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The continuous demand for electronic devices operating at increasing current and
power levels, as well as at high temperatures and in harsh environments, has driven
research into wide-band gap (WBG) semiconductors over the last three decades. This is
because, due to their outstanding physical properties, WBG semiconductors can overcome
the physical and electrical limits imposed by the use of conventional silicon devices [1].
Among WBG materials, the 4H hexagonal polytype of silicon carbide (4H-SiC) is the most
promising for use in power electronics applications in the medium-to-high voltage range
(600–3000 V) [2,3]. However, to achieve optimized performances with these 4H-SiC devices,
a full understanding of the fundamental material properties, processing technologies, and
carrier transport mechanisms associated with this semiconductor material is required.
In this sense, there is still plenty of room for the progress of scientific and technological
research related to this material. On the one hand, an improvement to the performance of
existing power devices in terms of efficiency and reliability is a key aim; on the other hand,
the uses of 4H-SiC could be extended to new cutting-edge technologies, e.g., quantum
technologies and sensors.

This Special Issue, entitled “Silicon Carbide: Material Growth, Device Processing,
and Applications”, showcases a collection of papers on technological developments in
SiC-based devices, including ten original research articles and one review paper.

The topics addressed in the Special Issue can be categorized into three main themes:
(1) investigations into the fundamental characteristics of conventional 4H-SiC devices,
(2) suggestions of new approaches to developing improved devices, and (3) the use of SiC
devices in emerging technology fields, such as quantum technology applications.

Among the papers focusing on important aspects of conventional 4H-SiC-based de-
vices, methods for evaluating the reliability of the critical SiO2/SiC interface in planar
MOSFET devices are discussed in the determination of real stress effects under extreme
operational conditions [4], as well as in the assessment of the charge-to-breakdown in
thermal gate SiO2 [5]. The effects of the various scattering mechanisms on the channel
conduction are also investigated in 4H-SiC MOSFETs [6], whilethe performance of 4H-SiC
MOSFETS has been evaluated using various JFET and gate oxide process parameters [7].
The inhomogeneity in Schottky barrier diodes (Pt/4H-SiC and Cr/4H-SiC contacts) has also
been discussed according to the parallel-diode model and evaluated under the conditions
of a wide range of operational temperatures and biases [8].

A second group of papers focuses on the issues observed during standard approaches
to SiC material growth and characterization. Notably, the discoloration switching phe-
nomenon seen during a single crystal grown of 4H-SiC [9] is discussed, as well as the
direct anodic oxidation phenomenon observed on the SiC surface during conductive AFM
(C-AFM) measurements in an ambient atmosphere [10].

Regarding possible advancements in SiC devices via the proposal of innovative pro-
cessing solutions, a 2D material (bilayer epitaxial graphene) has been investigated and eval-
uated for the fabrication of new field-effect transistors on SiC [11], while a high-permittivity

Materials 2024, 17, 4571. https://doi.org/10.3390/ma17184571 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17184571
https://doi.org/10.3390/ma17184571
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-0765-8556
https://orcid.org/0000-0003-3270-0805
https://doi.org/10.3390/ma17184571
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17184571?type=check_update&version=1


Materials 2024, 17, 4571 2 of 2

dielectric Al2O3/SiO2 stack is proposed as a gate oxide for novel devices based on the cubic
polytype of SiC (3C-SiC) [12]. Additionally, new possible designs are presented for cell
topologies for 4H-SiC Planar Power MOSFETs for high-frequency power applications [13].

Finally, 4H-SiC has also been discussed as an emerging material in the photonics field.
A review paper dedicated to the silicon carbide on insulator stack (SiCOI) [14] provides
an interesting roadmap for further developments in the use of the SiCOI key structure in
quantum photonic integrated circuit applications.

Of course, due to the broadness of 4H-SiC technology, the present collection cannot
provide a comprehensive presentation of all the issues. However, we are confident that
fundamental properties and interesting approaches have been presented and discussed in
these papers.
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