiments were performed. Data were analyzed using 
Biorad CFX Maestro version 1.0 (Bio-Rad). For the com-
plete list of the oligonucleotides used for the RT-qPCR, 
see Additional file 1.

3  https://​gephi.​org/.

https://github.com/ceccarellilab/MEDIAproject
https://github.com/ceccarellilab/MEDIAproject
https://gephi.org/
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Data pre‑processing to perform the patient‑centric 
strategy
The patient-centric approach aims to determine a risk 
score to distinguish between healthy and OA individuals 
and capture the disease severity for each patient with a 
value. We fitted a logistic regression model to reach this 
goal.

We chose Dataset 3 as the training set for fitting the 
model and Dataset 4 as test set to demonstrate the 
approach’s efficacy. We used the log2(TPM) normalized 
counts since they represent a measurable physical quan-
tity readily available for each patient without the need for 
between-sample normalization. As a proxy for the TPM 
values related to the training set, we used the matrix 
returned by Soul and colleagues from the tximport pro-
cessing, where the TPMs have been computed using the 
effective gene lengths [25, 37]; we selected genes with 
TPM > 0 for at least the 50% of all the samples, dealt for 
gene isoforms by computing the mean TPM values per-
patient, and then applied log2 transformation. For the 
validation dataset, we computed the TPMs starting from 
raw counts and collecting the theoretical gene lengths 
by the EDASeq R package [53], filtered out null values as 
performed in the training dataset, and log2 transformed 
the data.

We performed the following pre-processing steps on 
the data prior to the model implementation and score 
extraction: 

1.	 At first, we considered all the genes in common 
between the two datasets (the training set and the 
test set).

2.	 We applied the quantile normalization transforma-
tion to the training set.

3.	 Finally, we re-scaled each sample in the test set to 
follow the distribution of the quantile normalized 
log2(TPM) values in the training cohort.

All the details about the procedure used for this strategy 
and the corresponding R code are available at https://​
github.​com/​cecca​relli​lab/​MEDIA​proje​ct.

Models set‑up for risk score computation
We defined a reduced signature-based risk score sR by 
using logistic regression with Elastic-Net penalization to 
achieve feature selection and identify a reduced subset 
of consensus genes retaining the maximum information 
associated with OA.

To determine whether using a small number of features 
might compromise the efficacy of the score, we also eval-
uated the total signature risk score sT , incorporating all 
of the consensus genes within a logistic regression with 

the Ridge penalization. Ultimately, we compared the two 
scores’ classification performances to examine how well 
they captured the OA condition. The user can reproduce 
the score computation on this data or other dataset by 
using the code available at the vignette (see subsection 
above).

Elastic net model to extract highly informative features
We fitted a logistic regression model with an Elastic-
net penalty using the caret R package [54] with method 
=“glmnet” and α = 0.5, to select the genes of the consen-
sus signature that were most relevant in discriminating 
OA patients from healthy ones. Due to the class disbal-
ance and the small number of samples available for the 
training, we applied a bootstrapping strategy with Leave-
One-Out-Cross-Validation (LOOCV). We trained the 
algorithm on n = 100 sub-datasets, composed of the 10 
healthy patients available from the cohort and as many 
affected patients randomly selected for each sub-dataset. 
The resulting model returned the vector of estimated 
regression coefficients for each run with the non-signifi-
cant coefficients set to zero. As the reduced signature, we 
selected only the genes detected as significant in at least 
50% of the runs. Then, we averaged the coefficients asso-
ciated with this reduced signature across all the 100 mod-
els to use these mean values to compute the final score sR 
for each patient i as shown in (1).

In this formula, aj is the average value of j-th significant 
regression coefficients (i.e., j-th gene in the reduced sig-
nature of length m) computed across all the runs, and 
zj,i is the log2(TPM) value of the corresponding gene j in 
patient i.

We used the Receiver Operating Characteristic 
(ROC)  curve and related Area Under the Curve (AUC) 
to assess the discriminative capability of the reduced 
signature.

To further evaluate the sR score, we computed the 
z-score transformed log2(TPM) values and performed an 
unsupervised clustering on the expression of the consen-
sus genes available for both the training and test datasets. 
Since we added the class and the assigned sR score anno-
tations, we sorted all the samples by increasing assigned 
score values in the heatmaps to estimate the concordance 
with the corresponding class.

Ridge regression on all the features for assessing method 
reliability
We calculated the total risk score, sT , considering all 
the features of the consensus signature and applied a 

(1)sR(i) =

m∑

j=1

aj ∗ zj,i

https://github.com/ceccarellilab/MEDIAproject
https://github.com/ceccarellilab/MEDIAproject
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logistic regression with the Ridge penalization. We used the 
LOOCV as previously described. Since Ridge penalization 
did not perform a feature selection, the model estimated 
the vector of coefficients for all genes in the signature. 
Using these coefficients and the corresponding expression 
values, we derived sT as

where bj is the estimated regression coefficient for the 
gene j of the consensus signature of length k. We evalu-
ated the ROC  curves and AUC for the sT risk score on 
the training and test sets. Finally, we used the DeLong 
test to assess if there was a significant difference between 
the two AUCs [55].

(2)sT (i) =

k∑

j=1

bj ∗ zj,i

Results
Differential analysis reveals common biological programs 
activated in OA samples across heterogeneous datasets
Investigating the DE analysis within each cohort, we 
obtained an overview of the biological processes and 
pathways characterizing OA patients compared to 
healthy controls accounting for the diverse experimental 
setups of each study. For example, we observed a differ-
ent number of significantly dysregulated genes: 156 up, 
79 down for Dataset 1, 190 up and 28 down for Dataset 2, 
272 up, 170 down for Dataset 3, 315 up, 320 down for the 
Validation dataset (see Fig. 2 and Additional file 2).

Nonetheless, the GSEA analysis showed substantial 
agreement in the altered biological processes among the 
different cohorts. For example, the GO terms “Extracel-
lular Matrix Organization” and “Extracellular Structure 

Fig. 2  Volcano plots for all the datasets considered in this study. DE genes identified in each cohort are respectively in red and green as up/
down-regulated genes; the genes in the consensus signature are in blue; not DE genes in grey; the genes chosen for the risk score procedure are 
labeled and shaped with an asterisk
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Organization” were found to be significantly enriched in 
the OA profiles across the three signatures (Fig. 3). The 
analysis of the REACTOME pathways provided simi-
lar insights, including pathways related to collagen fibril 
synthesis and reorganization as the most enriched (Fig. 3, 
Additional file 4: Fig. S1).

A consensus signature characterizing the OA phenotype
The meta-analysis of the three cohorts allowed us to 
identify a consensus signature including 44 genes (39 up, 
5 down) that better recapitulate the coherent differences 
associated with the OA (Additional file  3: Table  S1). 
Enrichment analysis of the consensus profile yielded 
extracellular matrix and bone reorganization-related 
terms as the most enriched  by the up-regulated genes 
(Fig. 4). We assessed the consensus signature, evaluating 
its agreement with an independent cohort [26]. The Venn 
diagram in Fig. 5A, shows that 31 out of 44 consensus sig-
nature genes were also DE in the validation dataset. The 
hypergeometric test revealed that the overlap was statis-
tically significant (p-value < 0.01 ). As further validation, 

the unsupervised clustering applied to the validation 
dataset and  induced by the consensus genes confirmed 
their discriminative power (Fig.  5B, 3 out of 44 genes 
were excluded after the pre-processing). Also, the GSEA 
Running plot shows that consensus signature genes tend 
to appear toward the top of the validation dataset expres-
sion profile (Additional file 5: Fig. S2).

Drug prioritization and network analysis uncover potential 
pharmaceutical targets
In the disease-centric analysis, we scored a list of ~ 19,000 
drug-induced gene expression profiles based on their 
predicted ability to counteract the transcriptional effects 
induced by OA. In particular, the top hits in this approach 
correspond to those drugs that can up-regulate the path-
ways involving genes that are down-regulated in the OA 
signature and vice-versa. This prioritization is entirely 
target-agnostic but still carries transcription-related 
information, which we sought to exploit in identifying 
potential clinically relevant genes. We also performed a 
PPI network analysis, including the signature genes and 

Fig. 3  Bubble chart of commonly enriched biological processes. The figure shows the significantly enriched GO:BP terms shared by all 
the up-regulated genes for the three cohorts. For each cohort, the size of the dots is the normalized enrichment score (NES) and the color 
is the statistical significance as − log10(FDR)
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top drug molecular targets. In particular, we first noted 
that none of the molecules in The Library of Integrated 
Network-based Cellular Signatures (LINCS) database4 
had any of the OA signature genes as their targets. Then, 
we selected relevant genes from the consensus signature 
based on the assumption that those appearing along a 
short path to a drug target could have clinical significance 
(Fig.  6). Moreover, 5 genes (PPARA, SIRT1, PTGS1/2, 
ANO1) that are direct targets of several prioritized 
drugs showed a direct interaction with signature genes. 
Among the corresponding drugs, Resveratrol has been 
shown to exert positive effects on tissues’ homeostasis 
both in vitro and in vivo [56–58]; Tenoxicam is currently 
used as a treatment for pain and inflammation relief in 
various degenerative rheumatic diseases [59, 60]. Other 
relevant drugs revealed by the network analysis were 

Benzbromarone, Pirinixic Acid, and Mesalazine (see 
“Discussion” section).

Experimental validations
The reduced set of genes we extracted for the in  vitro 
validation included TSPAN2, TNFSF11, GAS1, KCNN4 
and CRABP2 as the closest in the network, and THY1, 
TGFBI, S100A4 HTRA1 as additional genes. Further-
more, we included COL3A1 as a positive control to assess 
the test validity of the experimental protocol and to con-
firm literature results on Primary Human Chondrocytes.

For details on the gene selection, see Additional file 1. 
Results from RT-qPCR experiments agreed with in sil-
ico predictions. Specifically, Fig.  7 shows that most of 
the tested genes had marked overexpression in OA cells 
compared to normal cells, except for GAS1 and KCNN4 
(not shown because of undetected signal). Among the 
validated genes, TSPAN2, HTRA1 and TNFSF11 are 

Fig. 4  Consensus signature enrichment analysis. The CNET plot shows the top 6 GO:BP enriched by the up-regulated genes of the consensus 
signature (over-representation analysis with hypergeometric test); the category node size is the −log10(FDR) returned from the analysis. ECM org.: 
extracellular matrix organization; ECM str.org.: extracellular structure organization; Ext.enc.str.org.: external encapsulating structure organization; 
collagen fibril org.: collagen fibril organization

4  https://​lincs​proje​ct.​org/.

https://lincsproject.org/
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also part of the sub-signature extracted for the risk-score 
computation (see next paragraph).

A single patient risk score to predict OA status
The patient-centric analysis allowed us to derive risk 
scores associated with OA. For what concerns reduced 
sR score, the logistic regression with the Elastic Net 

penalty and the bootstrapping strategy allowed us to 
identify DNER, TNFSF11, THBS3, LOXL3, TSPAN2, 
DYSF, ASPN and HTRA1 as the features selected in 
at least the 50% of the runs (Additional file  6: Fig. 
S3). Such genes are up-regulated as consensus genes 
(Fig.  2). The weights associated with such genes are 
used to evaluate sR (Fig.  8A). After evaluating sR for 

Fig. 5  Consensus signature validation. A Venn plot representing the overlap between DE genes in the validation dataset and the consensus 
signature (P << 0.01); B the heatmap showing the expression of the consensus genes (DE) across the samples of the validation cohort (z-score)
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Fig. 6  Network construction. The figure shows a sub-graph extracted from the PPI graph filtered by considering only DE up consensus genes (blue) 
and the targeted genes (green) of the top 50 drugs (red, rank value reported). Those links represent the STRING combined score greater than 500. 
Single genes that had only low-scoring connections or none of them, and our Genes that did not match those of STRING, were not shown

Fig. 7  In vitro validation. mRNA fold expression was evaluated in normal and OA chondrocytes for 9 of the 10 selected consensus genes: TNFSF11, 
COL3A1, HTRA1, S100A4, TSPAN2, GAS1, THY1, CRABP2, TGFBI, using unpaired t-test (*P < 0.05, **P < 0.01, ***P < 0.001)



Page 13 of 19Costa et al. Journal of Translational Medicine  (2024) 22:281	

each sample i in both the training and the test data, we 
compared the score distribution across the two classes 
of patients: Fig.  8B and C shows that Normal and OA 
samples have a significantly different sR score distri-
bution in both training and test cohorts (p-values << 
0.01, Wilcoxon test). Moreover, Fig.  9A, B shows that 
patients sorted by their sR scores tend to segregate 
both for disease status and expression of the signature 
genes. While the segregation is perfect in the train-
ing set (panel A), it is also highly evident in the test 
set (panel B). Finally, we compared the classification 
performances of the sR score against that of an analo-
gous score (referred to as sT  ) based on the consensus 
signature genes available in both datasets (43 out of 
44). The corresponding ROC curves reported in Fig. 10 
show that using a reduced set of genes does not signifi-
cantly impact the prediction performance (AUC equal 
to 0.875 as compared to 0.922, the DeLong AUC test 
applied returned a p-value of 0.507).

Discussion
The OA patient phenotype is very varied, although 
it shares a progressive and unrestrainable degenera-
tion. While significant progress in treating clinical 
manifestations has been made, fundamental molecu-
lar mechanisms underlying the disease remain poorly 
understood, thus limiting the possibility of identify-
ing effective drugs for the restoration of tissue home-
ostasis. Such a targeted approach would be especially 
practical if applied as early as possible, minimizing the 
damage caused by the degenerative and progressive 
nature of the disease. Our work aimed to contribute 
to this endeavor by extracting a reduced set of rel-
evant genes from multiple heterogeneous OA-related 
datasets. Indeed, as expected, each cohort showed its 
transcriptional specificities. Such variability could be 
exacerbated by the degenerative nature of the disease, 
which progressively affects the extracellular matrix and 
collagen fibrils, depending on the anatomical struc-
tures involved. Nonetheless, the integration process 

Fig. 8  Risk score computation based on the most discriminating genes of the consensus signature. In A the barplot shows final mean coefficients 
associated with their related genes, sorted by decreasing value; in B and C, boxplots report the sR score distributions, associated with the training 
and test sets respectively
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Fig. 9  Validating risk score. In A and B, the heatmaps of the consensus genes expression (DE), where the patients are sorted by increasing risk score, 
respectively for training and test sets (z-score)
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allowed us to isolate 44 genes that appear significantly 
dysregulated across diverse samples. The panel includes 
previously known OA-related genes such as COL3A1, 
ASPN or ADAMTS6/S2, that are involved in cartilage 
remodeling and inflammation with a specific role in 
the pathology [61–64] or TSPAN2 that correlates with 
inflammation and immune-cell infiltration in affected 
cartilage [65] and is overexpressed in OA cartilage of 
murine models [66].

Intriguing is the putative role of the retinoic acid bind-
ing protein CRABP2 as a target: the expression of this 
gene was demonstrated to be sensibly higher in murine 
models with degenerative joint disorders [67]. Further-
more, fibroblast-like synoviocytes (FLS) derived from 
rheumatoid arthritis patients showed augmented apopto-
sis in response to gene inhibition [68]. TNFSF11 has been 
recently associated with the induction of the PI3K/AKT/
mTOR signaling in affected tissues, supporting inflam-
mation and structure destruction: in particular, its down-
regulation could enhance mitophagy and reduce cartilage 
degradation [69]. The crucial role that this gene holds in 
bone remodeling makes it a potential therapeutic target 
in the treatment of OA and other degenerative joint dis-
eases [70, 71].

Although not known to be directly linked to the dis-
ease, other genes could be worthy of further investiga-
tion. For example, DNER has been primarily detected in 
OA-affected cartilage, and its role in the disease is cur-
rently under investigation [72, 73]. Indeed, we extracted 
novel genes such as S100A4, which is known to be 
involved in cancer metastatic progression but that results 
overexpressed in cartilage and synovium damaged by 
arthritis [74, 75]. HTRA1, which has a role in various bio-
logical processes, including cancer, is intriguing for its 
involvement in musculoskeletal diseases [76, 77].

Even if most of the genes in our panel are not known to 
be direct targets of any drug, our network-based analy-
sis allowed us to identify the most proximal ones, which 
may provide clues into the therapeutic modes of action 
for the prioritized drugs. Among the genes that are close 
to the drug targets, PTGS1/2 are pivotal in the inflamma-
tory process induction (involved in prostaglandin syn-
thesis) and may have clear implications in the pathology 
progress [78, 79]. On the other hand, SIRT1 and PPARA​ 
have a protective and anti-inflammatory action when tar-
geted by their activators and agonists [80–83]. Indeed, 
PPARA is a PI3K/AKT/mTOR signaling regulator, pro-
moting autophagy by mTOR signaling pathway inhibition 

Fig. 10  Performance comparison (Validation dataset) of the two models. In this plot we see that the AUC for the sR score (orange) is not particularly 
lower than the AUC returned from the sT  score (turquoise); we confirm that reducing the number of features used for the score calculation does 
not affect the risk estimation of the score
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[80, 84, 85]. It was demonstrated that a hypoxic micro-
environment can enhance mitophagy and ameliorate 
chondrocyte viability [85, 86]. Of interest is the role of 
HIF-1α in maintaining hypoxia and slowing cell degen-
eration in mice OA models [87]. To date, non-steroidal 
anti-inflammatory drugs, glucocorticoids, opioids, chon-
droprotective agents and anti-cytokines are the classes of 
drugs currently used to treat OA accompanied by several 
side effects for the patient [88, 89]. Some of these, like 
the most common Prednisolone [90] or Paracetamol and 
Aspirin [91], induce anti-inflammatory and immunosup-
pressive effects that block the production of pro-inflam-
matory cytokines, leukocyte recruitment, and activation. 
Resveratrol, ranked 29 in our prioritization, could play 
a role in both prevention and treatment of OA, due to 
its anti-inflammatory, chondrogenic matrix-protective, 
or antiaging effect [56–58, 92–94]. Even  an anti-gastric 
cancer effect of this molecule has been recently assessed 
[95]. Mesalazine (ranked 45) and Pirinixic Acid, a potent 
PPARA​ agonist, (ranked 4) have been shown to have anti-
inflammatory potential in OA and may warrant further 
testing [96, 97]. Finally, Benzbromarone (ranked 19) is a 
medication used to treat gout [98, 99], but we do not have 
evidence for using this drug for OA treatment. The drug 
prioritization analysis helped identify a set of genes that 
may be clinically relevant as both part of the consensus 
signature and close to the top drugs in the PPI network. 
The RT-qPCR results confirmed a significant dysregula-
tion of seven of the ten genes we selected for validation.

Although a reduced panel of 44 genes may represent 
a valuable reference for future mechanistic studies, a 
smaller number is required to achieve practical relevance 
in clinical settings. For this reason, in the patient–centric 
approach, we aimed at developing a score to assess the 
disease severity with a limited number of genes. The sR 
score, based on only 8 genes, was proved effective and 
with statistically similar accuracy to sT obtained with the 
larger panel of 43 genes. Together with additional clinical 
parameters, this score could be helpful in rapid prelimi-
nary checks and assessment of disease progression. This 
study has a few limitations. The reliability of the results 
could be affected by the limited number of samples avail-
able for the training phase of both models. However, we 
tried to assess this risk using bootstrapping steps and by 
including a test dataset. Moreover, the specificity of the 
selected samples, all from patients with damaged carti-
lage, may limit the possibility of generalizing the result to 
all OA phenotypes. While we used prioritized drugs as 
proxies to identify clinically relevant genes, their actual 
effectiveness as OA treatments would require additional 
efforts that fall out of the scope of this study. Nonethe-
less, our results show that some of them, such as Resvera-
trol, warrant further investigation.

Conclusions
Using a meta-analysis of several OA cohorts, we first 
identified a panel of 44 genes (39 up-regulated and 5 
down-regulated) consistently dysregulated across the 
different studies, therefore carrying robust molecular 
features that could be critical for understanding the 
disease’s mechanisms and suggesting novel therapies. 
Therefore, starting from this panel and using a network-
based approach, from one side, we identified a few 
drugs that could enlighten therapeutical approaches 
for OA. For such purpose, we prioritized drugs that 
can revert the profile and whose targets are close to the 
identified genes. With this approach, we found either 
drugs already tested in OA or potential novel thera-
peutic approaches. Conversely, we extracted a subset 
of eight genes and defined a patient-specific risk score 
with significant prediction power to distinguish OA 
from healthy individuals. The presented results could 
help understand OA mechanisms from multiple per-
spectives, including its pathophysiology, diagnosis, and 
treatment. However, we employed four cohorts related 
to a specific subtype, cartilage, with a limited number 
of patients due to the scarcity of publicly available data 
specific to OA (compared to other studies). It would 
be interesting to validate our findings’ generalizabil-
ity more in-depth (for example, when varying clinical 
and demographic data) and enhance the signature and 
score obtained with additional data. An example could 
be the application of this framework on other tissue 
types like synovial fluid or subchondral bone [23, 100]. 
The proposed methodological approach can easily scale 
to additional cohorts of assessment. Therefore, future 
dataset availability could support the translational pur-
pose of our work.
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