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Abstract
We introduce amodel described in terms of a scalar velocity field on a 1D lattice, evolving through
collisions that conservemomentumbut do not conserve energy. Such a systempossesses some of the
main ingredients offluidized granularmedia and naturallymodels them.We deduce non-linear
fluctuating hydrodynamics equations for themacroscopic velocity and temperature fields, which
replicate the hydrodynamics of shearmodes in a granularfluid.Moreover, this Landau-like
fluctuating hydrodynamics predicts an essential part of the peculiar behaviour of granular fluids, like
the instability of homogeneous cooling state at large size or inelasticity.We also compute the exact
shape of long range spatial correlations which, even far from the instability, have the physical
consequence of noticeablymodifying the cooling rate. This effect, which stems frommomentum
conservation, has not been previously reported in the realmof granular fluids.

1. Introduction

Since the seminal paper of Einstein [1], it has beenwell known that the fluctuating behaviour of systems at the
mesoscopic level reflects the hecticmicroscopic dynamics beneath.While the equilibriumbehavior of
mesoscopicfluctuations has been investigated and understood in detail [2, 3], a big effort is still being carried out
to explore thefluctuating properties of non-equilibriummedia [4]. These are known to lead, in great generality,
to the emergence of spatial correlations and pattern self-organization [5, 6]. In this context, the crucial task of
connectingmicroscopic andmesoscopic dynamics is considerably simplifiedwhen there exists a separation of
scales, whichmakes it possible to introduce slow fields evolving under the so-called hydrodynamic equations [7].

An important class of systems exhibiting patterns includes two types of complex fluids: activematter [8, 9],
such as bacteria or birds, andfluidized granularmaterials [10]. Interestingly, active and granularmatter are often
associated [11–14]. They are not only relevant for applied and biomedical sciences, but also offer fascinating
challenges for kinetic theory [15]. Indeed, the lack of energy conservation in themicroscopic dynamicsmakes
them intrinsically out-of-equilibrium systems [16]. In granular and activefluids, the spectacular emergence of
spatial patterns, particularly in vectorial fields such asmomentumor orientation, is often understood in terms of
hydrodynamic equations [17]. Furthermore, a relevant role is played byfluctuations, as an inevitable
consequence of the relatively small number of their elementary constituents [18].

One of themost intensively investigated states in the realmof granular fluids is the homogeneous cooling
state (HCS) [19, 20]. Therein, the granular temperature decays in time followingHaff’s law [21], whereas the
system remains spatially homogeneous. Remarkably, theHCS is the reference state for the hydrodynamic
description of granular fluids but it is unstable: for large enough inelasticity or system size, the scaled fluctuations
of the transverse velocity increase (shear instability) and eventually density inhomogeneities arise (clustering
instability) [22]. This instability for large system sizesmakes it relevant to look into the finite size corrections to
the physical quantities, like the cooling rate, since a ‘thermodynamic limit’ inwhich the system size is infinitely
large cannot be takenwithout simultaneouslymaking the inelasticity vanish.Notwithstanding, and to the best of
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our knowledge, thesefinite size corrections have only been investigated for a systemof smooth inelastic hard
spheres very close to the shear instability [23].

In derivingmesoscopic transport equations frommicroscopic rules, analytical results are needed and simple
models are good candidates for this [24, 25]. In this paper, we study a 1D latticemodel which implements two
main ingredients of granularfluids: inelastic collisions andmomentum conservation. Given the simplicity and
appealing physical picture of themodel, this novel approachmay help to improve our current understanding of
the complex behaviour of granular fluids. To start with, we recover some of themain features of granularfluids:
more specifically, the large size and inelasticity shear instability. In addition, we are able to compute exactly the
shape of velocity correlations, which allows us to,first, extend the known results offluctuating hydrodynamics
[26] and, second, obtain the finite size corrections to the cooling rate. The latter has a non-trivial dependence on
the inelasticity and system size: for a given inelasticity, it changes sign at a certain value of the system size that is
smaller than the one corresponding to the shear instability.

Finally, wewould like to stress thatmomentum conservation is a physical constraint that certainly has a
recognized role in the appearance of long-range spatial correlations [6, 27].However, since it complicates the
description and the derivation of exact results, it is rarely considered in its entirety. Here, starting from the
microscopic dynamics, we are able to rigorously derive themesoscopic equations that describe the average and
fluctuating behaviour at the hydrodynamic scale, taking into accountmomentum conservation in full.

2.Microscopic equations of themodel

Fluctuating hydrodinamics in linear and nonlinear lattice diffusivemodels have been extensively studied in
recent years, both in the conservative [28–31] and in the dissipative cases [32–34]. Inspired by [35], we consider
a 1D latticewithN sites and given boundary conditions, either periodic or thermostatted, depending on the
situation of interest. At a given time p, each site l possesses a velocity vl p, and the total energy of the system is

E vp
l

N

l p1 ,
2∑=

=
. In an elementary time step of the dynamics, with a probability discussed below, a pair of nearest

neighbours l l( , 1)+ collides inelastically and evolves following the rule (0 1α< ⩽ )

v v v v(1 ) 2, (1 ) 2, (1)l p l p l p l p l p l p, 1 , , 1, 1 1, ,α α= − + Δ = + + Δ+ + + +

having defined the relative velocity

v v . (2)l p l p l p, , 1,Δ = − +

Momentum is always conserved, v v v vl p l p l p l p, 1, , 1 1, 1+ = ++ + + + , while energy, if 1α ≠ , is not:
v v v v ( 1) 2 0l p l p l p l p l p, 1

2
1, 1

2
,
2

1,
2 2

,
2α+ − − = − Δ <+ + + + .

The definition of themodel implies that there is nomass transport, particles are atfixed positions and they
only exchangemomentum and kinetic energy.We are also disregarding the so-called kinematic constraint in
[35], namely a colliding pair is chosen independently of the sign of its relative velocity. This can be understood as
the velocity of the particles representing not theirmotion along the lattice axis but rather along a transversal one:
in fact, the hydrodynamics derived here replicates transport equations for granular gases in d 1> restricted to
the shear (transverse) velocity field; seefigure 1.

In the context of granular fluids, themodelmay be physicallymotivated as follows.We start from a d 1>
system that has been divided into ‘slabs’ that are perpendicular to the lattice direction. Specifically, each particle
on the lattice represents one slab. In this sense, the parameter α that appears in the collision rule (1) should not
be confusedwith the usual restitution coefficient defined in granularmedia, since here α stands for an effective
inelasticity for the collisions between slabs. The connectionwith a ‘real’ granular fluid should be done at the level
of the cooling rate that appears in the hydrodynamic equations; see section 3.

Nowwewrite down the evolution equation for the velocities. At time p, the probability that the nearest-
neighbours pair at sites l l( , 1)+ collide is assumed to be Pl p l p, ,∝ ∣Δ ∣β. Then,

v v j j j, (1 ) 2, (3)l p l p l p l p l p l p y l, 1 , , 1, , , ,p
α δ− = − + = + Δ+ −

which is a discrete continuity equation for the (conserved)momentum,with jl p, being themomentum current,
that is, theflux ofmomentum from site l to site l 1+ at the time step p. Therein, y l,p

δ is Kronecker’s δ and yp is a
random integer which selects the colliding pair with probability Pl p, . The evolution equation for the energy is
obtained by squaring equation (3),

v v J J d . (4)l p l p l p l p l p, 1
2

,
2

, 1, ,− = − + ++ −

2
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Again, we have defined an energy current Jl p, from site l to site l 1+ and the energy dissipation dl p, at site l as

( )( )J v v j d,
1

4
0. (5)l p l p l p l p l p y l l p y l l p, , 1, , ,

2

, ,
2

, 1 1,
2

p p

α δ δ= + = − Δ + Δ <+ − −

The sink term dl p, only vanishes in the elastic case 1α = .
Stochastic simulations of themodel are done as follows. At anyMontecarlo step p, one site l is pickedwith

probability Pl p l p, ,∝ ∣Δ ∣β and particles l and l 1+ collide following themicroscopic rules in equation (1). The
simplest choice for Pl p, corresponds to 0β = ; all the pairs are chosenwith uniformprobability, P L1l p, = , in
which L is the number of pairs. This is often called in the literature themodel of inelasticMaxwellmolecules
(MM) [35].Note that L is basically equal toN but depends on the boundary conditions: for periodic boundary
conditions, it is L=N, but if we consider the system coupled to two extra sites 0 and N 1+ , which introduce the
appropriate boundary conditions, it is L N 1= + . The periodic boundary conditions, sketched infigure 1,
correspond to the free (undriven) evolution of the system and if l=N it is the pair N( , 1) that collides.

In the following, we discuss the hydrodynamic limit,fluctuations and correlations for a particular choice of
Pl p, . Specifically, we consider the case ofMM: such a choice is dictated by thewill of simplifying the presentation
andmaking clear the essential points.We postpone amore complete and general discussion to amore technical
and detailed paper, in preparation. The theoretical results are compared to the numerical simulations described
above. A large enough value of L, which is indicated in thefigures, has been used to ensure the hydrodynamic
limit, andwe have averaged over 105 realizations of the stochastic dynamics. Aside fromMM, results forHS
( 1β = ) are also shown in a few clearlymarked cases.

3.Hydrodynamic limit: average equations andfluctuations

Let us define, as usual, the following local averages over initial conditions and noise realizations: u vl p l p, ,≡ 〈 〉,
E vl p l p, ,

2≡ 〈 〉 andT E ul p l p l p, , ,
2≡ − . Their evolution is obtained under a series of assumptions.With the choice of

MM, yp is a uniformdistributed random integer, namely L1y l,p
δ〈 〉 = , with L being the number of nearest

neighbour pairs. In addition, when considering the average dissipation at site l, there appearmoments like
v vl p l p, 1,〈 〉± . To the lowest order, we assume that neighbouring velocities are uncorrelated, that is,
v v u ul p l p l p l p, 1, , 1,〈 〉 =± ± (see appendix A).

Nowwe assume that ul p, and El p, are smooth functions of space and time and introduce a continuum
(‘hydrodynamic’) limit (HL) by definingmacroscopic scales: x L 1Δ ∼ − and t L 3Δ ∼ − . Each spatial derivative
introduces thus a factor L 1− in the continuum limit: therefore, the difference between the current terms in the
balance equations is of the order of L 3− . On the other hand, the dissipation goes as L(1 )2 1α− − , whichmakes it
useful to define the cooling rate as (see appendix A)

Figure 1.Themodel is defined on a lattice, each site being characterized by a velocity vl and standing for a fluid slab. The dynamics
proceeds via nearest-neighbour collisions as defined in the text, inwhich part of the energy is dissipated. Thismodel resembles a
sheared granular system at themesoscopic level. To be specific, we show the sketch that corresponds to periodic boundary conditions.
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( )L1 . (6)2 2ν α= −

It is natural, on the scales defined by theHL, to define themesoscopic fields u x t( , ), E x t( , ) andT x t( , ), as well
as the averagemesoscopic currents j x t( , ) limL= →∞L j u x t( , )l p x

2
,〈 〉 = −∂ , J x t( , ) limL= →∞ L Jl p x

2
,〈 〉 = −∂

u x t T x t[ ( , ) ( , )]2 + and the averagemesoscopic dissipation of energy d x t L d T x t( , ) lim ( , )L l p
3

, ν= 〈 〉 = −→∞ ,
which depends only on the granular temperature but not on the average local velocity u x t( , ), as expected on a
physical basis. After computations detailed in appendix A, we get theHLof equations (3) and (4),which are

u x t j x t( , ) ( , )t x∂ = −∂ and E x t J x t T x t( , ) ( , ) ( , )t x ν∂ = −∂ − respectively. Then, we canwrite the average
hydrodynamic evolution equations

( )u u T T T u, 2 (7)t xx t xx x
2

ν∂ = ∂ ∂ = − + ∂ + ∂

over the length and time scales defined above.Note that, here, we have substituted 1 α+ by 2, because
L12 2α ν= − − , andwe have already neglected L 1− terms. These equationsmust be supplemented by appropriate

boundary conditions for the situation of interest. Technical details are deferred to a later paper.
Let us consider thefluctuations of themicroscopic currents and dissipation, that is, j jl p l p l p, , ,ξ= +∼

,

J Jl p l p l p, , ,η= +∼
, and d dl p l p l p, , ,θ= +∼

. Tilde variables correspond to a partial average: they are averaged over the

fast variables yl p, but not over the slow ones vl p, . Thus, for example, j L(1 ) 2l p l p, ,α= + Δ∼
. It is clear that this

choice guarantees that all noises l p,ξ , l p,η and l p,θ have zero average. The noise correlations read

A x x t t( ) ( )ξξ δ δ〈 ′〉 ∼ − ′ − ′ξ , A x x t t( ) ( )ηη δ δ〈 ′〉 ∼ − ′ − ′η and A x x t t( ) ( )θθ δ δ〈 ′〉 ∼ − ′ − ′θ with
amplitudes A L T x t2 ( , )1=ξ

− , A L T x t T x t u x t4 ( , )[ ( , ) 2 ( , )]1 2= +η
− and A L T x t3 ( , )3 2 2ν=θ

− (see
appendix B). In the above relations, we have used the notation x t( , )ξ ξ≡ and x t( , )ξ ξ′ ≡ ′ ′ , and similar
notations for , , ,η η θ θ′ ′. Thus, the current noises are delta correlated in space and time, and their amplitudes
scale as L 1− with the system size L. On the other hand, the noise of the dissipation is subdominant with respect to
themoment and energy currents, its amplitude being proportional to L 3− , and therefore it is usually negligible.
Gaussianity for these noises can be easily demonstrated; see [32]. Interestingly, being in the presence of two
fluctuating fields, correlations between different noises appear. Theoretical predictions for noise correlations,
amplitudes andGaussianity have been successfully tested in bothMMandHS simulations; see appendices B
andC.

4. Solutions, HCS and instabilities

Herewe focus our attention on the case of spatial periodic boundary conditions and an initial ‘thermal
condition’: vl,0 is a randomGaussian variable with zero average and unit variance, that is,T T x( , 0) 1l,0 ≡ = .
Starting from this condition, the system is expected to typically fall into the so-called homogeneous cooling state
(HCS), inwhich the velocity and temperaturefields remain spatially uniform, and the temperature decays in
time. Indeed, the spatially homogeneous solution of the average hydrodynamic equation (7) reads

u x t T x t T t( , ) 0, ( , ) ( 0)e . (8)t
HCS= = = ν−

The exponential decrease of the granular temperature is typical ofMM,where the collision frequency is velocity-
independent. It replaces the so-calledHaff’s lawwhichwas originally derived in theHS case, whereT tHCS

2∼ −

becauseT T˙ 3 2∝ [21].
TheHCS is known to be unstable: it breaks down in too large or too inelastic systems [36]. In ourmodel and

in the hydrodynamic limit, this condition is expected to be replaced by a condition of large ν. The stability is
studied by introducing rescaled fieldsU x t u x t T t( , ) ( , ) ( )HCS= andT T x t T t( , ) ( )HCS=∼

and by
linearizing the hydrodinamic equations near theHCS, i.e.T x t T t T x t( , ) ( ) ( , )HCS δ= + and
U x t U x t( , ) ( , )δ= . The analysis of linear equations becomes straightforward by space Fourier transforming,
which gives

U k t
k

U k t T k t k T k t( , )
2

2
( , ), ( , ) ( , ). (9)t t

2
2δ ν δ δ δ∂ = − ∂ = −∼ ∼

Therefore, Uδ is unstable for wave numbers that verify k2 02ν − > . In the continuous variables we are using,
the system size is 1, so that theminimumavailable wavenumber is k 2min π= . Thus, there is no unstablemode
for ν (lengths) below a certain threshold cν (Lc), with

( )L8 , 2 2 1 . (10)c c
2 2 1 2

ν π π α= = − −

On the other hand, for cν ν> (L Lc> ), theHCS is unstable andmodeswithwave numbers verifying k 2ν<
increase with time. This instabilitymechanism is identical to the one found in granular gases for shearmodes

4
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[26]. Theoretical predictions and simulations results perfectly agree, as plotted infigure 2. It is important to
stress that the amplification appears in the rescaled velocityU x t( , ) and not in the velocity u x t( , ). The same
result is found and compares well with simulations in theHS case.

5. Spatial correlations and their effects in theHCS

Assuming space translation invariance, which is certainly valid in theHCS, we canwrite a hierarchy of equations
for the spatial correlations defined as C v vk p j p j k p, , ,= 〈 〉+ at a distance of k sites, at time p:

( ) ( )C C L C C1 , (11)p p p p0, 1 0,
2 1

0, 1,α= + − −+
−

( ) ( ) ( )C C L C C L C C1 (1 ) , (12)p p p p p p1, 1 1,
2 1

0, 1,
1

2, 1,α α= + − − + + −+
− −

( )C C L C C C k
L

(1 ) 2 , 2
1

2
, (13)k p k p k p k p k p, 1 ,

1
1, 1, ,α= + + + − ⩽ ⩽ −

+
−

+ −

C C . (14)p p, ,L L1
2

1
2

=+ −

A striking consequence ofmomentum conservation is the sum rule C C2 0p
k

L
k p0,

1

( 1) 2
,∑+ =

=

−
. Thenwe expect

that correlations are of the order O L( )1− . For example, in the elastic limit 1α = , their equilibrium value is
v v T L( 1)j j l

1〈 〉 = − −+
− , l 0∀ ≠ .We take equations (11) and (13) in the continuum limit, x k L( 1)= − and

t p L3= , and retain only terms up to O L( )1− , obtaining

( )T t

t
T t L t O L

d ( )

d
( ) ( ) (15)1 3⎡⎣ ⎤⎦ν ψ= − − +− −

( )D x t D x t O L( , ) 2 ( , ) . (16)t xx
2∂ = ∂ + −

Here, we have introduced the notations D x t LC x t( , ) ( , )= and t D x t( ) lim ( , )x 0ψ = → . Expression (15)
introduces a correction in the hydrodynamic average granular temperature, given by the nearest-neighbour-
particle velocity correlation, whereas equation (16) is a diffusion equation for spatial correlations. Boundary
conditions stem from equations (12) and (14), which give a reflecting boundary at x 1 2= and the sum rule for

momentum conservation, T t D x t( ) 2 ( , ) 0
0

1 2

∫+ = . In the long time limit, we obtain the following scaled

stationary solution

D x A x A( ) cos (1 2 ) ,

sin

, (17)
c

c

c

⎡
⎣⎢

⎤
⎦⎥ ⎛

⎝⎜
⎞
⎠⎟

π ν
ν

π ν
ν

π ν
ν

∼ = − − =

Figure 2.Rescaled velocity profilemaximumU U x t( , )Mmax = as a function of time, where x 1 4M = . Trajectories start from a
sinusoidal average velocity profile u x u x( , 0) sin(2 )0 π= (here u0 = 0.1), which gives hydrodynamic predictions
U x t u x( , ) sin(2 )e t

0
( ) 2cπ= ν ν− (drawn as solid lines).
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where D x D x t T t( ) lim ( , ) ( )t HCS
∼ = →∞ . Note that the Fourier transformof D x x( ) ( )δ∼ + 4 takes the form

S k( ) k

k 2

2

2=
ν−

with k n2π= and n is a positive integer, which has been derived for the correlations of the

velocity shearmode in d 1> fromLandau-like granular fluctuating hydrodynamics; see for instance [26]. This
result reinforces themotivation of our 1Dmodel as a simple picture for the shearmode of the velocities in d 1> .

Infigure 3, we compare the theoretical prediction in equation (17) for theMMcasewith numerical results.
Remarkably, such prediction compares well alsowithHS simulations, where the analytical computation appears
to bemore challenging. In conclusion, themechanism that induces spatial correlations in the system seems to be
independent of the particular interactionmodel.

Equation (15) suggests that theHaff law has a finite size correction.We consider a perturbation around the
HCST t T t L T t( ) ( ) ( ) ...HCS

1δ= + +− and D x t D L D x t( , ) ( , ) ...HCS
1δ= + +− .Making use of equation (15)

and defining T t T t T t( ) ( ) ( )HCSδ δ=∼
, we obtain T

t

d

d HCSδ νψ=∼ ∼ , with

t

T t

( )

( )
cot . (18)

c c
HCS

HCS

HCS

⎛
⎝⎜

⎞
⎠⎟ψ

ψ
π ν

ν
π ν

ν
= = −∼

Hence, the granular temperature follows

( )T t T t
L

t L( ) ( ) 1
1

. (19)HCS HCS
2⎡

⎣⎢
⎤
⎦⎥ψ ν= + +∼ −

which is valid for not very long times (tnot scalingwith L). There is a critical dissipation value 4 2c
2ν ν π= =ψ

where HCSψ∼ changes sign, and this determines a change of the time-derivative of Tδ∼
. Thus, atfinite (large) values

of L, the temperature decays faster or slower than theHaff law if ν ν< ψ or ν ν> ψ , respectively. Infigure 4, we
compare the predictedHaff lawfinite size effect with the simulation results, obtaining excellent agreement.

6. Summary

In conclusion, we have discussed the rigorous hydrodynamic limit of a latticemodel for granular fluidswith
momentum conservation and energy dissipation.Macroscopic equations reproduce the realistic evolution of
the velocity shearmode, which is diffusive, as well as that of the temperature field, which includes heat diffusion,
inelastic dissipation and viscous heating. A crucial phenomenon of inelasticfluids, that is, the shear instability of
the homogeneous cooling state, is recovered.

Themodel allows us to derive the evolution of L1∼ spatial correlations, which present non-trivial long-
range extension due tomomentum conservation and alter the temperature decay in an observable way. This
opens new interesting paths of investigation, such as trying to relate the deviation from theHaff law found here
with the renormalization of the cooling rate found in systems of smoothHSnear the shear instability [23]. The

Figure 3.AmplitudeA of the rescaled correlation function defined in equation (17) as a function of the dissipation rate ν, both for
Maxwellmolecules (MM) and hard spheres (HS). Trajectories start from a homogeneousmesoscopic velocity profile u x( , 0) 0≡ .
The theoretical prediction of equation (17) is also shown (line).

4
The delta function is needed to include the case of the autocorrelation vi

2〈 〉, sinceD(0) corresponds to v vi i 1〈 〉+ ; see the paragraph above
equation (15).
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appearance of long-range correlations under non-equilibrium conditions for conserved fields is a featurewell
expected on general grounds [5, 6], but rarely derived in full analytical detail.

Finally, we stress the importance of considering finite size effects in granular systems, since large sizes are
rarely realized in experiments. In addition, theHCS is unstable for large L, and therefore finite size corrections
cannot be disregarded by considering an arbitrarily large system. These facts, togetherwith the scarcity of studies
aboutfinite size effects in granularmatter,makes it worthwhile to further investigate this point in the near
future.
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AppendixA.Details for the derivation of the hydrodynamic equations

Averagefields (over initial conditions and noise realizations) are defined as u vl p l p, ,≡ 〈 〉, E vl p l p, ,
2≡ 〈 〉 and

T E ul p l p l p, , ,
2≡ − . Themicroscopic equations for the evolution of averages at time p at site l are obtained by

averaging equations (3) and (4) of themain text, obtaining

u u j j , (20)l p l p l p l p, 1 , , 1,− = − + 〈 〉+ −

E E J J d . (21)l p l p l p l p l p, 1 , , 1, ,− = − + 〈 〉 + 〈 〉+ −

Averages of currents and dissipation can be computed assuming the local equilibrium approximation (LEA),
which is explicitly stated as

( )
( )

P v v p
T T

, ;
1

2 2
e . (22)l l

l p l p

v u

T
2 1

, 1,

( )

2

vl ul p

Tl p

l l p

l p

,
2

2 ,

1 1,
2

1,

π π
=+

+

− −
−− + +

+

In theMaxwellmolecules case ( 0β = ), where one has L1y l,p
δ〈 〉 = , computations using the LEA give5

j
L

u u a
1

2
( ), (23 )l p l p l p, , 1,

α〈 〉 = + − +

( )J
L

T T u u b
1

2
, (23 )l p l p l p l p l p, , 1, ,

2
1,

2α〈 〉 = + − + −+ +

Figure 4.Rescaled temperature Tδ∼
as a function of time, for 10, 20, , 70ν = … (frombottom to top). Numerical values (circles) are

plotted together with linear fits (lines)made on the second half of the trajectory. In the inset, we show the comparison between the
fitted slopes in themain panel (points) and the theoretical ones from equation (19) (blue line), as a function of ν. The horizontal black
line at 0HCSψ =∼ shows the transition at 2 2ν π=ψ .

5
Note that, in theMMcase, for obtaining the averages in equation (23a) the LEA is only used towrite that v v u ul p l p l p l p, 1, , 1,〈 〉 =± ± , that is, we

assume that velocities at adjacent sites are uncorrelated. This hypothesis is somehow similar to themolecular chaos assumptionwhenwriting
the Boltzmann equation for a low-density fluid.
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+
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+

+
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The hydrodynamic limit consists of a change of spatial and time scales, from (l,p) to (x,t), related by size-
dependent factors:

x l L t p L, . (24)3= =

This implies for a generic function fl p,

f f
L x

f x t
L

1
( , )

1
, (25)l p l p1, , 2

⎜ ⎟⎛
⎝

⎞
⎠− = ∂

∂
++

f f
L t

f x t
L

1
( , )

1
, (26)l p l p, 1 , 3 6

⎜ ⎟⎛
⎝

⎞
⎠− = ∂

∂
++

which are introduced in equations (20) and (21) to get the final continuous equations in (x, t). Each discrete
spatial derivative introduces a L 1− factor in theHL. Then, the difference between the current terms in the balance
equations is of the order of L 3− , because the average currents jl p,〈 〉 and Jl p,〈 〉 are of the order of L 2− . Those terms,

therefore, perfectly balance the L1 3 dominant scaling on the left-hand side, i.e. the time-derivative. Since dl p,〈 〉
is of the order of L(1 )2α− , tomatch the scaling L1 3 of the other terms, we define the cooling rate to be

L(1 )2 2ν α= − , which is assumed to be order 1when the limit is taken. This choice automatically implies that
when L increases one has thatα approaches unity, a further reason to expect the validity of the LEA.

By retaining only the highest order terms in the equations, we get expression (7) of themain text. It is
interesting to note that our expansion in terms of L 1− is similar in spirit to theChapman–Enskog expansion up
toNavier–Stokes order, sincewe are keeping up to terms of the second order in the gradients (of the order of k2,
with k being thewave vector, in Fourier space). From a purelymathematical point of view, (7) becomes exact in
the limit L → ∞, but L(1 )2 2ν α= − of the order of unity, as stated in the previous paragraph. Interestingly, the
dissipation field dl p, in equation (23c) admits an expansion in even powers of the gradients, as is also the case of
granularfluids [37, 38].However, in the above limit, thefirst terms in dl p, including the gradients are of the
order of L 2− as compared to the contribution Tν− at theNavier–Stokes order, that is, theywould only be
considered at the so-called Burnett order.

From a physical standpoint, equation (7) is approximately validwhenever the terms neglected uponwriting
it are negligible against the ones we have kept. Since the correlations v vi i 1〈 〉± are expected to be of the order of L 1−

as compared to the granular temperature6, wemust impose that L 1≫ and also t L≪ . On the other hand, the
termproportional to the correlations in the evolution equation for the granular temperature is therefore of the
order of L(1 )2 1α− − , whichmust be negligible against the second spatial derivative terms, of the order of L 2− .
Then, L(1 ) 12α− ≪ must be further imposedwhen the correlations are neglected in equation (7). This
condition, although less restrictive than L1 ( )2 2α− = − , also reinforces the validity of the LEA.On the other
hand, when the correlations are fully taken into account, as is the case of equations (15) and (16) of themain
paper, the value of α is not restricted since the only assumption forwriting them is that of homogeneity.

Appendix B. Computation of the correlations of the hydrodynamic noise

Noises with respect to averages appear in the currents j jl p l p l p, , ,ξ= +∼
, J Jl p l p l p, , ,η= +∼

, and in the dissipation

d dl p l p l p, , ,θ= +∼
, with noises l p,ξ , l p,η and l p,θ defined to have zero average. The idea is that each term x ismade of

a x∼ part which is an average over the fast noise (that is, the collisions, which are counted by the fast stochastic
variable yl p, ), but at fixed vl p, whose evolution is assumed to be slower than noise.

To obtain the correlations of noise, we exploit a series of conditions. Explicit calculations are discussed here
for the case of themomentum current noise l p,ξ . It is clear that the definition j L(1 ) 2l p l p, ,α= + Δ∼

corresponds to the above prescription for the noise. First, it is straightforward that 0l p l p, ,ξ ξ〈 〉 =′ ′ for p p≠ ′,
because yp and y p′ are independent randomnumbers. Second, we take into account that

L,y l y l l l y l l l, , , , ,p p p
δ δ δ δ δ〈 〉 = 〈 〉 =′ ′ ′ and the fact that all the other contributions are of the order of L 2− . Thus, for

p p= ′wehave L O L(1 ) 4 ( )l p l p l p l l, ,
2

,
2

,
2ξ ξ α δ〈 〉 = + 〈Δ 〉 +′ ′

− . At this point, the quasi-elasticity of the

microscopic dynamicsmakes it possible to (i) substitute (1 ) 2α+ by 1 and (ii) calculate l p,
2〈Δ 〉by using the

LEA, to obtain

6
For example, in the elastic case, the correlations v vi i k〈 〉+ donot depend on the distance k in equilibrium, and therefore

v v T L( 1)i i k
1〈 〉 = − −+

− , k 0∀ ≠ . See section 5 formore details.
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L
T

1
2 . (27)l p l p l p l l p p, , , , ,ξ ξ δ δ〈 〉 ∼′ ′ ′ ′

In the large size system, jl p, scales as L 2− (see [32]). Therefore, themesoscopic noise of themomentum current is

defined as x t L( , ) limL l p
2

,ξ ξ= →∞ , and j x t j x t x t( , ) ( , ) ( , )ξ= +∼
, inwhich, again, j x t L j( , ) limL l p

2
,=∼ ∼

→∞ .
Going to the continuous limit, remembering equation (24), and taking into account that x x x( )l l,δ δΔ ∼ − ′′
and t t t( )p p,δ δΔ ∼ − ′′ we get the noise amplitude of the velocity current in themain text. Identical
considerations lead to the amplitude for the energy current noise. For the fluctuations of dissipation, the
dissipation term is split again as d d ,l p l p l p, , ,θ= +∼

with d dl p l p, ,〈 〉 = 〈 〉∼
.We know from the dissipation current

definition that 0l p l p, ,θ θ〈 〉 =′ ′ for p p= ′.Making use of the LEA and in the large size system dl p, scales as L 3− and
it is expected that the noise should have the same scaling. Going to the continuous limit and taking in account
equations (24) and (27), the result in themain text is recovered.

The cross correlations between different noises are straightforwardly obtained, along similar lines, with the
result

x t x t x t x t
T x t u x t

L
x t x t x t x t

x t x t x t x t

( , ) ( , ) ( , ) ( , )
4 ( , ) ( , )

,

( , ) ( , ) ( , ) ( , ) 0,

( , ) ( , ) ( , ) ( , ) 0. (28)

ξ η η ξ

ξ θ θ ξ
η θ θ η

〈 〉 = 〈 〉 =

〈 〉 = 〈 〉 =
〈 〉 = 〈 〉 =

AppendixC.Numerical comparison for the amplitude of hydrodynamic noises

A comparison for the amplitudes of noise for the velocity and energy currents is shown infigureC1 . A casewith
theMM interaction ( 0β = ) is considered. The simulations are performedwith periodic boundary conditions,
therefore without energy injection, and startingwith a non-homogeneous initial condition. The initial
mesoscopic velocity profile and homogeneous granular temperature are u x u x( , 0) sin(2 )0 π= and
T x t T( , ) 0≡ , respectively, with u T 10 0= = .
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