A Typed Repository for OpenDLib

Leonardo Candela Donatella Castelli Paolo Manghi Pasquale Pagano
Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche
Area della Ricerca CNR di Pisa
Via G. Moruzzi, 1 - 56124 PISA - Italy
{L.Candela|D.Castelli|P.Manghi|P.Pagano}@isti.cnr.it

May 4, 2006

Abstract

In this paper we advocate the benefits of introducing the notion of typing into Digital
Library (DL) Repository Services. The OpenDLib Typed Repository Service allows DL
designers to define typed repository sets, according to a type language T-DoMDL. Here
a set becomes a container of digital objects sharing the same type-defined structure, i.e.
properties, behaviors, and constraints. T-DoMDL types model a wide range of abstractions
typically perceived in the Digital Library world, such as aggregation of digital objects,
relations between digital objects, versioning of digital objects, and others.

The immediate advantage is that DL designers can construct repository sets tailored to
their application domains. Secondly, DL developers, while implementing software compo-
nents handling DL objects, can count on data consistency and static type checking of their
code w.r.t. the set types. Finally, objects conforming to a given type can be physically
handled in order to optimize both access and disk space, e.g. videos can be stored in a
datastream access fashion.

)

ISTITUTO DI SCIENZA E TECNOLOGIE
DELLINFORMAZIONE “A. FAEDO"

L. Candela, D. Castelli, P. Manghi, and P. Pagano 2

Contents
1 Introduction and Motivations 3
1.1 Related Work e e e 4
2 T-DoMDL 5
2.1 Storage Layer e 5
2.2 Content Layer e 7
2.2.1 Manifestation Zg (MR) o L 8
2.2.2 View IR (VR) 9
2.2.3 Aggregation Tp (AR) .« - v« v o i oo e 9
224 Structure Zg (SR) -« v v d e 9
225 Relation ZTr (RR) -« « o v v v v v o e e e 10
2.2.6 Collection Zr (CR) -« « - v v v v v i i e 10
22.7 BEdition Tr (ER) - -« v i oo e 11

3 Conclusions and future issues 11

L. Candela, D. Castelli, P. Manghi, and P. Pagano 3

1 Introduction and Motivations

The process of realization and usage of a Digital Library (DL) identifies three important roles:
DL users, requesting a DL specific to their application domain, DL designers, designing the
DL according to the DL user requirements, and DL developers, implementing the project of DL
designers relying on the most appropriate DL System technology.

DL users perceive a DL as a set of Functionality (Fpyr) operating over the digital objects
of an Information Space (Zpr). At this level of abstraction, digital objects represent entities of
the DL users application domain; for example, conference proceedings, i.e. collections of article
objects. The structure of an Zpy, is typically determined by DL designers, after analisying the DL
users domain, in terms of high-level modeling primitives, e.g. a combination of classes of objects,
each class describing domain-specific structure, namely properties, constraints, and behavior, of
the objects it contains.

DL designers main task is the definition of an appropriate structure for the Zpy, along with
the specification of Fpr. Next, we exemplify this process relying on the following example:

DL application domain (DL users) Assume the scientists of the European Space
Agency (ESA) work on an Earth observation project, aimed at observing and mea-
suring environmental modifications of some planet sites. To this aim, scientists need
to store a chronological history of site observations, each consisting of a satellite avi
movie and sensor-gathered data in txt format. Given a site, the time of its next
observation is established by elaborating the sensor-data of the last site observation.
Scientists need to organize observations into site investigations and must be able to
access the history of the observations relative to a site.

Ipr and Fpy, (DL designers) The structure of an Zpy, for a DL supporting such in-
vestigation may include a class of investigation objects, each representing the history
of observations relative to a planet site, and a class of observation objects, each rep-
resenting satellite observations, i.e. pairs of an avi file and txt file. The association
between an investigation object and one of its observation objects is characterized by
a version number, which establishes the position of the former in the history of site
observations. A minimal Fpz, would feature an ingest interface, to handle investiga-
tion and observation objects, and a search interface, to retrieve observations by site or
by version number through an investigation. Inserting an observation object requires
uploading the two files and specifying both the associated investigation object and
its version number.

DL developers typically implement DL’s Zp;, and Fpy, as software components by extending
and/or customizing the functionality supported by a DL Repository Service (R). An R maintains
a Repository Information Space (Ir), i.e. a storage unit for digital objects, and provides the
primitives for storing, accessing, and searching digital objects into the Zr [7] [4] [2]. Intuitively,
DL developers would implement their Fpy, in terms of R primitives and represent objects in Zpy,
with persistent objects in Zx. Unfortunately, differently from Zpy’s, Zr’s cannot be partitioned
into groups of objects that share the same structure, e.g. classes. Typically, an Zr is a flat
space of digital objects, all structured according to the Digital Object Model (DOM) of the
R. DOMs describe objects as general purpose storage units, whose structure and relationships
with other objects can be flexibly tailored to describe “any” possible DL high-level entity. Due
to this modeling “misalignment”, Zp;’s and Fpr can hardly be “directly interpreted”, thus
implemented, in terms of Zr’s objects and primitives.

As a consequence, DL developers “emulate” Zpy abstractions outside of Zg boundaries, by
“embedding” high-level modeling primitives into the engineering of components, and relying on

L. Candela, D. Castelli, P. Manghi, and P. Pagano 4

Ir only for storage issues. Specifically, components will allocate and manage a number of local
data structures in order to emulate the notion of classes, objects conforming to a class, and
relationships between objects:

DL components (DL developers using traditional R) The ESA DL user in-
terface (UI) component would offer the scientists a tool to manage an Zp-based
information space. To this aim, the Ul component would rely on an R platform to
store and retrieve digital objects, and on top of this: () implement investigations
and observations classes as independent containers of objects; (#) support the notion
of objects conforming to such classes (e.g. by implementing versioning of observation
objects w.r.t. investigation objects), by performing structural controls at object in-
sertion/retrieval time (e.g. uploading should be allowed only for avi and txt files)
and implementing class methods in terms of Zx primitives; and (44) implement the
relationship between investigation and observation objects.

The problem with such scenario is that the Zx alone is “unaware” of its “real” content. Zpy,
structure is not stored along with the corresponding digital objects, but is instead encoded into
the components together with its relationship with the underlying 7. Accordingly, components
are hard to develop, maintain, and integrate with others as their implementation is inspired by
a logical Tpr, while only Zx primitives are visible to them. For example, no automatic tool
prevents Zpy, structural programming errors, thereby leaving data consistency up to developers
skills and precision: components handling objects of the same Zpy, class may mistakingly provide
diverse interpretation of the Zpy, structure into Zg and compromise Zpy, data consistency.

In this work we propose a new kind of Repository Service, which addresses all problems
listed above. Based on the experience of developing DLs serving different application areas,
the OpenDLib project [3] is experimenting the realization of a repository service R; that can
be configured by DL developers to support the most appropriate objects and primitives for
components implementation. Such R contains a set of Zr each containing a different type of
objects. The type of an Zr, defined with the type language T-DoMDL [1][5], statically determines
the structure, i.e. type-specific and user-specified properties and primitives, of the objects that
will be contained into Z5.

R: can define an information space tailored to the given DL, supporting the abstractions
required by Zpr. It therefore guarantees data consistency w.r.t. the application domain and
facilitates component development and maintenance. Specifically, R; can support all the ad-
vantages of types: (i) static error detection: types define object structure and operators, hence
can be used to prevent components programming errors; (i) abstraction: types organize the
information space into interacting modules, i.e. Zg’s, thereby disciplining programming; (74)
documentation: types make component code easier to read; (iv) data safety: types guarantee
data consistency, since all components can interact with an Zx’s only through the same type-
specific behaviors; (v) efficiency: type information can be exploited to optimize object storage
units, in terms of disk space and access time.

1.1 Related Work

To our knowledge, only Saidis et Al.[6] addressed typing for DLs. In their approach they intro-
duced the notion of prototypes. Informally, prototypes are user-configurable components which
virtualize the notion of class of objects. They reside on top of an Zr and extend it in order to
provide high-level class primitives to DL components developers.

L. Candela, D. Castelli, P. Manghi, and P. Pagano 5

2 T-DoMDL

T-DoMDL type language offers an exhaustive list of type abstractions, identified as common
Ipy classes in the field of DL design: manifestation, aggregation, relation, version, and others.
For example, all objects of an Tr Ris of type version have the property list of versions, where
each version in the list is identified by a version number and features a user-defined label and
an object reference. Objects in Ris have primitives for inserting/deleting versions into/from the
list, getting the last version, and others; and share the behaviors, if any, declared in Ris by the
DL designer.

In OpenDLib, DL developers implement the structure of a given Zpy, in terms of one or more
types of T-DoMDL, then issue a request to the R; for the instantiation of the corresponding
IR’s, i.e. a list of domain specific typed-sets. For the ESA DL, the designer may consider the
following types:

DL components (DL developers using R;) MovieMaps and Measurements, both
of type manifestation with format avi and txt respectively, Observations of type
aggregation referring to two objects in MovieMaps and Measurements, and Investi-
gations of type wversion referring to objects in Observations. Such R can thus store
sets of typed objects and enable their management only through type-specific primi-
tives. As a consequence, the R guarantees data consistency and facilitates component
development and maintenance.

As mentioned above, typed Zr’s can enforce the optimization of object storage facilities.
For example, from the Zr MovieMaps of type manifestation, which defines precise avi format
constraints, the R; could configure a storage unit (object store) that optimizes disk space, by
adopting avi compression techniques, and access performance, by providing streaming-based
primitives. Furthermore, type information could be exploited to conveniently assign storage
units to typed Zgr’s. Specifically, different Zr’s may share the same storage unit or different
storage units could be used to store the objects of the same Z5.

Indeed, as in DBMS systems, R; supports physical independence between the Content Layer,
which handles digital objects organized into typed Zr’s, and the Storage Layer, which handles
physical objects into storage units. Physical objects are the minimal units of content, i.e. a file
or, as we shall see, an action generating a file, characterized by a specific datastream format and
a metadata structure. Digital objects represent instead a higher notion of modeling, allowing
for viewing physical objects through manifestation objects and introducing structure and behav-
ior, typical of the DL designer point of view, into the otherwise naive DOM supported by the
physical layer. DL developers should therefore design the DL by both defining the types of Zgr’s
interpreting their application domain Zpy and defining the storage units required to preserve
content, i.e. physical objects, into the R;. The two layers are independent and linked through
a language which binds manifestation types, i.e. the content logical layer ground types, to the
storage units they refer to.

In the following we shall introduce a basic physical layer model, where a manifestation type
can refer to only one storage unit, but the same storage unit can give support to different
manifestation types.

2.1 Storage Layer

The Storage Layer of an R; is composed by a metadata store, i.e. a container of metadata
schemas and mappings from schema to schema, and a set of content stores, i.e. containers of
physical objects.

L. Candela, D. Castelli, P. Manghi, and P. Pagano 6

Metadata store. The metadata store (MD) is a set of resource descriptors. A resource de-
scriptor is composed by a default schema, namely an XML Schema describing the structure of the
metadata, and a set of mappings from the default schema to other metadata schemas. Mappings
are identified by a transformation function and a target XML schema, with which typing and
validating a mapping.

MD ={rsy1,...,rs;}

where:
rs; = (ds, maps);
maps = {(tf1:ds — schemay),...,(tfn:ds — schemay)}

and tf; maps each XML path in ds onto an XML path of schemas,.

Stores. A store is a container of physical objects, i.e. pairs of one data resource and one
metadata record describing the resource according to one resource descriptor in the MD.! The
simplest expression of a data resource is a document file, or a URI reference to it. The most
complex expression of data resources can be actions that generate files from the elaboration of
other resources, e.g. relational databases, DLs, GRID content, etc.

A store is a container of physical objects described as a tuple name(k, BF, RD), where:

e name is the unique name of the store;

e L is the kind: a kind expresses the category of data resources handled by the store, i.e. the
file formats allowed for storage. Available kinds are; video, audio, textual, image, living,
or object (all possible formats). For example, the kind textual identifies data resources
whose issue is human reading and/or editing, hence files with formats such as PDF, PS,
DOC, etc. Files formatted MP3 will not be contained into the store. Again, the kind living
identifies data resources that can be derived from the elaboration of external resources.
Typically such stores define one action? and store data resource defines the parameters for
that action. Retrieving a data resource involves the firing of the action and the generation
of a file which must respect object kind constraints.

e BF is a set of base file formats: a store may limit the file formats it handles to a given
subset of all formats implied by its kind k;

e RD is the resource descriptor: the resource descriptor in MD adopted by name.

Typing of stores preserves data consistency by preventing storage of objects that do not
conform to BF and RD. Furthermore, all stores and all physical objects do respond to the
following sets of primitives:

name.query(Q) ={o| o€ SAQ(0)}

where @) is a query over the objects in S. @ may for example be a predicate involving the
metadata fields of name.?
As to the physical objects, given a store name, then Yo € name:

e o.resource € f, where f € BF and BF C Format(k);

LWith data resource we mean any human or machine generated content that can be directly interpreted by a
human. In other words, digital content that is not usually stored into relational database and the similar.

2An URI reference to on-line executable code.

3Note that, since both the structure of the metadata records and the structure of Q are known, techniques to
check correctness of queries could be adopted.

L. Candela, D. Castelli, P. Manghi, and P. Pagano 7

e o.mdrecord € RD.ds, i.e. o.mdrecord is the metadata record of o that must conform to
the default schema ds of RD.

Finally, given mdr = o.mdrecord, fields in mdr can be dereferenced or assigned values as follows:

mdr.ly ...l (dereference)
mdr.ly ...l =v (assignment)

where [;’s are XML elements, [; ...[;’s are valid paths into RD.ds, and [is a leaf element.

The breakdown of stores into different data resource kinds and base formats allows for the
definition and usage of specific storage techniques and access algorithms. For example, video
stores may support streaming or image stores may adopt image specific compression algorithms.
Furthermore, DL designers may better organize their storage layer, thereby speeding up search
algorithms and giving low level support for object categorization (independent stores may contain
domain distinct resources but feature the same kind).

Within the storage layer, DL developers interact with an R; composed by a set of stores.
Developers use the stores to (i) insert/access physical objects conforming to a type and to (i%)
query the store according to the metadata records or the data resource content. However, they
could hardly directly implement their Zp; and Fpp in terms of stores and store primitives.
Indeed, most of the DLs will likely require:

e querying more than one store at the same time;
e creating complex objects, obtained by the combination of physical objects;

e defining restricted views over the stores, in order to provide different users or components
with different interpretations of the stores;

e handling of DL functionality such as annotations, versions, user defined relations among
different objects;

These points will be addressed by the abstractions introduced into the Content Layer.

2.2 Content Layer

Within the Content Layer, the R is constituted by a list of named and typed Tr’s, here intended
as containers of objects with the same structure and behavior. Zr’s are abstractions over the
storage layer and allow for the definition of complex digital objects. Specifically, an T is a
container of objects described as a tuple name(t, [F,OF, TFF, RD, B), where:

e name is the unique name of the Zg;

e ¢ is the type of name;

IF and OF are the input and output formats of name;

TFF;r (Transcoding Function Formats) is the set of formats entailed by the application
of transcoding functions (e.g. ps2pdf) to the IF formats;

RD is the resource descriptor in MD adopted by name;

B is a set {b1,...,b;} of behaviors, i.e. functions shared by all objects in name (in the
style of class public methods, b; : (Object x Val) — f, f € Format.

L. Candela, D. Castelli, P. Manghi, and P. Pagano 8

Independently from the type ¢ of the Zg, all digital objects respond to a common set of
primitives. Given the Zr Ris, then Vo € Ris:

(i) o.manifestation(f) € f, f € OF or f € TFFp
(i4) o.mdrecord € RD.ds

(#it) o.metadata(RD.maps.tf) € RD.maps.schema
(
(

&0

<

i) o.pars € p(Val) (set of actual parameters for behavior calls)

v 0.b(p.pars) (firing of an action, which returns a data resource)

~

As for physical objects, the metadata record fields of a digital object can be assigned or deref-
erenced. Digital objects can instead encode metadata records into one of the target schemas
identified by a mapping (éi4). Similarly, while physical objects can return only expose the data
resource format they have been instantiated with, digital objects can also expose the data re-
source through one of the formats enabled by TFFrp (i).

Finally, an Zr Ris can respond to methods such as:

Ris.query(Q) = {o| o € name A Q(0)}

T-DoMDL introduces a minimal set of types ¢, which we believe are essential for the design
and development of DLs or, more generally, Content Management Systems:

T == Mg(S) (mani festationtype)
Vr(T) (viewtype)
Er(T) (editiontype)
Ar(Th, ..., Ty) (aggregationtype)
Sr(ly T, ..., 0, T)) (structuretype)
Rr(Ty, Ts) (relationtype)
Cr(Q) (collectiontype)

where S is a store and @ is a query. In the following we introduce types, by motivating their
adoption, and by listing their peculiar properties and primitives.

2.2.1 Manifestation 7 (Mg)

Stores handle physical objects, hence pairs data resource/metadata record. In particular, they
ensure storage of data resources conforming to a given BF and metadata records conforming
to a given RD. Manifestation objects encapsulate physical objects of a given store by adding
behaviors and ruling out, depending on the intended usage, part of the resource descriptor and
of the base formats inherited by the store. In particular, there is a one-to-one correspondence
between physical objects and relative manifestation objects. Accordingly, if one of two Mg’s
referring to the same store removes or adds digital objects, the action will indirectly affect the
other Mz . The definition of an Mz Ris is of the form:

Ris(IF,OF, TFF;p,RD', B) = Mz(S(t,k, BF, RD))
where
(i) IFCBF
(ii) OF CIF
(#i1) RD' Cy RD.
where RD’ C; RD means that RD’ is a tree whose paths are also in RD, i.e. the metadata
structure described by RD’ is a subset of the one described by RD.

L. Candela, D. Castelli, P. Manghi, and P. Pagano 9

2.2.2 View Iz (V)

VRr’s objects “encapsulate” objects of other Zr’s. Vg encapsulation can hide parts of the meta-
data structure and rule out or add behaviors to or from the encapsulated objects. The definition
of an Vi Ris is of the form:

Ris(IF,OF, TFF;p,RD, B) = Vr(Ris'(IF',OF', TFF;p, RD', B"))

(i) IFCOF'
(i) OF CIF
(iii) RD Cy RD'
(iv) there is no dependency between B and B’ or between TFF;p and TFFyp

Furthermore, the following property holds: o € Ris < o € Ris’. Since different Vz’s can be
defined over the same Tx, modification over one Vz will affect the content of the others.

2.2.3 Aggregation Zr (Ag)
Ar’s objects aggregate objects from different Zr’s. The definition of an Az Ris is of the form:
Ris(IF,OF, TFFir,RD,B) = Agr(Risy(IF\,OF\,TFF;r,RD1,B1),..., Risx(IF, OF,, TFFir, RDy, By))
Where
(1) IF = Object

(1) OF = Object
(iii) RD € MD

Furthermore, Ag’s define the following operators over objects.
e o.set € p(Object) returns the set of objects aggregated by o;
e o.add(0o’) additions the object o' to the set of objects aggregated by o;

e o.del(0') removes o’ from the set of objects aggregated by o.

2.2.4 Structure I (Sr)
Sr’s objects link objects of other stores, naming them in the style of relational database records.
The definition of an Sk Ris is of the form:

Ris(IF,OF, TFFrp,RD,B) = Sg(l1 : Ris1,...,l; : Risg)

Where
(i) IF = Object
(1) OF = Object
(iii) RD € MD

Furthermore, Si’s define the following operators over objects; given o € Ris, then o.l; € Ris;.

L. Candela, D. Castelli, P. Manghi, and P. Pagano 10

2.2.5 Relation Zr (Rz)

Rr’s contain objects representing a relationship between two objects from different Zx’s. Such
IRr’s enable the definition of user defined associations between objects not related through par-
ticular object types, such as Ax or Sg objects. The definition of an Rz Ris is of the form:

RiS(IF, OF, TFF]F, RD, B) = 'R/R(R’L'Sl7 RiSQ)

Where
(1) IF = Object
(i4) OF = Object
(isi) RD € MD
Furthermore, Ry’s define the following operators over objects; given o € Ris, o.fst €
Risy,0.snd € Risy return the first and the second object associated by o. Finally, an Rz
responds to the primitives:

e Ris(rel,0) € p(Object) returns the set of objects associated to o by objects in Ris, that is
the set

R risy = {0 30" € Ris: (o'.fst =0N0 .snd =0)V (o.fst =0 A0 .snd = o).
Note that R is either contained in Ris; or in Riss.

e Ris(car,0) € X returns the number of objects related to o by the relation Ris.

2.2.6 Collection 7Tz (Cr)

Cr’s contain objects resulting from a query Q. A query can be factored out as a set of k predicate
sub-queries @;, each relative to an index over a Zr Ris;. The object sets resulting from the @Q;’s
are then combined according to the Boolean operators used to join the predicates in Q.* involved

in Q.
Ris(IF,OF, TFFip,RD,B) =Cr(Q)

Accessing objects in Ris requires a projection operation over one of the Ris;. Similarly,
querying Ris should focus on one Zg,

Ris.query(Q', Ris;) = {0] 0 € Ris; A Q(0) A Q'(0)}

Similarly, ingest operators will be overloaded with projection operators, but also query con-
straints, to guarantee type checking according to both structure and value constraints of Ris.
For example, if a Cr Ris is obtained from a query of the form

Q = SELECT FROM Ris’
WHERE dc:title LIKE "computer science"

where
[Q]l={o| 0 € Ris' Ao € Index(RD,dc : title, LIK E, “computerscience’)}

ingestion into Ris can only accept objects with the structure of Ris’ and the metadata field dc:title
set to a value that contains the string "computer science".

4The number of Zr (s) is not necessarily equal to the number of sub-queries (k); this is because an index
serving a query may refer to more than one Zr

L. Candela, D. Castelli, P. Manghi, and P. Pagano 11

2.2.7 Edition IR (573)

Er’s contain objects handling different versions of the same digital object. We use such objects whenever
versioning is not part of the semantics of individual objects, but of their usage; that is, versioning is not
an object property, but is instead a property of another object representing the association “versioning”
among a set of objects. For example, each version of a technical report is a document and can be
interesting by itself. However, if we were also interested in knowing how many versions of the same
technical report are available, then we would need a version object, which links the versions and keeps
the property of their versioning relationship.

Ris(IF,OF, TFFir, RD,B) = Ex (Ris1, ..., Risk)

Where
(i) IF = Object
(i) ~ OF = Object
(iii) RD € MD
Furthermore, Er’s define the following operators over objects. Given o € Ris:

e o.editions € (X x Object x N) returns the ordered list of versions of o, i.e. a list of triples of the
form < vn,o,l >, where vn is the version number, o is the object relative to the version, and [is
a user-defined label);

e o.length € Nat returns the number of versions of o;

e o.add(i,0',1): adds at position i of the version list of 0o a new object o’ with user defined label I;
all triples from position i to o.length are increased their system version number by one;

e o.del(i): removes the version with sequence number ¢; all triples from position i to o.length are
decreased their system version number by one.

As for array indexes, system version numbers are progressive integers starting from 0. The removal
or the addition of a new edition object to an object o, entails the update of all sequence numbers. User
version numbers are inserted by the user according to his/her needs and are not used by the Zr to
distinguish between different versions. A UNIQUE constraint could be enforced on the field, but it is not
set by default (i.e. different versions in o may have the same user version number).

3 Conclusions and future issues

In this work we presented the definition of R:, a typed repository service for OpenDLib. R stores ITr’s
of typed objects and enable their management only through type-specific primitives. As a consequence,
R: guarantees data consistency, facilitates component development and maintenance, and enables disk
space and access efficiency optimization.

As a further step of investigation, we shall target the issues regarding the automatic generation of
components from typed Zr’s. Indeed, since T-DoMDL types specify a precise semantics of the objects
they define, typical of DLs world, typed Zr’s can enforce the automatic generation of components to
handle objects of a given type. For example, from a Vz, the R may be able to automatically generate
an user interface for the management of the relative objects, which includes versioning management.
Indexes, as well as browsing components may also be generated for different Zr’s, depending on the
metadata they support. Of course, components generation from typed Zr’s may be mediated by an
interface generation language, allowing DL developers to refine the generation process and deliver com-
ponents fitting DL designers expectations.

References

[1] L. Candela, D. Castelli, P. Pagano, and M. Simi. From Heterogeneous Information Spaces to Vir-
tual Documents. In E. A. Fox, E. J. Neuhold, P. Premsmit, and V. Wuwongse, editors, Digital

Candela, D. Castelli, P. Manghi, and P. Pagano 12

Libraries: Implementing Strategies and Sharing Experiences, 8th International Conference on Asian
Digital Libraries, I[CADL 2005, Lecture Notes in Computer Science, pages 11-22, Bangkok, Thailand,
December 2005. Springer.

D. Castelli and P. Pagano. OpenDLib: A Digital Library Service System. In M. Agosti and C. Thanos,
editors, 6th Furopean Conference on Research and Advanced Technology for Digital Libraries, ECDL
2002, Lecture Notes in Computer Science, pages 292-308, Rome, Italy, September 2002. Springer-
Verlag.

D. Castelli and P. Pagano. A System for Building Expandable Digital Libraries. In ACM/IEEE 2003
Joint Conference on Digital Libraries (JCDL 20083), pages 335-345. Springer-Verlag, 2003.

C. Lagoze, S. Payette, E. Shin, and C. Wilper. Fedora: An Architecture for Complex Objects and
their Relationships. Journal of Digital Libraries, Special Issue on Complexr Objects, 2005.

OpenDLib. A Digital Library Service System. http://www.opendlib.com/.

K. Saidis, G. Pyrounakis, and M. Nikolaidou. On the Effective Manipulation of Digital Objects: A
Prototype-Based Instantiation Approach. In Research and Advanced Technology for Digital Libraries:
9th Furopean Conference, ECDL 2005, Vienna, Austria, September 18-23, 2005. Proceedings, 2005.

R. Tansley, M. Bass, and M. Smith. DSpace as an Open Archival Information System: Current Status
and Future Directions. In T. Koch and I. Sglvberg, editors, Research and Advanced Technology for
Digital Libraries, 7th European Conference, ECDL 2003, Trondheim, Norway, August 17-22, 2003,
Proceedings, Lecture Notes in Computer Science, pages 446—460. Springer-Verlag, 2003.

