

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	1	of	115	
	

HORIZON2020	FRAMEWORK	PROGRAMME	

TOPIC	EUK-03-2016	

“Federated	Cloud	Resource	Brokerage	for	Mobile	
Cloud	Services”	

D2.1	
State	of	the	art	and	Requirements	Analysis	

Project	acronym:	BASMATI	

Project	full	title:	Cloud	Brokerage	Across	Borders	for	Mobile	Users	and	Applications	

Contract	no.:	723131	

Workpackage:	 2	 Complete	Analysis,	Architecture,	Integration	
Editor:	 Netsanet	Haile	 SNU	
Author(s):	 Jörn	Altmann	

Ana	Juan	Ferrer		
Antonia	Schwichtenberg	
Baseem	Alathwari	
Azamat	Uzbekov		
Emanuele	Carlini	
Jamie	Marshall		
John	Violos		
Young-Woo	Jung		
Lara	López		
Patrizio	Dazzi		
Richard	Wacker	

SNU	
ATOS	
CAS	
SNU	
SNU	
CNR	
AMENSIK	
ICCS	
ETRI	
ATOS	
CNR	
CAS	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	2	of	115	
	

Enric	Pages	 ATOS	
Authorized	by	 Konstantinos	Tserpes	 ICCS	
Doc	Ref:	 D2.1	
Reviewer	 Konstantinos	Tserpes	

Patrizio	Dazzi	
Emanuele	Carlini	

ICCS	
CNR	
CNR	

Dissemination	Level	 Public	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	3	of	115	
	

Document History

Version		 Date	 Changes	 Author	/	Affiliation	
v.0.1	 03-08-2016	 Created	ToC	 Netsanet	Haile	/	SNU	
v.0.2	 05-10-2016	 Revised	ToC	 Netsanet	Haile	/	SNU	
v.0.3	 17-10-2016	 Topic	assignment	 Netsanet	Haile	/	SNU	
v.0.4	 10-11-2016	 First	Draft		 All	partners	
v.0.5	 20-11-2016	 First	version	 All	partners	
v.0.6	 23-05-2017	 Review	version	 All	partners	
v.0.7	 08-06-2017	 Final	version	 Netsanet	Haile	/	SNU	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	4	of	115	
	

Executive	Summary	
This	deliverable	examines	the	state-of-the-art	solutions,	both	focusing	on	the	scientific	literature	
and	 on	 the	 existing,	 cutting-edge,	 technologies	 that	 relate	 to	 the	 activities	 that	 will	 be	
conducted	 in	 BASMATI	 project.	 Along	 with	 the	 presentation	 and	 discussion	 of	 the	 existing	
approaches	and	solutions,	this	report	describes	possible	future	trends	and	presents	the	project	
requirement	analysis,	both	the	one	considering	the	use	cases	technical	requirements	as	well	as	
taking	 into	 account	 the	 technology	 insight	 coming	 both	 from	 linked	 research	 initiatives	 and	
interactions	with	innovation	experts.		

This	document	 is	essentially	aimed	at	a	 first	 snapshot	 resulting	 from	the	activity	aimed	at	 the	
identification	of	research	paths	and	potentially	useful	approaches.	The	idea	for	this	report	was	
to	 comprise	 a	 “live	 document”,	 continuously	 updated	 by	 the	 consortium	members.	 Changes	
were	 incorporated	 during	 the	 first	 year	 with	 the	 purpose	 to	 include	 new	 interesting	
technologies	and	solutions	that	were	proposed	and	released.	In	fact,	during	the	whole	course	of	
the	 project,	 the	 technologies	 and	 requirements	 related	 to	 BASMATI	 will	 continue	 being	
investigated	in	order	to	ensure	that	the	objectives	and	innovations	of	the	project	are	valid,	work	
is	 performed	 taking	 into	 account	 the	 latest	 state-of-the-art	 and	 developments	 fulfill	 the	
identified	goals	and	requirements.	However,	this	stable	version	of	the	document	will	serve	as	a	
guide	 for	 the	 baseline	 technologies	 and	 initial	 requirements	 upon	 which	 BASMATI	 builds.	 As	
such	the	report	comprises	a	central	document	that	drives	the	project	processes	and	it	is	directly	
linked	to	the	project	vision	implementation.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	1	of	115	
	

Table	of	Contents	
Executive Summary ... 4	

1	 Introduction .. 6	

1.1	 Relationship to other Deliverables ... 6	

1.2	 Outline of Deliverable .. 7	

2	 Mobile Cloud Technologies ... 8	

2.1	 Architecture and Technologies .. 8	

2.1.1	 Infrastructure-based Mobile Cloud .. 8	

2.1.2	 Ad-hoc Mobile Cloud .. 12	

2.2	 User Mobility Analysis and Modeling ... 12	

2.2.1	 Analysis of Mobility Data .. 13	

2.2.1.1	 GPS Data .. 13	

2.2.1.2	 Trajectory Data Mining .. 15	

2.2.1.3	 GSM data ... 16	

2.2.1.4	 Predictive models of human mobility .. 17	

2.2.1.5	 Mobility and events in social media .. 17	

2.2.1.6	 Indoor Mobility .. 18	

2.2.2	 Context Frameworks .. 20	

2.2.2.1	 AWARE ... 20	

2.2.2.2	 CTK – The Context Toolkit ... 21	

2.2.2.3	 JCAF – Java Context Awareness Framework ... 23	

2.2.2.4	 Hubiquitus .. 24	

2.2.3	 BASMATI User Mobility Analysis Requirements and Specification 24	

2.2.3.1	 Personal Data ... 25	

2.2.3.2	 Environmental Data ... 26	

2.2.3.3	 Real-time Trajectory Data .. 26	

2.2.3.4	 Statistical Data ... 26	

2.3	 Service Deployment: VM and Micro Services .. 26	

2.3.1	 ManageIQ .. 27	

2.3.2	 Scalr ... 27	

2.3.3	 Stratos .. 28	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	2	of	115	
	

2.3.4	 Project Jellyfish .. 29	

2.3.5	 CompatibleOne .. 30	

2.3.6	 BASMATI Service Deployment Requirements and Specifications 31	

2.4	 Service Monitoring .. 32	

2.4.1	 Federation Monitoring ... 32	

2.4.1.1	 Zabbix .. 32	

2.4.1.2	 RESERVOIR Federated Monitoring ... 33	

2.4.2	 Resource Monitoring ... 35	

2.4.3	 BASMATI Resource Monitoring Requirements and Specifications 37	

2.5	 Situational Knowledge Extractor ... 37	

2.5.1	 Data Acquisition and Refinement .. 38	

2.5.2	 Clustering, Classification, and Regression Predictions of the Resource Demands 38	

2.5.3	 Knowledge Extractor Data Management Requirements, Specifications and Further
Processes 39	

2.6	 Data Management .. 39	

2.6.1	 CoherentPaaS Component Modification ... 40	

2.6.2	 Logic and Data Separation ... 41	

2.6.3	 File System Support by BUDaMaF ... 41	

2.6.4	 Data Located on Mobile Devices ... 41	

2.6.5	 Raspberry Pi used for Bluetooth Beacons ... 42	

2.6.6	 Data Replication and Consistency Mechanism .. 42	

2.6.7	 Predictive Mechanism for Cost Efficiency .. 42	

2.6.8	 Data Workload Predictive Model .. 43	

2.6.9	 Cost Predictive Model .. 44	

2.6.10	 Self-training Error Prediction Mechanism ... 44	

2.6.11	 Privacy Protection in the Multi-cloud .. 45	

2.6.11.1	 Methods to Generally Anonymize Data .. 46	

2.6.11.2	 Challenges in BASMATI ... 46	

2.6.12	 BASMATI Data Management Requirements and Specifications 47	

3	 Cloud	Federation .. 48	

3.1	 Federation Technologies .. 48	

3.1.1	 Definition of Cloud Federation .. 48	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	3	of	115	
	

3.1.2	 Cloud Federation Benefits ... 48	

3.1.3	 Cloud Federation Implementation ... 49	

3.1.4	 Hybrid Cloud vs Federated Clouds .. 49	

3.1.5	 Examples of Federated Clouds .. 50	

3.1.5.1	 EGI ... 52	

3.1.5.2	 ONAPP .. 52	

3.1.5.3	 COMPATIBLEONE .. 52	

3.1.5.4	 EASICLOUDS ... 52	

3.1.5.5	 MICROSOFT ... 53	

3.1.5.6	 GOOGLE ... 53	

3.1.5.7	 AMAZON AWS .. 53	

3.1.5.8	 BEACON ... 53	

3.1.5.9	 SUNFISH ... 53	

3.1.6	 Analysis.. 53	

3.1.7	 BASMATI Federation Requirements and Specifications 54	

3.1.7.1	 Accounts, Costs, Billing and Identity .. 55	

3.1.7.2	 Application Modelling ... 55	

3.1.7.3	 Agreement Terms ... 56	

3.1.7.4	 Resource Placement ... 56	

3.1.7.5	 Resource Deployment .. 56	

3.1.7.6	 Resource Monitoring ... 56	

3.2	 Economic Models of Cloud Federation ... 56	

3.3	 BASMATI Federation Business Requirements ... 58	

3.4	 Federation Topologies ... 59	

3.4.1	 Centralized ... 59	

3.4.2	 Distributed .. 60	

3.5	 Interoperability within Federations .. 60	

3.5.1	 Interoperability and Portability .. 61	

3.5.2	 Cross-Cloud Interoperability Challenges ... 62	

3.5.3	 BASMATI Interoperability Requirements and Specifications 63	

4	 Service	Level	Agreements .. 64	

4.1	 Federation Level Agreements .. 64	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	4	of	115	
	

4.2	 Provider Level Agreements ... 65	

4.2.1	 WSLA - Web Service Level Agreements .. 66	

4.2.2	 WS-Agreement .. 66	

4.3	 Mobile SLA Manager .. 66	

4.4	 BASMATI SLA Management Requirements and Specifications 68	

5	 Brokerage .. 68	

5.1	 Optimization Factors for Service Placement ... 70	

5.1.1	 Application Characteristics .. 70	

5.1.1.1	 Mobile Application Types and Categories .. 70	

5.1.1.2	 Characteristics of Mobile Application ... 72	

5.1.2	 User Preferences and User Utility .. 73	

5.1.3	 BASMATI Optimization Requirements and Specifications 74	

5.1.3.1	 User context ... 76	

5.1.3.2	 Application analysis ... 76	

5.1.3.3	 Cost .. 77	

5.2	 Optimization Methods ... 78	

5.2.1	 Machine Learning Applications ... 78	

5.2.2	 Socio-Economic Models .. 80	

5.2.2.1	 The Commodity Market Model ... 80	

5.2.2.2	 The Auction Model .. 81	

5.2.2.3	 The Posted Price Model ... 81	

5.2.2.4	 The Bargaining Model ... 81	

5.2.2.5	 The Tendering/Contract-net Model ... 81	

5.2.2.6	 The Bid-Based Proportional Resource Sharing Model 82	

5.2.3	 Multi-Objective Optimization .. 82	

5.3	 Interaction with Adaptation Mechanisms .. 86	

6	 Requirements	Analysis .. 90	

6.1	 Use case 1: Mobile Virtual Desktop .. 90	

6.1.1	 User Requirements ... 91	

6.1.2	 System Requirements ... 91	

6.1.2.1	 Operational and Management Requirements ... 91	

6.1.2.2	 Server-Side Requirements ... 92	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	5	of	115	
	

6.1.3	 BASMATI Platform Requirements ... 93	

6.2	 Use Case 2: Large Events .. 94	

6.2.1	 User Requirements ... 95	

6.2.2	 System Requirements ... 95	

6.2.3	 BASMATI Platform Requirements ... 95	

6.3	 Use Case 3: TripBuilder ... 97	

6.3.1	 User Requirements ... 98	

6.3.2	 System Requirements ... 98	

6.3.3	 BASMATI Platform Requirements ... 99	

References .. 100	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	6	of	115	
	

1 Introduction	
Cloud	 Computing	 has	 transformed	 the	 IT	 by	 providing	 computing	 and	 storage	 as	 on-demand	
utility	 services	 according	 to	 the	 pay	 per	 use	model.	 Large	 IT	 behemoths	 provided	 their	 spare	
resources	for	renting	to	other	private	enterprises	and	individuals.	With	the	evolution	of	services	
and	applications	 that	can	be	brought	on	 the	cloud,	a	 single	cloud	solution	cannot	provide	 the	
heterogeneity	 and	 functionality	 required	 for	 many	 business	 solutions.	 Therefore,	 the	 initial	
concept	 of	 cloud	 computing	 has	 rapidly	 evolved	 into	multi-cloud	 environment,	which	 gathers	
together	multiple	and	heterogeneous	cloud	datacenters	and	service	providers.	

The	 earlier	 protagonists	 of	 today’s	 multi-cloud	 era	 are	 Cloud	 Federations.	 Cloud	 federations	
brought	 the	 cloud	 computing	 to	 the	 next	 level,	 realizing	 much	 more	 than	 inter-cloud	
interoperability,	 rather	 providing	 a	 unified	 view	 of	 a	 heterogeneous	 pool	 of	 resources	 while	
using	a	single	access	point	to	control	applications.	In	the	Cloud	Federation	model,	a	number	of	
cloud	 providers	 voluntary	 join	 their	 resources	 to	 collaboratively	 increase	 their	market	 and	 to	
achieve	 scale	 economy	 that	 would	 have	 been	 outside	 their	 reach.	 Therefore,	 in	 cloud	
federation,	 an	 application	 is	 submitted	 via	 a	 specific	 cloud	 provider	 but	 its	 execution	 can	 in	
principle	involve	any	combination	of	providers	within	the	federation.	

Thanks	 to	 the	 innovations	 in	 virtualization	 solution	 and	 approaches,	 the	 original	 federation	
concept	has	 evolved	over	 the	 time	 in	more	 complex	 and	 functionality-rich	paradigms.	Among	
them,	one	of	the	most	relevant	is	the	mobile	cloud,	in	which	specialized	devices	at	the	edge	of	
the	 network	 share	 the	 same	 execution	 environment	 of	 large	 cloud	 datacenter,	 in	 principle	
allowing	 a	 seamless	 migration	 of	 computation	 back	 and	 forth	 on	 both	 environments.	 The	
devices	at	 the	edge	of	 the	network	participate	 in	 a	 collective	 realization	of	 services,	 and	 they	
receive	computation	 tasks	and	data	 to	 support	demanding	applications	 that	would	have	been	
otherwise	outside	the	computational	capacities	of	the	mobile	devices.		

BASMATI	 aims	 at	 delivering	 an	 integrated	 platform	 that	 will	 support	 the	 dynamic	 needs	 of	
mobile	 applications	 and	 users	 focusing	 on	 four	 main	 axes:	 (1)	 enablement	 of	 mobile	 cloud	
services,	(2)	federation	of	cloud	infrastructures,	(3)	scalable	infrastructure	management,	and	(4)	
brokerage	and	offloading.	This	report	provides	a	wide	review	of	the	most	recent	scientific	and	
technological	 advancements	 in	 relation	 to	 the	 aforementioned	 axes,	 which	 will	 serve	 as	 the	
basis	for	the	whole	project.		

1.1 Relationship	to	other	Deliverables	
This	document	provides	an	up-to-date	review	of	the	state-of-the-art	literature	that	will	serve	as	
the	foundation	for	the	work	performed	within	BASMATI.	In	particular,	 it	sets	the	requirements	
for	the	global	architecture	design	and	specify	the	environment	for	the	use	case	analysis.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	7	of	115	
	

	

Figure	1.	Relationship	to	other	deliverables	

In	 addition	 to	 this,	 the	 requirements	 and	 specifications	 identified	 in	 this	 deliverable	 will	 also	
determine	the	requirements	that	have	to	be	considered	for	the	brokerage	platform,	the	service	
placement,	the	off-loading	model,	and	the	service	handover.	The	deliverable	provides	details	on	
the	specifications	for	data	management,	hybrid	infrastructure	management,	service	monitoring,	
and	QoS	enforcement.	

During	 the	 course	 of	 the	 project,	 the	 technologies	 and	 requirements	 related	 to	 BASMATI	will	
continue	 being	 investigated	 (as	 aforementioned,	 this	 deliverable	 will	 be	 a	 live	 document,	
continuously	 updated	 even	 after	 its	 delivery),	 in	 order	 to	 ensure	 that	 the	 objectives	 and	
innovations	of	the	project	are	valid,	work	is	performed	taking	into	account	the	latest	state	of	the	
art	and	developments	fulfill	the	identified	goals	and	requirements.	

1.2 Outline	of	Deliverable	
The	 deliverable	 document	 is	 organized	 as	 follows.	 Section	 2	 of	 the	 document	 provides	 a	
comprehensive	 coverage	 of	 all	 the	 aspects	 related	 to	 mobile	 cloud,	 including	 the	 current	
architecture	 and	 technologies,	 methods	 used	 for	 user	 mobility	 analysis,	 service	 deployment,	
service	monitoring,	situational	knowledge	extraction	and	data	management.	Section	3	presents	
the	concepts	and	baseline	technologies	of	cloud	federation.	The	economic	models,	Service	Level	
Agreement,	and	network	interoperability	required	to	realize	a	cloud	federation	is	also	discussed.	
Section	 4	 deals	 with	 different	 types	 of	 service	 level	 agreements	 included	 in	 the	 BASMATI	
architecture.	Section	5	presents	cloud	resource	brokerage	and	the	optimization	methods.	Each	
of	those	Sections	presents	topics	the	analysis	of	which	is	essential	to	realize	the	BASMATI	vision.	
For	each	such	topic,	apart	from	the	baseline	technologies	and	the	state	of	the	art	analysis,	the	
reader	will	also	find	a	first	approach	of	the	requirements	analysis	from	a	systemic	perspective.	
Finally,	Section	6,	provides	the	results	of	the	first	requirements	analysis	at	a	use	case	level.	

These	sections	and	subsections	are	shown	in	following	figure.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	8	of	115	
	

	

Figure	2.	Outline	of	the	deliverable		

	

2 Mobile	Cloud	Technologies		
This	 section	presents	 state	of	 the	art	on	mobile	 cloud,	 service	management	 frameworks,	user	
mobility	analysis	and	requirements	to	realize	the	objectives	of	BASMATI.	

2.1 Architecture	and	Technologies	
According	 to	 Othman	 (Othman	 et	 al.,	 2014),	 Mobile	 Cloud	 (MC)	 can	 be	 defined	 as	 “an	
integration	 of	 cloud	 computing	 technology	 with	 mobile	 devices	 to	 make	 the	 mobile	 devices	
resource-full	 in	 terms	 of	 computational	 power,	 memory,	 storage,	 energy,	 and	 context	
awareness”.	A	core	aspect	of	MC	is	computation	offloading	(also	referred	to	as	cyber	foraging),	
that	 is	 the	 procedure	 to	 transfer	 resource	 intensive	 computations	 from	 a	mobile	 device	 to	 a	
remote	cloud	computing	server,	with	the	aim	of	reducing	battery	consumption	and	augmenting	
the	 computational	 capacity	 of	 mobile	 devices.	 They	 differentiate	 between	 (i)	 infrastructure-
based,	and	(ii)	ad-hoc	MC.		

2.1.1 Infrastructure-based	Mobile	Cloud	
In	 infrastructure-based	MC,	mobile	 devices	 act	 like	 thin	 client	 connecting	 through	 the	mobile	
network	 to	 the	 remote	 server.	 In	 this	 case,	 the	 hardware	 infrastructure	 remains	 static	 and	
executes	the	application	services	and	offloaded	tasks.	This	model	can	also	consider	intermediate	
cloud	 resources,	 such	 as	 Cloudlet,	 whose	 concept	 was	 proposed	 by	 Satyanarayanan	
(Satyanarayanan	 et	 al.,	 2009)	 Cloudlet	 is	 intended	 as	 small	 clusters	 of	 relatively	 powerful	
computers	 in	 the	 proximity	 of	 the	mobile	 devices	 and	with	 connectivity	 to	 the	 remote	 cloud	
servers.	 Cloudlets	 are	 usually	 considered	 to	 be	 situated	 in	 common	 meeting	 areas	 such	 as	
concert	areas,	touristic	city	attractions,	restaurants	and	coffee	shops,	such	that	mobile	devices	
can	connect	and	work	as	thin	clients	toward	the	cloudlet	rather	than	to	a	remote	cloud	server	
(Fernando	et	al.,	2012).	Therefore,	Cloudlets	provide	mobile	devices	with	low	latency	and	high	
bandwidth	 connections,	 thereby	 allowing	 an	 interactive	 response	 for	 demanding	 applications.	
The	technologies	at	the	core	of	MC	and	offloading	are	many	and	heterogeneous.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	9	of	115	
	

Several	 earlier	 solutions,	 such	 as	 Spectra	 (Flinn	 et	 al.,	 2002),	 employ	 Remote	 Procedure	 Call	
(RPC)	to	invoke	remote	computations.	Despite	their	simplicity,	the	main	disadvantages	of	these	
solutions	 are	 that	 the	 remote	 server	 needs	 to	 be	 equipped	 with	 all	 the	 code	 for	 execution	
beforehand,	and	developers	need	to	write	the	application	such	that	it	can	take	advantage	of	the	
RPC	 invocations.	Many	other	solutions	exploit	already	existing	models	of	applications	 in	which	
there	is	a	separation	between	the	presentation	of	content	and	computation.		

Cuckoo	 The	 Cuckoo	 framework	 (Kemp	 et	 al.,	 2010)	 is	 a	 framework	 that	 assists	 application	
developer	in	the	creation	of	a	mobile	cloud	application	based	on	Java	and	targeting	the	Android	
operating	 system.	 Essentially,	 with	 Cuckoo	 it	 is	 possible	 to	 offload	 code	 to	 any	 running	 Java	
Virtual	Machine,	be	it	 in	a	remote	Cloud	datacenter	or	in	a	cloudlet.	The	Cuckoo	programming	
model	 exploits	 the	 difference	 between	 activities	 and	 services	 done	 by	 the	 Android	 operating	
system.	Activities	are	single	interaction	operations	with	the	user,	while	services	are	background	
tasks	performing	 long-running	operations	or	work	 for	 remote	processes.	Cuckoo	 identifies	 the	
latter	as	candidates	for	offloading,	in	fact	supporting	partial	application	offloading.		

Calling the cloud	Giurgiu	(Giurgiu	et	al.,	2009)	proposes	a	middleware	framework	that	supports	
dynamic	 partitioning	 of	 mobile	 applications	 to	 be	 offloaded	 to	 the	 cloud.	 The	 application	 is	
defined	and	orchestrated	according	to	the	OSGi	standard	 (OSGi	Alliance,	2007)	based	on	Java.	
The	mobile	application	is	organized	as	a	graph	in	which	nodes	and	edges	represent	respectively	
“bundles”	 (i.e.	 modules	 in	 OSGi	 notation)	 and	 functional	 dependencies	 among	 bundles.	 The	
decision	about	what	bundle	to	offload	is	performed	by	a	graph	cut,	which	is	done	according	to	
some	objective	function.	Other	frameworks	define	their	own	concept	of	“offloading	unit”.		

weblet	Zhang	et	al.	(2010)	introduce	the	concept	of	weblet,	which	is	defined	as	an	independent	
component	of	 a	mobile	application	 that	 can	 compute,	 store,	 and	 communicate	 in	an	agnostic	
way	to	its	execution	location	(Zhang	et	al.,	2010).	Therefore,	weblets	can	be	executed	both	on	
cloud	 and	 on	mobile	 devices.	 From	 a	 code	 perspective,	 weblets	 are	 interfaces	 in	 a	 high-level	
language	 (i.e.	 Java,	 C#)	 that	 have	 to	 be	 implemented	 by	 the	 application	 developer.	 When	
executing	 weblets	 in	 the	 cloud,	 Zhang	 et	 al.	 support	 replication,	 splitting	 and	 aggregation	 of	
weblets	as	means	of	optimizing	the	application.	The	offloading	of	weblets	to	the	cloud	is	driven	
by	a	cost	model,	whose	weights	can	be	expressed	by	the	mobile	application	developer.		

µcloud	Similarly,	μCloud	(March	et	al.,	2011)	proposes	a	model	focusing	on	the	composition	of	
applications	made	of	a	set	of	heterogeneous	components	to	support	flexibility,	reusability,	and	
configurability.	 Components	 can	 be	written	 once	 and	 used	 for	multiple	 applications,	 even	 by	
different	developers.		

Several	 approaches	 rely	 on	 Virtual	 Machine	 (VM)	 migration	 to	 realize	 offloading.	 In	 this	
approach	services	run	within	VMs	(or	container	of	any	flavours)	that	are	migrated	to	the	remote	
cloud	server	 to	realize	offloading.	VM-based	offloading	requires	no	or	 few	modification	to	the	
code	 of	 the	 applications,	 but	 the	 drawback	 is	 that	 VM	 migration	 can	 be	 time	 and	 resource	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	10	of	115	
	

consuming	in	such	a	degree	that	hides	the	benefit	of	offloading.	The	VM-based	offloading	also	
pairs	seamlessly	with	the	cloudlet	model,	which	 indeed	provides	small	datacenter	designed	to	
accept	VM	as	units	of	computation.		

MAUI	Cuervo	et	al.	(2010)	propose	an	energy-aware	mobile	application	offloading	framework.	
MAUI	 support	 fine-grained	 offloading	 to	 enhance	 energy	 saving	with	 a	 negligible	 load	 on	 the	
programmer.	It	performs	cost-benefit	analysis	by	profiling	each	method	in	an	application.	MAUI	
exploits	.NET	as	virtualization	middleware	and	focuses	on	dynamic	offloading	at	execution	time,	
allowing	the	developer	to	annotate	the	part	of	the	application	to	be	offloaded.		

CloneCloud	 Chun	 et	 al.	 (2011)	 propose	 an	 elastic	 execution	 framework	 that	 enables	 mobile	
devices	 to	 offload	 part	 of	 the	 application	 computation	 to	 the	 cloud.	 The	 framework	 employs	
dynamic	profiling	 to	collect	data	used	 in	making	 the	offloading	decision,	and	static	analysis	 to	
partition	the	application.	The	main	goal	of	portioning	is	to	optimize	the	overall	execution	cost.	
From	an	architectural	point	of	view,	CloneCloud	creates	clones	of	mobile	devices	in	the	remote	
cloud	datacenters	(or	Cloudlet),	which	allow	to	seamlessly	transferring	computation	from	one	to	
another.	 It	 does	 not	 require	 any	 programmer	 intervention	 (not	 even	 annotation)	 to	 perform	
offloading.		

ThinkAir	Kosta	et	al.	(2012)	propose	ThinkAir,	a	dynamic	and	adaptive	framework	that	supports	
on-demand	 resource	 allocation	 of	 mobile	 computation	 by	 simultaneously	 execute	 multiple	
offloading	methods	using	VM	images	 in	the	Cloud.	VMs	are	dynamically	created,	resumed	and	
destroyed	upon	necessity,	with	the	ultimate	objective	to	reduce	mobile	applications	execution	
time	and	optimizing	resource	management	 in	the	Cloud.	ThinkAir	Framework	consists	of	three	
main	components:	Programmer	API	and	Compiler,	Execution	Controller	and	Application	Server.	
The	Programmer	API	permits	the	application	developer	to	annotate	methods	of	the	application	
candidate	to	be	off-loaded.	With	the	provided	annotations,	the	ThinkAir	code	generator,	part	of	
the	compiler,	produces	removable	method	wrappers	and	included	all	necessary	utility	functions	
to	enable	these	methods	to	be	off-loaded.	In	order	to	support	that	generated	code	works	both	
for	ARM	architectures	 in	mobile	devices	and	x86	architectures,	 the	 framework	also	provides	a	
Customized	Native	Development	Kit.	Execution	Controller	takes	into	account	current	execution	
context	 and	 past	 executions	 information	 in	 order	 to	 decide	 whether	 to	 off-load	 a	 candidate	
method.	 The	 decision	 process	 is	 defined	 by	 four	 configurable	 policies,	 all	 policies	 aim	 to	
optimize	a	parameter	or	set	of	them	and	taking	into	account	context	information.	These	policies	
are:	Execution	time:	based	on	historical	data	on	about	method’s	execution	time;	Energy:	based	
on	historical	data	on	energy	consumed;	Execution	time	and	Energy;	Execution	time	and	energy:	
optimization	 aims	 to	 optimize	 both	 parameters;	 Execution	 time,	 energy	 and	 cost:	 cost	 here	
related	to	incurred	costs	by	executing	in	a	public	cloud	infrastructure.	Different	three	different	
profilers	are	used	to	support	the	off-loading	decision:	hardware,	software	and	network	profilers	
which	 inputs	 are	 used	 in	 conjunction	 to	 Energy	 Model.	 The	 hardware	 profiler	 collects	 CPU,	
Screen	brightness	levels,	the	power	state	of	WIFI	and	3G	links.	The	software	profiler	collects	per	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	11	of	115	
	

each	 method	 either	 executed	 locally	 or	 remotely	 the	 following	 data:	 overall	 execution	 time,	
thread	CPU	time,	number	of	executed	 instructions,	number	of	calls,	 thread	memory	allocation	
size	 and	 Garbage	 collector	 invocation	 size	 while	 Network	 profiler	 collects	 information	 about	
Round	Trip	Time	so	to	calculate	perceived	network	bandwidth	as	well	as	other	parameters	from	
WIFI	 and	 3G	 interfaces.	 Energy	 model	 in	 ThinkAir	 is	 enthused	 by	 PowerTutor	 model	 with	
modifications	at	the	level	of	GPS	and	audio.	The	Application	Server	represents	the	cloud	side	of	
the	framework.	It	manages	Cloud	resources	considering	both	elasticity	and	scalability.	Six	types	
of	VMs-	VM	templates-	are	considered.	They	differ	in	the	number	of	CPUs	allocated	(from	1	to	
8),	 memory	 size	 (200MB	 to	 1024	 MB)	 and	 Heap	 Size	 (32	 MB	 to	 100	 MB).	 Basic	 VM	 type	
represents	 the	 smallest	 one,	 and	 it	 is	 allocated	by	default	 as	 the	primary	 server.	 The	primary	
server,	it	is	a	VM	that	clones	the	mobile	device	replicating	both	data	and	applications	in	order	to	
fulfill	specific	user	QoS	expectations.	AS	an	example,	a	user	can	have	specific	QoS	requirements	
(e.g.	completion	time)	for	different	tasks	at	different	times,	therefore	the	VM	manager	needs	to	
dynamically	allocate	the	number	of	VMs	to	achieve	the	user	expectations.	This	primary	server	is	
always	set-up	ready	to	be	contacted	by	the	mobile	device.	Other	VMs	different	to	the	primary	
server,	 called	 secondary	 servers,	 are	 instantiated	 on-demand	 by	 the	 user.	 The	 primary	 server	
manages	communications	from	the	mobile,	the	life-cycle	of	these	secondary	servers,	as	well	as	
task,	allocation	in	case	of	parallelization.	

exCloud	(Ma,	Lam	&	Wang,	2011)	provides	a	mechanism	called	stack-on-demand	(SOD)	that	can	
perform	fine-grained	offloading	of	a	 Java	Virtual	Machine	(JVM).	By	using	SOD	 it	 is	possible	to	
avoid	migrating	 the	whole	VM	 since	 SOD	allows	migrating	 of	 only	 the	 top	 stack	 frame	of	 the	
execution,	while	the	required	code	and	heap	data	are	brought	in	on	demand	subsequently.		

Mobicloud	 (Xing	 et	 al.,	 2012)	 is	 another	 model	 in	 infrastructure-based	 MC	 that	 realizes	
geographic-based	 mobile	 cloud.	 In	 this	 model,	 mobile	 devices	 offload	 services	 to	 the	 cloud	
infrastructure	that	can	be	composed	by	multiple	clusters	around	the	world.	Mobicloud	analyzes	
the	 requests	 coming	 from	 the	 mobile	 and	 choose	 the	 correct	 server	 with	 a	 distributed	
scheduling	algorithm	based	on	the	resource	availability	in	the	different	clusters.		

Phone2Cloud Tarkoma	et	al.	(2014)	have	developed	a	computation	offloading-based	system	for	
energy	 saving	on	 smartphones	 called	phone2cloud.	 The	main	 aim	of	 this	 system	 is	 to	 fully	 or	
partially	 offload	 the	 application	 from	 smartphones	 to	 the	 cloud	 to	 reduce	 the	 energy	
consumption,	reduce	the	execution	time,	and	improve	user’s	experience,	i.e.	meet	user’s	delay-
tolerance	threshold	(Tarkoma	et	al.,	2014).	

Magurawalage	 et	 al.	 (2014)	 proposed	 system	 architecture	 for	mobile	 cloud	 computing	 (MCC)	
that	includes	a	cloudlet	layer	located	between	mobile	devices	and	their	cloud	infrastructure	or	
clones.	 This	middle	 layer	 is	 called	 a	 cloudlet	 layer	 as	 it	 composed	 of	 cloudlets.	 Cloudlets	 are	
deployed	 next	 to	 IEEE	 802.11	 access	 points	 and	 serve	 as	 a	 localized	 service	 point	 closed	 to	
mobile	devices	to	improve	the	mobile	cloud	services	performance.	They	proposed	an	offloading	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	12	of	115	
	

algorithm	on	top	of	this	architecture	with	the	purpose	of	deciding	whether	to	offload	to	a	clone	
or	a	cloudlet	(Magurawalage	et	al.,	2014).	

2.1.2 Ad-hoc	Mobile	Cloud		
The	 Ad-hoc	 Mobile	 Cloud	 approach	 organizes	 the	 collective	 resources	 of	 the	 various	 mobile	
devices	 in	 the	 local	vicinity	 in	order	 to	create	a	virtual-cloud.	 In	such	context,	a	mobile	device	
will	use	the	resources	of	other	close	devices	(the	virtual	cloud)	 instead	of	 its	own,	 in	the	same	
way,	 it	would	 do	with	 a	 remote	 datacenter.	 In	 principle,	 this	 approach	 can	 support	 high	 user	
mobility	and	create	virtual	Cloud	on	demand	according	to	the	necessity.		

Several	 ad-hoc	mobile	 cloud	 frameworks	 try	 to	 recreate	 typical	 cluster	 computation	 (such	 as	
MapReduce)	in	a	virtual	cloud	composed	of	mobile	devices.	The	approach	presented	by	Huerta-
Canepa	 and	 Lee	 (Huerta-Canepa	 and	 Lee,	 2009)	 realizes	 a	 Hadoop	 (Shvachko	 et	 al.,	 2010)	
computation	 on	 top	 of	 a	 virtual	 cloud.	 Hyrax	 (Marinelli,	 2009)	 supports	 a	 distributed	
computation	based	on	Hadoop	on	a	virtual	cloud	as	well,	also	including	the	Hadoop	Distributed	
File	System	(HDFS)	for	the	storage.	

Ghasemi-Falavarjani	et	al.	(2015)	developed	a	context-aware	offloading	middleware	for	mobile	
cloud	(OMMC)	to	collect	contextual	 information	of	mobile	devices.	By	considering	neighboring	
mobile	devices	as	service	providers,	they	investigated	the	resource	allocation	problem	to	select	
service	providers	that	minimizes	the	completion	time	of	the	offloading	along	maximizing	lifetime	
of	mobile	devices	satisfying	deadline	constraint	(Ghasemi-Falavarjani	et	al.,	2015).	

Pu	et	al.	(2016)	proposed	a	device-to-device	(D2D)	Fogging	framework	for	mobile	task	offloading	
based	 on	 network-assisted	 D2D	 collaboration,	 where	 mobile	 users	 can	 dynamically	 and	
beneficially	 share	 the	 computation	 and	 communication	 resources	 among	 each	 other	 via	 the	
control	 assistance	 by	 the	 network	 operators.	 The	 purpose	 of	 their	 D2D	 Fogging	 is	 to	 achieve	
energy	efficient	task	executions	for	network	wide	users	(Pu	et	al.,	2016).	

2.2 User	Mobility	Analysis	and	Modeling	
With	 the	 increasing	 usage	 of	 smartphone	 and	positioning	 enabled	 devices	 a	 huge	 quantity	 of	
geo-localized	 data	 from	 moving	 objects	 like	 humans,	 animals	 or	 vehicles	 is	 being	 collected.	
These	 mobility	 data	 is	 represented	 as	 trajectories,	 namely	 the	 sequence	 of	 spatio-temporal	
coordinates	of	each	position	sampled	by	the	device.	These	complex	data	come	in	huge	amount	
and	many	 techniques	have	been	proposed	 in	 the	 literature	 in	 the	 last	 few	years	 to	 represent,	
manage,	analyze	and	mining	such	data	(Renso	et	al.,	2013a).	The	ultimate	goal	in	mobility	data	
processing	is	to	solve	high-level	issues	such	as	understanding	how,	when,	where,	and	ultimately	
why	objects	move.	

Elaborating	 the	 answer	 to	 these	 questions	 relies	 on	 a	 complex,	multistep	 process,	where	 the	
data	sent	by	the	data	acquisition	device	(e.g.,	a	GPS/GSM	device)	are	analyzed	and	transformed	
to	 be	 gradually	 turned	 into	 something	 readily	 meaningful	 for	 the	 targeted	 application.	 This	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	13	of	115	
	

process	 is	 sometimes	 referred	 to	 as	 Trajectory	 Knowledge	Discovery	 process,	 Trajectory	 Data	
Mining,	Mobility	Data	Mining.		

When	analyzing	traces	of	human	beings	the	privacy	of	the	individual	may	be	disclosed.	A	large	
part	 of	 the	 literature	 on	 mobility	 mining	 investigates	 methods	 to	 perform	 analysis	 while	
preserving	 the	privacy	of	 individuals	 (Renso	et	al.,	2013).	Privacy	 is	a	crucial	 issue	 to	 take	 into	
consideration	when	tracking	individuals.		

2.2.1 Analysis	of	Mobility	Data		
The	kind	of	 analysis	 that	 can	be	performed	 in	 large	 collections	of	 trajectory	data	are	 limitless	
and	mainly	depends	on	the	kind	of	moving	object	being	tracked	and	the	application	needs.		

The	 first	 class	 of	methods	 introduced	 for	 studying	mobility	was	 inspired	 by	 physics,	 with	 the	
tentative	model	 of	 the	 human	movement	with	 a	 physics	 law.	 A	 number	 of	 experiments	 have	
been	 done	 trying	 to	 capture	 a	 large	 amount	 of	 human	 mobility	 data,	 like	 the	 banknotes	
movements	 and	 later	 the	 phone	 calls	 in	 the	 US	 (Gonzalez	 et	 al.,	 2008).	 Authors	 found	 that	
humans	 tend	 to	move	 following	 a	 truncated	 Levy-flight	 law.	 So,	most	 people	usually	 travel	 in	
close	 vicinity	 to	 their	 home	 locations,	 while	 a	 few	 frequently	 make	 long	 journeys.	 The	 most	
important	 result	 was	 the	 finding	 that	 all	 individuals	 seem	 to	 follow	 the	 same	 universal	
probability	 distribution	 that	 an	 individual	 is	 in	 a	 given	 position	 (x,	 y).	 Individuals	 display	
significant	regularity,	returning	to	a	few	highly	frequented	locations,	such	as	home	or	work.		

More	 recent	 works	 about	 finding	 the	 physical	 law	 to	 describe	 human	 mobility	 focus	 on	 the	
movement	between	a	source	and	a	destination	location.	Newton’s	 law	of	universal	gravitation	
has	been	used	to	derive	the	gravity	model	for	mobility.	This	model	assumes	that	the	number	of	
people	 moving	 from	 two	 locations	 is	 proportional	 to	 the	 populations	 of	 the	 source	 and	
destination	 locations	 and	 that	 it	 decreases	 with	 the	 distance	 (Simini	 et	 al.,	 2012a).	 A	 variant	
based	on	the	simple	particle	diffusion	model	is	the	radiation	model,	where	particles	emitted	at	a	
given	location	have	a	certain	probability	of	spreading	into	the	surrounding	areas.	In	this	model	
the	 number	 of	 moving	 people	 from	 two	 locations	 is	 estimated	 depending	 on	 the	 origin	
population,	the	destination	population	(as	 in	the	gravity	model),	and	the	population	 in	a	circle	
whose	 center	 is	 the	 origin	 and	 radius	 is	 the	 distance	between	 the	origin	 and	 the	destination,	
minus	the	population	at	the	origin	and	the	population	at	the	destination.	As	discussed	in	(Simini	
et	al.,	2012a)	and	(Masucci	et	al.,2013),	the	gravity	model	does	not	account	for	fluctuations	 in	
the	number	of	travelers	between	two	locations	and	has	many	other	limitations,	for	example,	the	
parameter-dependency,	 the	 need	 for	 traffic	 data	 to	 fit	 the	 parameters,	 and	 the	 fact	 to	 be	
deterministic.		

2.2.1.1 GPS	Data		
A	different	perspective	 is	offered	by	methods	 that	use	mining	 to	extract	useful	patterns	 form	
large	amounts	of	GPS	data.	GPS	data	comes	in	a	format	that	reports	the	spatial	coordinates	of	a	
tracked	 object	 with	 a	 temporal	 timestamp.	 The	 sampling	 rate	 may	 vary	 depending	 on	 the	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	14	of	115	
	

device,	from	few	seconds	to	minutes	or	hours.	The	spatial	accuracy	of	GPS	is	around	10	meters	
in	outdoor	 space	while	 it	 is	 usually	not	working	or	with	 a	 low	accuracy	 in	 indoor	 spaces.	GPS	
data	 are	 commonly	 used	 to	 monitor	 traffic	 as	 many	 vehicles	 are	 now	 equipped	 with	 GPS	
devices.	A	comprehensive	example	of	trajectory	mining	performed	on	car	trajectories	for	traffic	
application	is	the	paper	(Giannotti	et	al.,	2011).	Here	authors	report	a	comprehensive	analysis	of	
GPS	data	collected	from	cars	moving	in	the	city	of	Milan	in	Italy.	This	is	a	good	example	of	which	
kinds	 of	 analysis	 can	 be	 done	when	 large	 GPS	 car	 trajectories	 are	 available.	 From	 these	 GPS	
data,	 they	measured	 some	basic	 statistics	 describing	 the	 trips	 represented	by	 the	 trajectories	
and	a	number	of	complex	analytical	questions	explained	later.	One	example	of	simple	statistics	
includes	 the	 trip	 length	 and	 duration,	 from	which	we	 notice	 how	mobility	 data	 show	 skewed	
distributions	 thus	 indicating	 a	 huge	 variability	 and	 heterogeneity	 of	 trips,	 which	 is	 typical	 of	
human	movement.	The	correlation	of	 length	and	speed	of	trips	shows	how	only	slow	trips	are	
very	 long,	 coherently	 with	 the	 intuition	 that	many	 trips	 are	 slow	 because	 they	 take	 place	 in	
heavy	 traffic.	 The	 radius	of	 gyration	 is	 another	 standard	measure	of	movement	 that	 indicates	
how	far	an	object	moves	from	its	preferred	location	(say	home	and	work	as	an	example)	and,	for	
each	vehicle	it	can	be	computed	as	its	average	distance	from	the	preferred	location.		

Another	basic	operation	that	can	be	done	on	mobility	data	is	the	Origin-Destination	Matrix	(OD	
matrix)	very	common	in	transportation	research.	This	structure	summarizes	the	flows	of	mobile	
users	per	temporal	unit	between	two	destinations	and	largely	used	in	traffic	applications.		

Apart	from	the	basic	statistics,	the	most	interesting	and	challenging	analytical	questions	can	be	
answered	by	data	mining	algorithms	finding	hidden	mobility	patterns.	In	the	example	reported	
in	the	paper	(Giannotti	et	al.,	2011)	the	analysis	is	aimed	at	discovering	interesting	subgroups	of	
vehicles	 and	 travels	 characterized	 by	 some	 common	 movement	 behavior.	 Some	 typical	
questions	are	the	following:		

1.	 What	are	the	most	popular	itineraries	followed	from	the	origin	to	the	destination	of	people’s	
travels?	What	 routes,	what	 timing,	what	volume	 for	each	such	 itinerary?	More	specifically,	
how	do	people	leave	the	city	center	to	reach	the	suburb	area?	What	is	the	spatio-temporal	
distribution	of	such	trips?	

2.	 How	to	understand	the	accessibility	to	key	mobility	attractors,	such	as	large	facilities,	railway	
or	 bus	 stations,	 main	 parking	 lots?	 How	 do	 people	 behave	 when	 approaching	 a	 crucial	
attractor,	such	as	the	airport	short-term	parking	lot?	What	is	the	spatio-temporal	distribution	
of	such	(a	portion	of)	trips?	

3.	 How	 to	 detect	 an	 extraordinary	 event	 –	 an	 important	 football	 match,	 the	 concert	 of	 a	
popular	artist	or	an	unusual	traffic	 jam	–	and	understand	the	associated	mobility	behavior?	
How	and	when	do	people	reach	and	leave	the	event’s	location?	What	is	the	spatio-temporal	
distribution	of	such	(a	portion	of)	trips?	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	15	of	115	
	

2.2.1.2 Trajectory	Data	Mining		
These	 and	 other	 analytical	 questions	 can	 be	 answered	 thanks	 to	 the	 use	 of	 basic	 mining	
algorithms	dealing	with	trajectories.	The	most	common	one	is	clustering	where	trajectories	are	
grouped	together	by	some	measure	of	spatial	and/or	temporal	similarity.		

Clustering	is	also	known	as	unsupervised	classification	since	the	objective	is	to	find	a	way	to	put	
objects	 into	 groups	without	 any	prior	 knowledge	of	which	 groups	might	 exist,	 and	what	 their	
objects	 look	 like.	 Typical	 mining	 algorithms	 adapted	 or	 develop	 for	 trajectories	 are	 K-means,	
DBSCAN,	T-OPTICS	(Renso	et	al.,	2013).	This	method	is	useful	to	find	common	groups	of	objects	
moving	together,	therefore	detecting	traffic	jams	or	flows	of	vehicles	following	the	same	routes.		

A	predictive	model	is	able	to	forecast	the	future	locations	that	the	object	will	visit.	These	models	
are	 usually	 built	 from	 the	history	 of	 past	 behaviors.	 Route	or	 trajectory	 prediction	 algorithms	
attempt	to	predict	the	path	that	a	vehicle	will	follow	in	the	future	assuming	its	current	position	
is	 known,	 but	 the	 vehicle’s	 final	 destination	 is	 unknown	 (Pecher,	 Hunter	 &	 Fujimoto,	 2016).	
These	 algorithms	 assume	 other	 information	 is	 available	 such	 as	 the	 trajectory	 taken	 by	 the	
vehicle	thus	far	and/or	the	routes	taken	by	other	vehicles	in	its	vicinity	or	derived	from	historical	
information.	Several	algorithms	have	been	developed	to	predict	future	trajectories.	

In	 literature,	 we	 found	 a	 pioneering	 approach	 called	 WhereNext	 (Monreale	 et	 al.,	 2009).	
WhereNext	extracts	sequential	patterns	called	T-Patterns	from	a	training	data	set	of	trajectories	
and	combines	them	into	a	tree	structure	similar	to	a	prefix-tree.	In	particular,	each	root-to-node	
path	corresponds	to	a	T-pattern,	and	root-to-leaf	paths	correspond	to	maximal	patterns.	When	
a	 new	 trajectory	 is	 presented,	 its	 most	 recent	 segment	 is	 compared	 against	 the	 regions	
represented	 in	 the	 tree,	 looking	 for	 the	best	match	 among	 the	 root-to-node	paths.	 Then,	 the	
model	finds	that	the	matched	sequence	is	a	prefix	of	a	longer	pattern,	and	so	it	suggests	a	likely	
continuation	region.		

Another	early	work	 in	destination	prediction	was	developed	in	(Newson	&	Krumm,	2009).	This	
work	 utilizes	 a	 Bayesian	model	 that	 uses	 the	 immediate	 past	 trajectory	 taken	 by	 a	 vehicle	 to	
predict	 the	vehicle’s	 intended	destination.	An	underlying	assumption	used	 in	 this	work	 is	 that	
drivers	utilize	efficient	routes	in	order	to	reach	their	 intended	destination.	An	efficient	Markov	
model	 for	 destination	 and	 trajectory	 prediction	 is	 presented	 in	 (Pecher,	 Hunter	 &	 Fujimoto,	
2014).	 When	 a	 prediction	 is	 requested,	 a	 data	 structure	 is	 traversed	 that	 holds	 the	 partial	
trajectory	 observed	 for	 the	 vehicle	 thus	 far.	 This	 data	 structure	 subsequently	 provides	 the	
empirical	distribution	of	the	forward	trajectory.	The	previous	five	locations	visited	by	the	target	
vehicle	 are	 used	 to	 estimate	 the	 future	 trajectory	 by	 training	 a	 feedforward	 artificial	 neural	
network	 with	 two	 hidden	 layers	 consisting	 of	 500	 neurons	 each.	 In	 2008,	 a	 Carnage	 Mellon	
University	group	published	the	PROCAB	model	(Probabilistic	Reasoning	from	Observed	Context-
Aware	Behavior)	 (Ziebart	et	 al.,	 2008).	 This	model	uses	 the	 current	 context	 (e.g.,	 accidents	or	
congestion)	and	the	user's	preferences	(e.g.,	fuel	efficiency	or	safety)	in	order	to	predict	his/her	
actions,	rather	than	just	focus	on	previous	actions	for	prediction.	The	model	maps	actions	into	a	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	16	of	115	
	

Markov	Decision	Process	(MDP),	where	intersections	are	encoded	as	states	and	road	segments	
are	encoded	as	transitions.	State	transitions	are	associated	with	a	cost,	namely	the	sum-product	
of	 road	 segment	 features	 and	 cost	weights	 obtained	 from	 collected	 training	 data.	 The	model	
assumes	 that	 drivers	 attempt	 to	minimize	 the	 cost	 to	 reach	 their	 destination.	 For	 destination	
prediction,	it	has	been	reported	that	PROCAB	outperformed	Newson	&	Krumm's	Predestination	
algorithm	for	the	first	half	of	the	trip.	The	PROCAB	implementation	used	in	(Ziebart	et	al.,	2008)	
takes	into	account	specific	road	features	such	as	the	number	of	lanes	and	speed	limit.		

In	 (Gui,	 Adjouadi	 &	 Rishe,	 2009)	 the	 authors	 suggest	 using	 a	 personalization	 profile	 of	
smartphone	users	 for	 localized	 searches.	User	 activities	 and	 on-device	 sensors	 are	 queried	 to	
build	 a	 context	 profile,	 including	 demographical	 features	 and	 previous	 user	 activities.	 The	
weights	of	this	information	along	with	an	environmental	profile	(weather,	temperature,	etc.)	are	
trained	 via	 an	 artificial	 neural	 network.	 These	 profiles	 are	 used	 to	 rank	 personalized	 queries	
(e.g.,	 local	businesses).	One	could	envision	utilizing	 the	same	model	 to	predict	destinations	or	
routes,	similar	to	PROCAB.	

In	(Simmons	et	al.,2006)	a	hidden	Markov	model	(HMM)	is	used	to	estimate	a	particular	driver’s	
destination	and	route,	by	using	his/her	previous	trajectories	along	with	driving	time.		

2.2.1.3 GSM	data	
GSM	 data	 as	 collected	 by	 the	 telecom	 companies	 are	 typical	 of	 two	 kinds:	 the	 handover	
representing	 the	 flow	of	 users	 crossing	 cells,	 and	 Call	 Data	 Record	 (CDR)	 reporting	 the	 billing	
information	 regarding	 the	 calls	 made	 from	 the	 user.	 These	 data	 produce	 two	 different	
viewpoints	of	mobility	of	mobile	phone	carrying	people.	The	handover	data	enable	aggregations	
only	 over	 space	 and	 time.	 The	 main	 significant	 measure	 is	 the	 sum	 of	 the	 fluxes,	 which	 is	
calculated	 by	 fixing	 a	 space	 (a	 cell	 or	 groups	 of	 cells)	 and	 summing	 the	 fluxes	 over	 time	 (by	
hours,	day	or	part	of	 the	day,	and	so	on).	This	measure	 is	used	 in	order	 to	get	an	 idea	of	 the	
collective	movement	 patterns	 or	 to	 support	 the	 balancing	 tasks	 of	 the	 antennas’	 load.	 Given	
that,	 CDR	 data,	 explicitly	 refer	 to	 the	 user	 and	 they	 enable	 a	 richer	 set	 of	 measures	 to	 be	
computed	 over	 the	 three	 dimensions.	 The	 timestamp	 identifies	 the	 temporal	 dimension,	 the	
identifier	of	 the	 cell	where	 the	 call	 has	 started	and	 the	 cell	where	 the	 call	 ended	provide	 the	
spatial	 dimension,	 while	 the	 caller	 id	 identifies	 the	 individual	 dimension.	 Given	 the	 three	
dimensions,	it	is	possible	to	compute	basic	measures	that	depend	on	a	single	dimension,	or	on	a	
combination	of	the	three.	

A	basic	measure	is	the	number	of	users,	which	counts	the	distinct	users	in	the	dataset,	how	this	
number	changes	over	the	time	can	be	extremely	useful	for	studying	the	fluxes	of	people	or	the	
presence	 trend	 (Furletti	 et	 al.,	 2012).	By	aggregating	data	over	 two	or	more	dimensions,	new	
interesting	measures	can	be	identified.	Considering	the	combination	of	space	and	time,	we	can	
count,	 for	 example,	 the	number	 of	 calls	 for	 a	 given	 city	 during	 a	 given	week	or	 the	 temporal	
distance	 of	 calls	 in	 a	 given	 cell	 during	 a	 given	month.	 Aggregating	 individuals	 over	 time,	 the	
distribution	of	presence	in	a	zone	or	the	number	of	distinct	locations	visited	can	be	calculated.	A	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	17	of	115	
	

presence	 profile	 can	 be	 reconstructed	 starting	 from	 the	 call	 events	 for	 each	 user	 and	
aggregating	 them	 over	 space	 and	 time.	 In	 (Furletti	 et	 al.,	 2013)	 the	 authors	 describe	 the	
Individual	Call	Profile	(ICP)	as	a	matrix	where	each	cell	contains	the	number	of	presences	of	the	
individual	in	that	particular	time	unit	in	the	area	under	analysis.	Of	particular	importance	is	the	
number	 of	 places	 visited	 over	 time	 that,	 in	 its	 simplest	 form,	 is	 estimated	 by	 counting	 the	
number	of	different	antennas	serving	the	user’s	calls	in	the	time	slot	of	interest.	As	explained	in	
(Song	 et	 al.,	 2010),	 this	 measure	 can	 be	 used	 for	 identifying	 the	 frequency	 of	 returns	 to	
previously	visited	 locations.	This	value	 increases,	showing	a	decreasing	tendency	of	 individuals	
to	 visit	 previously	 unvisited	 locations.	 On	 the	 other	 hand,	 the	 probability	 of	 a	 user	 visiting	 a	
given	 location,	 the	 kth-most	 visited	 location,	 follows	 the	 Zipf’s	 law.	Another	 complex	measure	
derived	by	CDRs	is	the	travel	time.	As	reported	in	(Kujala,	Aledavood	&	Saramäki,	2016),	typical	
travel	 times	 in	 city-to-city	 trips	 can	 be	 computed	 by	 considering	 all	 the	 times	 between	
consecutive	appearances	in	pairs	of	cities.	

2.2.1.4 Predictive	models	of	human	mobility		
Another	class	of	methods	used	to	analyze	mobile	phones	is	Markovian	models,	which	describe	
the	probability	of	a	movement	from	an	origin	to	a	destination	based	on	the	recent	history	of	the	
movements	performed.	In	mobile	data	analysis,	Markovian	models	(or	Markovian	chains,	when	
using	 discrete	 sets	 of	 times)	 are	 generally	 used	 to	 predict	 a	 location	 based	 on	 the	 previous	
already	known	locations	or	sequences	of	cells.	This	case	is	modeled	as	an	order-1	Markov	chain,	
where	 the	 transition	 probabilities	 are	 dependent	 on	 individual	 user	movement	 and	 represent	
the	probabilities	of	moving	from	a	single	cell	to	one	of	its	neighboring	cells.	In	some	papers,	such	
as	 (De	 Mulder	 et	 al.,	 2008),	 the	 location	 profiles	 based	 on	 the	 model,	 are	 used	 to	 perform	
identification	 in	a	cellular	network	of	a	mobile	user	based	on	the	 location	profiles	of	all	users.	
Markovian	models	have	also	been	used	for	general	models	about	predictability,	as	in	(Lu	et	al.,	
2013),	where	the	authors	find	that	the	theoretical	maximum	predictability	is	88%	results	proved	
by	means	of	Markovian	models.	Their	findings	indicate	that	human	mobility	is	highly	dependent	
on	 historical	 behaviors	 and	 that	 the	 maximum	 predictability	 is	 not	 only	 a	 fundamental	
theoretical	 limit	 for	potential	 predictive	power	but	 also	an	approachable	 target	 for	prediction	
accuracy.	Markovian	models	are	useful	when	studying	the	mobility	of	humans	at	a	daily	scale,	as	
in	 (Schneider	 et	 al.,	 2013).	 The	 framework	 they	 propose	 is	 based	 on	Markov	 chain	modeling	
periods	of	high-frequency	trips	followed	by	periods	of	low-frequency	activity.	A	hidden	Markov	
Model	(HMM)	is	a	special	kind	of	Markovian	model	with	unobserved	(or	hidden)	states.	HMMs	
are	 exploited	 for	 example	 in	 (Xu	 et	 al.,	 2011),	 where	 the	 authors	 aim	 to	 find	 the	 means	 of	
transportation	 being	 used	 by	 moving	 individuals.	 The	 hidden	 states	 are	 the	 transportation	
modes,	while	the	observed	states	are	the	data	collected	by	mobile	phones.		

2.2.1.5 Mobility	and	events	in	social	media	
Large	popular	 events	 like	musical	 and	 food	meetings	 and	 similar	 are	usually	well	 reflected	on	
Social	media.	The	social	media	provide	 information	about	the	users	by	their	posts,	generally	a	
short	text,	 tags	and	/or	photos,	 links,	video.	Posts	are	sometimes	accompanied	by	geolocation	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	18	of	115	
	

thus	providing	the	spatial	and	temporal	coordinates	of	the	user	location	at	the	moment	of	the	
post.	Large	events	and	social	media	have	been	studied	in	a	number	of	papers	in	the	literature.	
The	main	categories	of	study	that	we	identified	are	(1)	recommending	events	to	users	(Quercia	
et	 al.,	 2014;	 Macedo,	 Marinho	 &	 Santos,	 2015),	 (2)	 studying	 factors	 affecting	 the	 users'	
participation	 in	 events	 (Mascolo,	 Noulas	 &	Mascolo,	 2014)	 and	 (3)	 estimating	 the	 number	 of	
attendees	in	a	given	event	(Botta,	Moat	&	Preis,	2015).		

Within	the	first	category,	event	recommendation,	Quercia	et	al.	(Quercia	et	al.,	2014)	proposed	
a	 recommendation	 approach	 to	 suggest	 events	 to	 users	 based	 on	mobile	 phone	 data	 usage.	
Similarly,	Macedo	et	al.	 in	(Macedo,	Marinho	&	Santos,	2015)	and	Wang	et	al.	 in	(Wang	et	al.,	
2016)	 addressed	 the	 challenge	 of	 recommending	 events	 within	 event-based	 social	 networks	
(EBSNs).	Each	of	these	approaches	 is	challenged	by	the	cold-start	problem,	 in	that	a	history	of	
the	user's	previous	event	attendances	may	not	be	available,	and	recommendation	evidence	may	
resort	to	the	events	that	are	geographically	closest	(Quercia	et	al.,	2014).		

The	study	by	Georgiev	&	Mascolo	(2014)	is	an	example	of	a	contribution	in	the	second	category.	
In	 particular,	 they	 addressed	 the	 extent	 to	 which	 geospatial,	 temporal,	 and	 social	 factors	
influence	the	users'	preferences	towards	events	(Georgiev	&	Mascolo,	2014).	They	formulated	a	
predictive	 modeling	 task	 trying	 to	 match	 a	 user's	 mobility	 profile	 against	 the	 collective	 past	
Foursquare	check-in	activity	of	potential	event	attendees.	They	took	into	account	the	homophily	
effects	on	the	users'	event	choices	as	reflected	by	location-based	social	media.	

Finally,	within	 the	 third	 category	 of	 related	works,	 Botta	 et	 al.	 in	 (Botta,	Moat	&	Preis,	 2015)	
investigated	 whether	 mobile	 phone	 usage	 and	 the	 geolocated	 Twitter	 data	 can	 be	 used	 to	
estimate	the	number	of	people	in	a	specific	area	at	a	given	time.	In	considering	two	case	studies	
of	access-restricted	areas	 in	 Italy:	a	 stadium	and	an	airport	 (where	 they	had	access	 to	ground	
true	visitor	numbers),	they	concluded	that	geolocated	tweets	with	mobile	phone	data	could	be	
a	good	proxy	of	estimating	the	number	of	users.	

In	(Cesario	et	al.,	2016),	the	authors	described	a	methodology	for	identifying	the	user	behavior	
and	mobility	 patterns	 of	 Instagram	 social	 network	 users	 visiting	 the	 EXPO	 2015	 world	 fair	 in	
Milan,	Italy.	They	were	able	to	discover	how	the	number	of	visitors	changed	over	time,	identify	
the	most	frequent	sets	of	visited	pavilions,	which	countries	the	visitors	came	from,	and	the	main	
destinations	of	foreign	visitors	to	Italian	regions	and	cities	after	their	visit	to	the	EXPO.	A	similar	
work	by	the	same	authors	(Cesario	et	al.,	2015)	analyzed	geotagged	tweets	of	people	attending	
the	2014	FIFA	World	Cup.	In	doing	so,	they	identified	the	most	frequent	movements	of	fans,	the	
number	 of	 matches	 attended	 by	 groups	 of	 fans,	 clusters	 of	 most	 attended	matches	 and	 the	
most	frequented	stadiums.	

2.2.1.6 Indoor	Mobility	
An	increasing	interest	is	receiving	the	study	of	mobility	of	people	in	indoor	spaces	like	museums,	
shopping	malls,	hospitals	and	large	events.	The	characteristics	of	these	environments	is	that	GPS	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	19	of	115	
	

is	 typically	 not	working	 in	 indoor	 spaces	while	 the	GSM	 granularity	 is	 too	 coarse	 (one	 indoor	
space	 is	 typically	 covered	 by	 only	 one	 cell).	 This	 is	 why	 these	 environments	 need	 ad	 hoc	
positioning	systems	to	detect	the	movements	of	inside	people.		

The	 most	 common	 are	 RFID,	 Wifi,	 BluetoothLE	 (Bluetooth	 Low	 Energy).	 All	 these	 methods	
provide	 complementary	 features,	 but	 usually,	 they	 detect	 only	 the	 proximity	 and	 using	
triangulation	 techniques	 the	 users’	 position	 accuracy	 may	 improve,	 but	 none	 of	 them	 may	
accurately	 detect	 the	 individual	 movements	 with	 a	 high	 accuracy	 as	 GPS,	 thus	 they	 cannot	
produce	 similar	 accurate	 trajectories.	 Mobility	 analysis,	 therefore,	 has	 to	 deal	 with	 this	
imprecision.		

An	 example	 of	 usage	 of	 indoor	 positioning	 systems	 (namely	 BluetoothLE)	 at	 Louvre	Museum	
describing	an	interesting	analysis	of	the	visitors’	movements	is	reported	in	the	paper	(Yoshimura	
et	al.,	2014).	Here	authors	study	how	users	visit	the	museum	by	answering	the	following	analysis	
questions:	Do	visitors	always	enter	 from	the	same	 lobby?	Do	 longer	stay	 implies	 longer	visits?	
Which	is	the	order	in	which	the	art	works	are	visited?	What	do	the	short	visit	users	visit	most?	
Are	they	avoiding	crowded	areas?	Where	do	they	stay	longer,	looking	at	which	artwork?	

User	Mobility	analysis	is	one	special	case	of	analysis	of	context	information.	In	order	to	ensure	a	
broad	usefulness	of	the	envisioned	solution,	we	cope	with	the	analysis	of	context	information	in	
general	thereby	addressing	not	only	mobility	based	on	plain	geo	locations	(GPS)	but	also	based	
on	network	information	and	even	time	and	time	intervals	or	information	about	the	device	used.		

The	 following	 citation	 gives	 a	 useful	 definition	 and	 perspective	 of	 what	 we	 deal	 with:	 “Such	
context-aware	systems	adapt	according	to	the	location	of	use,	the	collection	of	nearby	people,	
hosts,	 and	 accessible	 devices.	 A	 system	 with	 these	 capabilities	 can	 examine	 the	 computing	
environment	and	react	to	changes	to	the	environment”	(Schilit,	Adams	&	Want,	1994).	

Smartphone	today	potentially	provide	a	lot	of	different	context	information	via	so-called	context	
sensors	as	depicted	in	Figure	3:	Context	sensors	of	a	smartphoneFigure	.	In	general,	any	sensor	
information	 could	 be	 analyzed	 here	 as	 long	 as	 they	 give	 insights	 about	 the	 user´s	 current	
situation.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	20	of	115	
	

	

Figure	3:	Context	sensors	of	a	smartphone	

The	following	section	will	describe	the	state	of	the	art	of	context	frameworks.	The	selection	of	
frameworks	described	here	is	mainly	based	on	the	following	assumptions:		

• Context	information	should	be	collected	and	sent	to	(mobile)	clients.	
• Context	information	should	be	analyzed	on	a	central	server.	
• The	 technologies	 used	 by	 the	 framework	 should	 be	 easy	 to	 be	 integrated	 into	 the	

BASMATI	use	case	demonstrators	and	the	BASMATI	components.		

2.2.2 Context	Frameworks	

2.2.2.1 	AWARE	
Developed	from	2013	on	until	today,	by	the	University	of	Oulu	(Finland),	the	AWARE	framework	
might	 be	 seen	 as	 one	 of	 the	most	 promising	 context	 frameworks.	 It	 consists	 of	 a	 server	 and	
clients	for	Android,	iOS	and	OSX	Desktop.	Each	client	provides	28	context	sensors	collecting	and	
delivering	 contextual	 information	 to	 a	 central	 server	 via	 HTTP-Post.	 The	 set	 of	 sensors	 to	 be	
used	can	be	configured.	The	server	stores	the	information	in	a	MySQL	database	as	depicted	in	
Figure	.	On	the	server	side,	the	collected	information	can	be	grouped	and	protected	from	each	
other	via	a	concept	analogous	to	multi-tenancy	(so-called	studies	in	AWARE	terminology).	

Context	sensors

GPS

Device	
informa-
tion

Date	/	
time

Speed-
up

Location	

WLAN	/	
Blue-
tooth

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	21	of	115	
	

	

Figure	4:	Architecture	overview	of	the	AWARE	framework	[Source:	Schork,	2016]	

The	 28	 context	 sensors	 available	 in	 the	 AWARE	 clients	 are	 able	 to	 collect	 the	 following	
exemplary		

• Position	
o GPS	
o Sensorfusion	

• Network		
o GSM	
o WLAN/Bluetooth	

• Physical	Sensors	
o Speed-Up		
o Location	
o Brightness		

• Device	Information	
o Battery	
o Operating	system	
o Applications	

• Komplexe	Sensoren	
o (Google)	Activity		
o Surveys		

2.2.2.2 CTK	–	The	Context	Toolkit	
Developed	from	2000	until	2013,	the	CTK	(Context	Toolkit)	from	the	University	Berkeley	is	based	
on	the	assumption	that	the	context	is	the	context	of	an	application	(not	the	user)	and	that	the	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	22	of	115	
	

application	 itself	 can	 collect	 the	 relevant	 contextual	 information.	 The	 CTK	 has	 the	 following	
characteristics:	

• Encapsulation	of	sensors	
• Access	to	context	information	via	network	API	
• Abstraction	of	context	information	via	interpreter	
• Sharing	of	context	information	via	distributed	infrastructure		
• Storage	of	context	information	and	their	changes	over	time		
• Access	control	in	case	of	private/sensible	information		

The	framework	provides	relevant	conceptual	work	and	insights;	software	applications	based	on	
CTK	are	rather	limited	(Nagel,	2001;	University	Berkeley,	2016).	Implementations	of	clients,	for	
example,	are	only	available	on	P2P	basis	and	not	for	diverse	operating	systems	like	android	or	
iOS.		

Conceptually,	CTK	is	divided	into	the	following	components:		

• BaseObject:	Basic	Peer	to	Peer	(P2P)	communication	infrastructure	and	access	point	for	
applications		

• Widget/Service:	 Call-backs	 to	 be	 called	 on	 context	 changes	 can	 be	 registered	 at	 the	
widgets	(via	subscriber	model),	see	Figure	4.	

• Aggregator:	Collection	of	several	widgets		
• Interpreter:	 Mapping	 and	 fusion	 of	 context	 information	 (e.g.	 geo-coordinates	 will	 be	

mapped	to	a	concreate	city,	two	sensor	data	like	position	and	speed-up	will	be	mapped	
to	a	new	activity.		

• Discoverer:	Finds	new,	available	context	components	inside	the	P2P-Infrastructure		

	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	23	of	115	
	

Figure	5:	Call-back	mechanism	of	CTK	[Source:	Dey,	2000]	

Because	of	missing	 implementations	 in	 the	clients	and	 in	 the	server,	 the	CTK	 is	not	of	highest	
relevance	 for	 the	 concrete	usage	within	 the	BASMATI	project	even	 though	 it	 gives	 interesting	
conceptual	insights.		

2.2.2.3 JCAF	–	Java	Context	Awareness	Framework	
As	CTK,	JCAF	(Java	Context	Awareness	Framework)	from	the	University	of	Aarhus	(2003-2005)	is	
based	on	a	P2P	communication	model.	The	basic	assumption	of	JCAF	is	to	provide	Java	libraries	
to	be	consumed	in	concrete	context-aware	applications;	it’s	based	on	Java	RMI,	serialization	and	
dynamic	loading	and	execution	of	code	during	runtime.	

Basic	concepts	of	JCAF	are:	

• Context	services:	Management	of	context	information	from	entities	(like	retrieve,	store,	
distribute	context	information)		

• Entity:	Describe	 Context	 information	 as	 tuple	 of	 the	 form	 (Entity,	 association,	 object),	
e.g.	(User,	uses,	PC)	

• Context	Clients:	 Retrieve	Context	 information;	 register	 either	 as	 “Context	Monitor”	or	
“context	actuator”	at	a	context	service.		

• Context	Events:	Occurs	in	relation	to	context	service	and	context	client		

As	depicted	in	Figure	5,	context	information	is	translated	and	aggregated	within	the	Transformer	
Repository	by	either	Translators	or	Aggregators.	Access	Control	based	thereon	can	be	realized	
based	on	HTTP	basic	authentication.		

	

Figure	6:	Architecture	overview	of	JCAF	[Source:	Bardam,	2005]	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	24	of	115	
	

Because	of	missing	 implementations	of	 (mobile)	 clients	and	missing	 further	development	 (last	
change	2009),	the	JCAF	does	not	have	the	highest	priority	for	use	in	BASMATI.		

2.2.2.4 Hubiquitus		
Hubiquitus,	 developed	 from	 2012	 until	 today,	 forms	 a	 messaging	 middleware	 based	 on	
JavaScript	together	with	binding	for	Java,	NodeJS	and	.NET.	It	supports	datagram-based	message	
transport	and	can	be	used	on	mobile	platforms	as	well.		

Hubiquitus	is	based	on	the	following	concepts:	

• Actor:	 Identified	 by	 an	 “Actor-ID“,	 send-method	 with	 arguments	 (target	 Actor-ID,	
content,	 timeout	 and	 Callback).	 The	 Actor-ID	 is	 composed	 of	 “Bare-ID”	 and	 Resource	
(like	Domain/Resource	in	the	REST	terminology)	

• Container:	 Group	 of	 Actors.	 For	 each	 Node-Process	 (cf.	 JavaScript	 Node.js)	 one	
container	is	allowed).	

• Discovery:	Resolves	 target	Actor-IDs	 for	P2P-Communikation	between	Actors	by	 Inter-
Cloud	Service	Management	

Because	of	missing	details	and	documentation	and	because	Hubiquitus´	use	 is	only	mentioned	
without	 concreate	 reference,	 we´ll	 not	 consider	 it	 further	 for	 the	 use	 within	 BASMATI,	 even	
though	it´s	basic	concepts	and	the	approach	seems	promising.		

The	 AWARE	 framework	 impresses	 through	 the	 comprehensive	 code	 base	 and	 ready-to-use	
implementation	compared	to	the	rather	conceptual	work	provided	by	CTK,	JCAF	and	Hubiquitus.		

2.2.3 BASMATI	User	Mobility	Analysis	Requirements	and	Specification	
The	BASMATI	project	 focuses	on	 two	different	 scenarios:	 (1)	 analyze	 the	movements	 towards	
and	inside	a	 large	event	and	(2)	predict/detect	the	users	who	cross	the	national	border.	There	
are	no	specific	approaches	in	the	literature	for	these	two	tasks,	therefore	our	aim	is	to	adapt	the	
existing	technologies	available	for	other	similar	applications	to	this	specific	case.	We	want	to	(1)	
exploit	 both	GPS	 (when	 available)	 and	 social	media	 data	 collected	 before,	 during	 and	 after	 a	
large	event	to	understand	the	mobility	of	users	and	(2)	to	identify	and	predict	from	social	media	
the	cross-border	cases.		

In	the	first	case	the	users	can	be	tracked	inside	an	event	by	collecting	data	through	some	ad-hoc	
app	tracing	the	user	movement	by	using	GPS	or	by	using	ad-hoc	positioning	device	installed	at	
the	event	like	the	Bluetooth	Low	Energy	(i.e.	iBeacons)	or	Wifi	networks	and	from	these	data	we	
can	understand	the	mobility	patterns	(flows	of	people,	regularity	of	patterns,	specific	behavior,	
interests,	etc)	of	users	equipped	with	a	smartphone	(with	Bluetooth	or	Wifi).		

These	two	options	have	complementary	benefits	and	drawbacks.	GPS	enabled	app	requires	the	
users	 to	 install	 the	app	and,	give	 their	consent	 to	use	those	data	 for	 the	underlying	purposes.	
That	might	raise	privacy	concerns.	Moreover,	they	need	to	accept	the	high	consumption	of	their	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	25	of	115	
	

smartphone	 battery	 by	 the	 GPS.	 A	 tradeoff	 regarding	 battery	 consumption	 can	 be	 found	 by	
decreasing	 the	 sampling	 rate	 at	 the	 cost	 of	 losing	 accuracy.	 Indoor	 positioning	 techniques	 to	
monitor	 an	 event	 requires	 a	 higher	 investment	 in	 terms	 of	 cabling	 the	 environment	 with	
iBeacons	or	Wifi	access	point,	but	they	do	not	require	the	use	to	install	any	software	or	do	any	
action.	They	rely	on	the	fact	the	users	may	have	the	Bluetooth	on	and/or	be	connected	to	the	
Wifi	 network.	 These	 techniques	 loose	 in	 position	 accuracy	 compare	 to	 GPS	 app,	 but	 they	
increase	the	potential	number	of	tracked	people.		

A	 complementary	approach	 is	 to	 collect	 social	media	posts	 about	 the	event.	 For	example,	we	
can	also	predict	the	user’s	participation	to	an	event	by	analyzing	their	posts	to	social	media.		

Social	media	can	also	be	exploited	in	the	second	case	to	predict	the	users	who	are	likely	to	cross	
the	border	(prediction)	and	the	users	who	actually	crossed	the	border	in	the	past.	We	can	take	
advantage	of	the	geolocated	media	posts	but	also	(due	to	their	low	number)	the	content	of	the	
post	may	help	in	detecting	the	user	change	of	country.		

In	 general,	 we	 can	 distinguish	 between	 different	 kinds	 of	 user	 or	 user	mobility	 data	 relevant	
within	the	BASMATI	use	cases:	

• Personal	data	
• Environmental	data	
• Real-time	trajectory	data		
• Statistical	data		

The	following	examples	for	these	kinds	of	data	should	help	to	understand	what	data	we´ll	need	
to	 implement	the	use	cases.	Together	with	the	description	of	analysis	approaches	 for	mobility	
data,	 this	 forms	the	basis	 for	defining	parts	of	 the	BASMATI	architecture	and	the	concepts	 for	
Modelling	Users	and	Applications	and	for	the	big	data	management.1		

2.2.3.1 Personal	Data	
• Number	of	persons	when	moving	in	a	group	
• Special	kinds	of	group	members	e.g.	(small)	children	
• Travel	information	(means	of	travel,	schedule)	

1 Cf. upcoming deliverables: D2.3 Global Architecture Design, D3.1 Analysis and Modelling of
Users and Applications: Design and Specification Situational Knowledge Acquisition and Inter-
Cloud Service Monitoring and D5.1 Scalable big data management: Design and specification.

	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	26	of	115	
	

• Configuration	of	user	attributes,	like	personal	interests	and	preferences	regarding	food,	
music,	sports	and	similar	as	well	as	specific	handicaps	that	might	exclude	certain	POIs	or	
paths	

• Pre-selected	POIs,	like	chosen	food	stand,	concert/event,	meeting	point.		
• Potentially	 static	 (allergies,	 blood	 group,	 handicaps	 etc.)	 and	 sensory	 health	 data	

knowledge	in	case	of	emergency	[optional]	

2.2.3.2 Environmental	Data	
• Weather	information	
• Network	information	like	Wi-Fi/WLAN	access	points.	
• Traffic	reports	/	parking	information	
• Characteristics	of	the	terrain	(topology,	paths,	fences,	entries)	

2.2.3.3 Real-time	Trajectory	Data	
• Occupancy	of	the	terrain	near	a	POI		
• Queue	at	the	entrance	
• The	length	of	the	queue	and	calculated	waiting	time.	
• GPS	position	every	30	seconds	
• Total	number	of	visitors	on	the	area	
• Occupancy	of	potential	meeting	spots/POIs	
• Density	of	the	crowd	in	front	of	and	near	the	POI		
• Any	narrow	places	on	the	way	to	the	next	POI	
• Density	of	crowds	
• Movement	speeds	of	peoples	and	crowds	
• Distribution	of	crowds	
• Number	of	persons	on	the	area	
• Geographical	positions	of	all	people	

2.2.3.4 Statistical	Data	
• How	many	hours	before	the	event	is	the	place	occupied?	
• How	many	hours	before	the	event	are	all	the	good	seats	in	front	of	the	stage	occupied?	
• Particularly	 important	are	 characteristics	of	 the	 terrain	 to	avoid	crowds	of	people	and	

confusing	places.	
• Characteristics	of	the	terrain,	like	narrow	places	and	depressions.	

2.3 Service	Deployment:	VM	and	Micro	Services	
There	are	various	open	source	software	projects	to	support	service	deployment	on	multi-cloud	
environment.	We	introduce	some	representative	projects	in	this	section.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	27	of	115	
	

2.3.1 ManageIQ	
ManageIQ	is	a	multi-cloud	management	platform	software.	ManageIQ	is	an	open	source	version	
of	 Red	 Hat	 CloudForms	 technology,	 which	 enables	 admins	 to	 manage	 public	 clouds,	 private	
clouds,	and	virtual	infrastructures	in	a	single	interface.		

	

Figure	7.	Structure	of	ManageIQ	[Source:	Neary,	D.	&	Mark,	J.,	2016]	

MangeIQ	 provides	 the	 following	 management	 features	 (Neary	 &	 Mark,	 2016).	 Inventory	
management	via	smart	 state	analysis,	Self-service	provisioning	&	service	catalog,	Capacity	and	
utilization,	 Quotas	 and	 showback/chargeback,	 Configuration	 and	 change	 management,	 Policy	
engine	and	management,	Automation	and	orchestration,	and	Reporting.	ManageIQ	can	create	
auto-scalable	cloud	applications.		

The	user	of	ManageIQ	should	be	a	service	provider.	The	user	needs	to	develop	a	software	stack	
for	a	service	provisioning.	Eventually,	the	user	(a	service	provider)	needs	to	establish	SLA	too.		

2.3.2 Scalr	
Scalr	is	a	web-based	open	source	cloud	management	platform,	and	the	goal	of	Scalr	is	to	make	
the	 managing	 and	 administering	 multi-cloud	 infrastructure	 and	 resources	 in	 the	 cloud.	 Scalr	
basically	 allows	users	 to	manage	 cloud	 resources	 provided	by	 cloud	 service	 providers	 such	 as	
AWS,	Rackspace,	and	etc.	 It	also	enables	users	 to	create	a	cloud	environment	where	 they	can	
operate	easily	and	quickly	within	the	scope	of	a	defined	policy.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	28	of	115	
	

	

Figure	8.	Structure	of	Scalr	[Source:	Harnik,	2016]	

Scalr’s	 key	 functionalities	 are	 as	 follows	 (SCARL,	 2016).	 The	 hybrid	 cloud	management	makes	
users	 have	 a	 common	 set	 of	 access	 controls,	 policies	 and	management	 practices.	 The	 cross-
cloud	 API	 controls	 multi-cloud	 in	 a	 single	 interface.	 The	 orchestration	 engine	 automates	
handling	event-based,	manual,	or	scheduled	state	changes	to	the	cloud	infrastructure.	The	cloud	
scaling	automates	scaling	of	cloud	resources	based	on	CPU	utilization	or	other	manual	demands.		

However,	Scalr	does	not	provide	a	SLA	management	functionality.	The	user	needs	to	develop	a	
software	stack	for	a	service	provisioning,	and	the	user	(a	service	provider)	needs	to	establish	SLA.	

2.3.3 Stratos	
Stratos	(apache	stratos,	2016)	is	an	apache	open	source	that	is	a	highly-extensible	platform-as-a-
Service	 (PaaS)	 framework.	 Apache	 Stratos	 supports	 to	 run	 Apache	 Tomcat,	 PHP,	 and	MySQL	
applications	on	cloud	infrastructure.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	29	of	115	
	

	

Figure	9.	Architecture	of	Stratos	[Source:	apache	Stratos,	2015]	

Figure	8	shows	Stratos	architecture.	Stratos	has	a	multi-layered	architecture,	infrastructure	as	a	
service	 (IaaS),	 core	 components,	 cartridges,	 and	 applications.	 IaaS	 providing	 virtualized	
computing	 resources	 is	 the	bottom	 layer	 in	Stratos.	Using	 jclouds	 (a	 library	 including	a	unified	
API	 for	 multi-cloud)	 (apache	 jclouds,	 2016),	 Stratos	 can	 be	 deployed	 on	 IaaS,	 e.g.	 EC2,	
OpenStack,	 CloudStack,	 Google	 cloud.	 In	 addition,	 Stratos	 provides	 Docker	 with	 Google	
Kubernetes	and	Mock	 IaaS	 simulating	 IaaS.	 The	 core	 component	of	 Stratos	 consists	of	 Stratos	
Manager,	 auto-scaler,	 complex	 event	 processor	 (CEP),	 Load	 Balancer,	 Message	 Broker,	
identity/monitoring/metering	services,	and	CLI/Web	UI.	Stratos	Manager	provides	REST	APIs	to	
provision	applications,	and	also	monitor	and	meter	 the	PaaS.	Autoscaler	 is	 responsible	 for	 the	
elasticity	 of	 application	 and	 load	 balancer	 manages	 the	 traffic	 of	 load	 in	 Stratos.	 Stratos	
introduces	 a	 new	 concept	 called	 the	 cartridge	 that	 is	 a	 virtual	 machine	 with	 software	
components	 to	 interact	 with	 the	 Stratos.	 Stratos	 provides	 the	 following	 types	 of	 cartridges.	
Users	in	Stratos	can	execute	various	applications	based	on	the	cartridges	such	as	spring,	Tomcat,	
MySQL,	and	PHP	on	cloud	environments.	

2.3.4 Project	Jellyfish	
Project	 Jellyfish	 is	 an	 open	 source	 broker	 system	 offering	 policy-driven	 solutions	 that	 assist	
organizations	 with	 the	 management	 of	 multi-cloud	 IT	 environments	 (Project	 Jellyfish,	 2016).	
Because	 it	 is	 not	 just	 a	 cloud	management	 tool,	 but	 also	 an	 advanced	 business	 analytics	 and	
intelligence	tool,	 it	helps	service	providers	to	unify	their	cloud-based	resources,	 infrastructure,	
and	services	through	a	centralized	e-commerce	platform	and	to	satisfy	organization’s	 IT	needs	
for	cloud	services	using	an	easy	to	use	self-service	portal	within	budget.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	30	of	115	
	

The	 key	 functionalities	 of	 Project	 Jellyfish	 include	 providing	 search-and-compare	 wizard	 to	
evaluate	various	cloud	services	and	cost	across	 the	multiple	cloud	 infrastructure,	user-friendly	
dashboard	 to	monitor	usage	and	cost	data,	allowing	users	 to	create	projects	with	 the	defined	
services	offered	based	on	policy	and	workflow,	monitoring	and	orchestration	of	resources,	and	
automation	of	entire	lifecycle	of	a	cloud	service.	

Since	Project	 Jellyfish	 is	a	CSB	platform,	CSB	needs	to	establish	SLA(CSP	A,	CSB),	…,	SLA(CSP	K,	
CSB),	 and	 SLA(CSB,	 CSC).	 However,	 since	 Project	 Jellyfish	 does	 not	 provide	 value-added	
(reproduced)	 services,	 the	 agreement	 in	 SLA(CSB,	 CSC)	 is	 implicitly	 and	 identically	 defined	 by	
SLA(CSP,	CSB).		

2.3.5 CompatibleOne	
CompatibleOne	is	an	open	source	cloud	service	brokerage	platform	that	provides	IaaS	brokerage	
from	heterogeneous	 clouds.	 CompatibleOne	 is	 focused	on	 the	 adoption	 of	 open	 standards	 to	
foster	an	open	cloud	computing	ecosystem.	For	 instance,	CompatibleOne	adopted	OCCI	(Open	
Cloud	 Computing	 Interface)	 standard	 (OCCI	 &	 CompatibleOne,	 2012),	 which	 defines	 a	 meta-
model	 for	 cloud	 resources	 and	 a	 RESTful	 protocol	 among	 the	 cloud	 resources,	 so	 that	
CompatibleOne	 can	provide	a	 strong	 interoperability	 and	a	high	degree	of	 extensibility	of	 the	
platform.	Along	with	OCCI,	CompatibleOne	platform	consists	of	many	micro	 services	and	 they	
can	communicate	each	other	by	using	an	object-based	description	model	and	a	RESTful	protocol	
to	 perform	 a	 service	 brokerage	 or	 management.	 CompatibleOne	 provides	 an	 object-based	
description	 model	 (CompatibleOne	 resource	 description	 model,	 CORDS)	 of	 cloud	 resources.	
Based	 on	 the	 description	 model,	 a	 user	 of	 CompatibleOne	 can	 make	 a	 manifest	 in	 XML	 to	
request	or	control	a	cloud	service.	The	parser	of	CompatibleOne	is	responsible	for	parsing	of	the	
manifest	 and	 validating	 XML	 syntax	 so	 that	 micro	 services	 in	 CompatibleOne	 platform	
understand	the	requests	from	the	user.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	31	of	115	
	

	

Figure	10.	Architecture	of	CompatibleOne	[Source:	ComatibleOne,	n.d]	

Figure	 9	 shows	 the	 architecture	 of	 CompatibleOne.	 There	 are	 various	 micro	 services	 in	 the	
platform.	 For	 instance,	 SLAM	 (Service	 Level	Agreement	Manager),	 Parser	which	 is	 responsible	
for	 parsing	 and	 validating	 XML	 manifests,	 COSS	 (CompatibleOne	 Security	 Service)	 which	
provides	 a	 Transport	 Layer	 Security	 (TLS)	 to	 secure	 all	 micro	 services	 and	 users.	 COMONS	
(CompatibleOne	 MONitoring	 Service)	 to	 manage	 monitoring	 of	 provisioned	 services,	 COPS	
(CompatibleOne	 Placement	 Service)	 to	 determine	 the	 optimal	 service	 placement	 (to	 which	
cloud),	and	COOBAS	manages	ordering,	billing,	and	accounting.		

2.3.6 BASMATI	Service	Deployment	Requirements	and	Specifications		
The	 service	 deployment	 feature	 performs	 the	 sequence	 of	 service	 provisioning	 and	
configuration	actions	that	are	generic	across	heterogeneous	providers	to	achieve	the	objectives	
of	 the	 service	 lifecycle	workflow	 (linked	with	 service	 adaptation).	 For	 instance,	 if	 the	 lifecycle	
workflow	requests	to	scale	out,	the	service	deployment	will	perform	all	the	necessary	steps	to	
add	a	new	server	instance	(launching	a	new	VM,	configuring	the	service,	reconfiguring	the	load	
balancer…).	

The	requirement	of	service	deployment	is	as	below.	

• Application	 and	 user	 context	 information	 to	 deploy	 service	 on	 best-fit	 cloud	
infrastructure	 based	 on	 user	 location,	 resource	 requirement,	 security	 level,	 cost,	
application	workload	and	so	on.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	32	of	115	
	

• The	hybrid	 cloud	management	 to	makes	users	have	a	 common	set	of	access	 controls,	
policies	and	management	practices.	The	cross-cloud	API	controls	multi-cloud	in	a	single	
interface.		

• The	 orchestration	 automation	 to	 handle	 event-based,	 manual,	 or	 scheduled	 state	
changes	 to	 the	 cloud	 infrastructure.	 The	 cloud	 scaling	 automates	 scaling	 of	 cloud	
resources	based	on	CPU	utilization	or	other	manual	demands.	

• REST	APIs	to	provision	applications,	and	also	monitor	and	meter	the	service.	
• Search-and-compare	 wizard	 to	 evaluate	 various	 cloud	 services	 and	 cost	 across	 the	

multiple	cloud	infrastructure.	
• User-friendly	dashboard	to	deploy	the	required	specific	service	and	monitor	usage	and	

cost	data	
• Automation	of	entire	lifecycle	of	a	deployed	service.	
• Object-based	description	model	of	cloud	service.	Based	on	the	description	model,	a	user	

can	make	a	description	to	manage	a	specific	cloud	service.		
• Automated	 Service	 Level	Agreement	 (SLA).	Most	 commercial	 cloud	offerings	 rely	on	a	

model	similar	to	end-user	license	agreements	commonly	found	with	software	packages,	
which	are	based	on	the	principle	that	a	customer	can	either	accept	the	provider’s	terms	
and	use	the	offering,	or	disagree	with	them,	which	in	consequence	means	he	cannot	use	
the	offering.	This	model	can	be	extended	in	a	way	to	be	a	bit	more	dynamic	and	user-
friendly	by	offering	several	levels	of	service	for	different	prices,	such	as	different	levels	
of	reliability	or	computing	power.	However,	these	models	are	still	a	far	step	away	from	
the	automated	negotiation	of	SLA	terms.	

2.4 Service	Monitoring		
This section provides some information about technologies used for service monitoring in the
cloud.

2.4.1 Federation	Monitoring	

2.4.1.1 Zabbix	
The	EU	BonFIRE	Multi-Cloud	Test	Facility	(BONFIRE,	2014)	offers	a	multi-site	cloud	testbed	that	
supports	large-scale	testing	of	applications,	services,	and	systems	over	multiple,	geographically	
distributed,	heterogeneous	cloud	testbeds.	

The	monitoring	functionality	of	the	BonFIRE	is	implemented	based	on	a	server-agent	model.	The	
server	 is	deployed	as	a	separate	resource	and	collects	monitoring	data	reported	by	the	agents	
that	reside	in	the	VM	images.	To	implement	monitoring,	BonFIRE	has	adopted	the	open	source	
monitoring	software	Zabbix	(ZABBIX,	2001).	

Zabbix	comprises	two	major	software	components:	Zabbix	server	and	Zabbix	agent.	The	server	is	
referred	to	as	an”aggregator”	in	the	introduced	monitoring	system	(in	BonFIRE	as	well).	BonFIRE	
uses	a	special	type	of	agent,	the	active	Zabbix	agent,	in	order	to	overcome	possible	accessibility	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	33	of	115	
	

problems	because	of	NAT.	In	this	case,	the	agent	is	the	one	that	initiates	the	communication	to	
the	server	and	sends	the	monitoring	data.	Agents	are	small	software	components	configured	to	
send	metric	values	to	the	server	at	regular	 intervals.	Agents	typically	produce	metric	values	by	
executing	Unix	 scripts	written	 to	obtain	 the	value.	The	monitoring	aggregator	provides	both	a	
GUI	 to	 observe	 the	 monitoring	 metrics	 and	 also	 an	 API	 to	 support	 programmatic	 access	 to	
monitoring	data.	

2.4.1.2 RESERVOIR	Federated	Monitoring	
When	 Service	 Clouds	 are	 federated	 to	 accept	 each	 other’s	 workload	 there	 needs	 to	 be	 a	
consideration	of	how	monitoring	will	behave	in	the	presence	of	the	federated	Virtual	Execution	
Environments	 (VEEs).	 Monitoring	 needs	 to	 continue	 to	 work	 correctly	 and	 reliably	 when	 a	
service	executes	across	federated	Clouds.	When	some	VEEs	are	migrated	to	another	Cloud,	the	
monitoring	data	distribution	mechanism	will	need	to	cross	Cloud	boundaries.	It	is	essential	that	
the	interfaces	and	formats	between	Clouds	be	standardized	in	order	that	federation	monitoring	
to	work	 in	heterogeneous	environments.	This	will	ensure	 that	 that	 the	monitoring	data	 for	all	
the	VEEs	of	a	service	will	be	connected,	whether	locally	or	remotely.	

A	 different	 solution	 has	 to	 be	 taken	 for	 infrastructural	monitoring	 information.	 One	 group	 of	
measurements	(i.e.,	messages	from	VEEH	Probes)	are	not	intended	to	leave	the	Cloud	managing	
each	 VEEH.	 In	 fact,	 monitoring	 information	 on	 the	 physical	 machines	 of	 a	 specific	 Cloud	 is	
needed	 for	 the	 Cloud	 management	 (e.g.,	 placement,	 anomaly	 detection)	 and	 generally	 kept	
hidden	 from	 the	 outside.	 Data	 from	 Hypervisor	 VEE	 Probes,	 on	 the	 other	 hand,	 needs	 to	 be	
received	both	by	the	local	Cloud	Service	Manager	(e.g.,	for	interCloud	billing)	as	well	as	by	the	
Service	Manager	at	VEE	originating	site	(e.g.,	for	Service	Provider	billing).	

The	 monitoring	 data	 plane	 has	 a	 per-service	 segment	 between	 federated	 sites,	 in	 order	 to	
transmit	 the	monitoring	 data.	 This	 connection	 between	monitoring	 data	 plane	 parts	 on	 each	
Cloud	is	shown	as	the	Per-Service	Segment	in	Figure	10.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	34	of	115	
	

	

Figure	11:	Monitoring	across	federated	RESERVOIR	Clouds	[Source	:	Clayman,	2012]	

When	 the	 first	 VEE	 of	 a	 service	 is	 about	 to	 be	 migrated	 across	 sites,	 a	 Federation	Manager	
instantiates	 gateways	 for	 each	 service.	A	 service	 gateway	 connects	 to	 the	 internal	monitoring	
data	plane	of	a	RESERVOIR	Cloud	and	forwards	the	relevant	information	to	a	matching	gateway	
on	the	destination	Cloud.	

In	 Figure	 11	 we	 see	 3	 such	 service	 gateways,	 for	 service	 A,	 service	 B,	 and	 service	 C.	 Only	
monitoring	 data	 from	 service	 A	 VEEs	 crosses	 the	 service	 segment	 through	 the	 service	 A	
gateways.	The	same	process	applies	for	service	B	and	service	C.	

The	service	gateways	are	under	the	control	of	the	Federation	Manager,	which	itself	is	controlled	
and	managed	by	the	VEEM.	As	service	gateways	are	under	administrative	control	of	the	Cloud	
that	instantiates	them,	this	enables:	

•	Complete	control	over	the	information	that	is	chosen	to	be	forwarded	over	the	gateway,	as	
the	VEEM	and	Federation	Manager	can	adjust	the	settings	of	the	gateway;	

•	Gateways	to	be	adaptable	and	implemented	according	to	each	Cloud	monitoring	data	plane	
technology.	

This	allows	for	a	Cloud	to	use	one	technology	internally	for	the	monitoring	data	plane,	and	use	a	
different	 technology	 for	 the	 Cloud-to-Cloud	 transmission	 (e.g.,	multicast	 inside	 the	 Cloud	 and	
JMS	over	 the	gateway).	 Furthermore,	 two	Clouds	may	have	entirely	different	 technologies	 for	
their	monitoring	data	plane,	but	the	gateways	will	provide	the	connection	between	them.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	35	of	115	
	

When	VEEs	 are	undeployed	or	migrated	back	 to	 their	 originating	 site,	 and	 there	 are	no	more	
VEEs	 for	 a	 service	 still	 running	 on	 a	 Cloud,	 the	 federation	managers	 on	 each	 Cloud	 have	 the	
responsibility	of	tearing	down	the	appropriate	service	gateways.	

	

Figure	12:	Federated	monitoring	management	[Source:	Clayman,	2012]	

2.4.2 Resource	Monitoring		
The	Resource	monitoring	is	responsible	for	measuring	the	Key	Performance	Indicators	(KPIs)	of	
the	systems	and	services.	In	cloud	systems,	it	provides	the	data	primarily	for	the	following	areas:	
a)	system	monitoring	b)	Accounting,	billing,	and	auditing	c)	Service	Level	Agreements	(SLAs).	In	
system	 monitoring,	 it	 helps	 to	 diagnose	 hardware	 and	 software	 problems,	 to	 enhance	 the	
resource	utilization	and	to	ensure	the	system’s	performance	and	security.	It	also	plays	a	key	role	
for	measuring	services	and	for	precisely	charging	the	users	based	on	their	resources	and	services	
consumed.	Sensors	provide	data	 for	 the	monitoring	component,	and	this	 includes	 information	
such	as	resource	consumption	of	hardware	and	software	and	the	Quality	of	Service	(QoS).	It	 is	
then	forwarded	to	higher	layers	using	web	services	or	displayed	to	administrators	using	a	GUI.	
The	section	below	concentrates	on	resource	monitoring	only	at	the	infrastructure	level.	

In	 general,	 the	 cloud	 software	 has	 its	 own	 monitoring	 component.	 Alternatively,	 external	
monitoring	 tools,	 such	as	Nagios	 (Nagios,	 2009)	 and	 collectd	 (collectd,	 n.d)	 can	be	used	using	
which	monitoring	information	about	the	hardware	and	the	services	of	the	cloud	software	can	be	
obtained	from	its	respective	plug-ins.	Apart	from	the	above	data,	cloud	software	also	provides	
information	 on	 the	 total	 number	 of	 users,	 projects	 /	 tenants	 /	 accounts	 and	 the	 association	
between	users	/	projects	and	virtual	machines.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	36	of	115	
	

Cloud	 management	 systems	 such	 as	 OpenStack	 use	 VMM	 (libvirt)	 (libvirt	 project,	 2017)	 to	
provide	 information	 about	 virtual	 resources.	 This	 data	 can	 be	 obtained	 either	 via	 the	 cloud	
software	itself	or	using	external	monitoring	tools	such	as	Nagios,	Ganglia	(Massie,	Chun	&	Culler,	
2004)	or	collectd.	However,	the	libvirt	plugin	for	Nagios,	nagios-virt	offers	only	the	power	state	
of	the	VM	and	cannot	be	used	for	the	monitoring	of	virtual	environments.	

Ceilometer	 (Ceilometer,	n.d),	 the	monitoring	and	metering	component	of	OpenStack,	provides	
data	 about	 virtual	machines,	 number	 of	 images	 uploaded	 by	 users	 and	 their	 size,	 amount	 of	
block	and	object	storage	consumed	and	the	amount	of	packets	sent	and	received	in	the	network	
interface.	 It	was	 introduced	only	 in	Havana	and	 there	was	no	 stable	monitoring	 support	 in	 its	
previous	versions.	OpenStack	 is	also	compatible	with	monitoring	tools	such	as	Zenoss	(Zenoss,	
n.d)	 and	 Nagios.	 ZenPack,	 a	 Zenoss	 extension	 (Zenoss,	 n.d),	 allows	 monitoring	 of	 flavours,	
images	and	servers	that	are	running	 in	the	OpenStack	clouds.	Similarly,	Nagios	also	provides	a	
plugin	using	which	OpenStack	 services	 can	be	defined,	 configured	and	monitored.	Monitoring	
driver	 is	 the	 component	 in	 OpenNebula	 (OpenNebula	 Project,	 2017)	 that	 is	 responsible	 for	
collecting	information	about	physical	and	virtual	hardware	resources.	It	executes	a	set	of	probes	
in	 the	 hosts	 and	 the	 information	 is	 transferred	 to	 higher-level	 components	 using	 events	 or	
interfaces.	

Monitoring	 in	 VMware	 vSphere	 is	 handled	 by	 several	 tools,	 which	 gather	 and	 display	 system	
information	and	 resource	usage.	These	 tools	 can	be	accessed	by	either	GUI	or	 command	 line.	
Additionally,	 they	 support	 configuration	 of	 alarms,	 setting	 up	 alerts	 and	 notifications	 and	 the	
necessary	 actions	 to	 be	 performed	 when	 the	 threshold	 specific	 to	 a	 particular	 resource	 is	
breached.	 CloudWatch	 (Amazon	 Web	 Serices,	 2017)	 is	 a	 service	 in	 Eucalyptus	 that	 collects	
monitoring	 information	 from	the	cloud	resources,	pre-processes	 them	and	converts	 them	 into	
readable	metrics.	Furthermore,	it	provides	options	to	configure	alarms	based	on	the	generated	
events	/	data	and	allows	publishing	of	new	metrics	in	the	CloudWatch	system.	By	default,	they	
monitor	the	following	resources:	instances,	volumes	(block	storage),	and	load	balancers.	

CloudStack	 (The	 Apache	 Software	 Foundation,	 2017)	 uses	 Usage	 Server,	 which	 creates	 a	
summary	of	usage	records	by	taking	data	from	the	event	logs.	The	interfaces	on	usage	records	
accept	 user,	 project,	 start	 and	 end	 date	 as	 input	 and	 return	 information	 such	 as	 the	 VM	 run	
time,	their	resource	utilization,	number	of	public	IP	addresses	belonging	to	the	user	and	number	
of	snapshots	uploaded.	Zenoss	also	provides	an	extension,	ZenPack,	for	monitoring	the	software	
and	 hardware	 resources	 running	 under	 CloudStack.	 Phantom,	 the	 latest	 release	 of	 Nimbus,	
contains	 a	 package	 tcollector,	 which	 provides	 sensor-monitoring	 information	 about	 the	
deployed	 virtual	machines.	 It	 uses	OpenTSDB	 (Time	 Series	Database)	 for	 storing	 the	 gathered	
data	 that	 are	 received	 from	 the	 collectors.	 Similar	 to	 other	 cloud	 software,	 tcollector	 also	
collects	 information	about	 the	virtual	hardware	resources	such	as	processors,	disks,	networks,	
processes	and	the	NFS	storage.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	37	of	115	
	

2.4.3 BASMATI	Resource	Monitoring	Requirements	and	Specifications	
BASMATI	platform	will	provide	the	federated	monitoring	information	with	multi	clouds	as	well	
as	the	monitoring	data	for	each	cloud	and	services,	so	thereby	allows	the	related	components	in	
BASMATI	 platform	 to	 make	 use	 of	 the	 cloud	 infrastructure	 and	 the	 deployed	 services.	
Furthermore,	 this	monitoring	 functionality	 should	 be	 as	 cost	 effective	 as	 possible	 in	 order	 to	
gather	information	of	all	running	service	instances.	

BASMATI	platform	will	 be	 interested	 in	monitoring	various	aspects	of	each	 cloud,	e.g.	 current	
virtual	 machines	 running	 state	 including	 CPUs,	 memories,	 disks	 and	 networks,	 active	 SLAs,	
possible	 SLA	 violations,	 log,	 and	 so	 on.	 Some	 of	 the	 monitored	 data	 will	 be	 displayed	 via	 a	
graphical	user	interface.	

For	the	resource	monitoring	of	all	existing	cloud	services,	BASMATI	platform	just	will	make	use	
of	monitoring	 services	 that	 each	 cloud	 services	 expose	 to	 cloud	 users	 as	well	 in	 one	 form	 or	
another.	However,	BASMATI	platform	will	use	resources	 from	multiple	cloud	service	providers	
that	could	have	their	own	monitoring	system,	therefore	it	should	provide	a	comprehensive	and	
federated	 monitoring	 methods	 that	 can	 operate	 seamlessly	 across	 cloud	 domain	 borders.	 In	
addition,	BASMATI		

The	requirements	of	the	resource	monitoring	may	be	as	follows;	

• Monitoring	the	hosts,	the	virtual	machines,	and	the	dynamic	parameters	like	the	current	
CPU,	memory,	I/O	and	network	utilization	of	a	virtual	machine	from	monitoring	agents	

• Monitoring	 the	 static	 parameters	 like	 user-	 and	 project-related	 information	 and	 the	
hardware	layout	of	the	virtual	machines	from	cloud	and	virtualization	software	

• Integrating	multiple	clouds,	virtualization	software,	and	monitoring	tools	
• Avoiding	 bottlenecks	 due	 to	 the	 communication	 with	 respective	 infrastructure	

monitoring	data	supplier	
• Considering	 billing	 which	 may	 be	 done	 based	 on	 the	 monitoring	 data	 obtained	 from	

various	cloud	layers.	
• Considering	a	general	and	easy-to-use	management	method	of	monitoring	data	
• Defining	a	well-structured	data	model,	standardized	interfaces,	and	common	databases	

in	order	to	support	the	heterogeneity	of	the	federated	cloud	and	providing	monitoring	
data	in	a	meaningful	way	

• Providing	on-demand	and	on-schedule	data	management	

2.5 Situational	Knowledge	Extractor		
The	 Situational	 Knowledge	 Extractor	 and	 Acquisition	 is	 the	 process	 that	 takes	 as	 input	 the	
current	 state	 of	 the	 application	 and	 user	 behavior	 and	 combines	 it	 with	 previously	 observed	
pattern	 behaviors	 in	 order	 to	 predict	 the	 resource	 needs	 of	 the	 user-application	 session.	 The	
whole	process	exploits	state	of	the	art	algorithms	and	methods	providing	efficient	and	efficacy	
results	in	real	time	satisfying	the	quality	of	services	and	service	level	agreements.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	38	of	115	
	

This	section	presents	the	process	for	data	acquisition	and	refinement,	clustering,	classification,	
and	 regression	 predictions	 of	 the	 resource	 demands,	 and	 finally	 the	 requirements	 for	
implementation	in	BAMATI.		

2.5.1 Data	Acquisition	and	Refinement	
The	 combination	 of	 the	 various	 sources	 of	 information	 requires	 the	 use	 of	 Data	 Fusion	 (DF)	
techniques	(El	Faouzi	&	Klein,	2016).	DF	techniques	can	combine	in	a	unified	fashion	all	available	
data	derived	 from	various	 sources	providing	a	 vector	 representation	 for	each	user-application	
session	(Girdhar	et	al.,	2016).	An	alternative	representation	such	as	an	ontology	representation	
(Liu	et	al.,	2016)	will	be	examined	in	case	that	they	can	represent	the	obtained	knowledge	in	a	
more	flexible	and	accurate	fashion.	

The	 abovementioned	 representations	 may	 suffer	 from	 the	 curse	 of	 dimensionality	 (Ye	 &	
Sugihara,	 2016).	 To	mitigate	 this	 problem,	 it	will	 be	 investigated	 feature	 selection	 techniques	
(Lou	 et	 al.,	 2015)	 that	will	 filter	 out	 the	 vector	 dimensions	 that	 decrease	 the	 accuracy	 of	 the	
resource	 predictions.	 The	 feature	 selection	 criteria	 will	 be	 applied	 to	 the	 annotated	 datasets	
that	will	be	provided	by	the	end	users	in	order	to	gauge	which	dimensions	should	be	discarded.	
So,	the	training	dataset	can	be	reformed	and	the	knowledge	acquisition	can	be	refined	before	it	
is	processed	by	the	following	stages.	

2.5.2 Clustering,	 Classification,	 and	 Regression	 Predictions	 of	 the	 Resource	
Demands	

The	 representation	of	 user-application	 sessions	will	 be	used	 for	 the	 resource	demands.	 Three	
different	 approaches	 will	 be	 described	 and	 researched	 in	 order	 to	 resolve	 the	 emerged	
challenges	of	the	situational	knowledge	extractor	and	acquisition.	

Users	 may	 have	 similar	 behaviors	 during	 the	 use	 of	 applications,	 they	 may	 follow	 the	 same	
trajectories	 or	make	 similar	 operations	 like	 copy,	 record	 or	move	 the	 point	 of	 view	 of	 visual	
workstations.	An	unsupervised	clustering	(Zare	Mehrjerdi	&	Nadizadeh,	2016)	of	the	users	who	
interact	with	applications	can	predict	 the	group	of	users	who	will	have	 the	same	behaviors	or	
users	 that	 interact	 the	 one	 with	 the	 other.	 The	 application	 that	 will	 be	 used	 by	 these	 users	
should	be	serviced	by	the	same	server	cause	that	these	applications	need	common	data.	

Classification	 of	 user	 –	 application	 sessions	 (Taravat	 et	 al.,	 2015)	 will	 be	 a	 method	 that	 will	
recognize	patterns	of	behaviors	that	have	been	observed	in	previous	events.	If	the	sessions	have	
high	 similarity	with	 the	 representation	of	predefined	 session	categories	 then	we	can	 infer	 the	
evolution	 of	 the	 resource	 demands.	 A	 set	 of	 classes	 that	 will	 be	 determined	 based	 on	 the	
annotated	datasets.	Each	class	will	represent	the	observed	behavior	of	the	user	and	application.	
In	addition,	the	classes	will	provide	the	observed	resource	needs	based	on	the	previous	events.		

The	Regression	(Gu	et	al.,	2015)	of	the	user	–	application	sessions	will	be	a	more	precise	method	
that	can	predict	the	resource	needs	based	on	a	function	that	has	been	gauged	by	the	annotated	
datasets.	The	vector	representation	of	the	sessions	and	the	infrastructure	of	the	system	will	be	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	39	of	115	
	

the	input	of	the	regression	function.	Different	use	of	the	Basmati	platform	may	have	as	a	result	
different	configuration	parameters	of	the	regression	functions.	These	parameters	will	be	gauged	
based	on	the	annotated	datasets.	

2.5.3 Knowledge	 Extractor	 Data	 Management	 Requirements,	 Specifications	 and	
Further	Processes	

The	difficulty	in	translating	user-understandable	application	terms	from	the	software	application	
to	 the	 resource	 demand	 management	 can	 be	 carried	 out	 by	 an	 artificial	 neural	 networks	
approach	 (Kousiouris	et	al.,	2011)	 that	 takes	 into	consideration	 the	application-level	workload	
parameters,	the	quality	of	services	and	the	key	performance	indicators	in	order	to	request	the	
appropriate	hardware	resources.	

The	ability	to	parallelize	and	process	large	scale	computational	tasks	on	big	data	is	an	issue	that	
will	 be	 emerged	 in	 the	 Basmati	 applications.	 A	 mechanism	 for	 offering	 virtual	 clusters	 as	 a	
service	(Kousiouris	et	al.,	2013)	to	address	the	needs	of	dynamic	and	on-demand	creation	of	the	
data	will	be	provided	taking	 into	consideration	the	time-step	evolution	of	the	applications	and	
the	user	behaviors.	

The	Study	of	user’s	and	applications’	behavior	 in	 the	management	processes	of	Clouds	can	be	
enhanced	 by	 analyzing	 information	 at	 a	 high-level	 related	 to	 application	 terms	 (Translation	
level)	while	 it	 predicts	 the	 anticipated	 user	 behavior	 (Behavioural	 level).	 The	 identification	 of	
patterns	 in	 high-level	 information	 through	 a	 time	 series	 analysis	 is	 translated	 to	 low-level	
resource	attributes	with	the	use	of	artificial	neural	networks	in	a	dynamic	fashion	(Kousiouris	et	
al.,	2014).	

2.6 Data	Management	
In	order	to	delve	into	the	topic	of	data	management	and	governance,	we	need	to	define	some	
terms	that	will	ease	the	reading	and	understanding	of	the	rest	of	this	section.	Firstly,	we	have	to	
mention	 that	by	Data	Store	we	define	any	means	of	data	 storage,	be	 it	 a	Database	 system,	a	
virtual	data	storage	platform	or	a	physical	data	storage	infrastructure.	To	move	on	to	a	couple	
more	complicated	and	easily	confused	terms,	we	will	define	the	Data	Management.	According	
to	DAMA	 International,	Data	Management	 is	 “the	development,	 execution	 and	 supervision	of	
plans,	policies,	programs	and	practices	 that	control,	protect,	deliver	and	enhance	 the	value	of	
data	and	information	assets”	(“Data	management”,	2016).	Data	governance,	on	the	other	hand,	
is	 “a	 control	 that	 ensures	 that	 the	 data	 entry	 by	 an	 operations	 team	 member	 or	 by	 an	
automated	process	meets	precisely	standards,	such	as	a	Business	rule,	a	data	definition	and	data	
integrity	 constraints	 in	 the	 data	 model”	 (“Data	 governance”,	 2016).	 As	 we	 can	 see,	 Data	
Management	 is	 a	wider	 term,	 covering	 a	wide	 range	 of	 processes	 and	models	 applied	 to	 the	
retrieval	 and	 storage	 of	 data	 whereas	 data	 governance	 is	 a	 set	 of	 rules,	 ensuring	 that	 the	
standards	set	by	the	users	of	the	data	are	met.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	40	of	115	
	

2.6.1 CoherentPaaS	Component	Modification	
The	 BASMATI	 Unified	 Data	 Management	 Framework	 (BUDaMaF)	 will	 be	 based	 on	 the	
CoherentPaaS	project	 (CoherentPaaS,	n.d.).	This	project	has	created	a	 framework	of	wrapping	
polyglot	database	system	under	one	common	transactional	engine,	using	one	common	SQL-like	
query	language,	even	on	databases	that	do	not	support	transactional	properties	or	SQL	syntax.	
Of	course,	in	order	for	these	components	to	fit	into	the	BASMATI	goals	and	architecture,	some	
modifications	 may	 be	 necessary,	 especially	 if	 we	 need	 to	 add	 additional	 functionality.	 Three	
main	 components	 will	 be	 used	 in	 the	 creation	 of	 the	 BASMATI	 Unified	 Data	 Management	
Framework:	

Common	Query	Language	
The	 language	used	 in	CoherentPaaS	 is	officially	 called	“Cloud	Multidatastore	Query	Language”	
(CloudMdsQL).	 This	 language	 is	 SQL-based	 so	 its	 syntax	 and	 vocabulary	 is	 borrowed	 from	 the	
SQL.	 In	 a	 polyglot	 world	 though,	 the	 need	 of	 accessing	 noSQL	 data	 stores	 necessitates	 the	
addition	of	 some	Python	elements	 in	order	 for	 the	CloudMdsQL	 to	 support	 embedded	native	
queries	and	embedded	procedural	language	concepts	(Kolev	et	al.,	2015).		

Query	Engine	
The	Query	Engine	developed	in	the	context	of	CoherentPaaS	is	an	open	source	software	solution	
that	 can	 form	 the	 basis	 for	 the	 BUDaMaF	 transactional	 manager.	 It	 is	 created	 with	 a	 highly	
distributed,	 cloud	 architecture,	 taking	 advantage	 of	 the	 unique	 environment	 of	 a	 computer	
cloud.	

	

Figure	13:	Global	Architecture	of	Query	Engine	[source:	Kolev	et	al.,	2015]	

As	shown	in	the	architecture,	the	query	engine	is	developed	using	a	master-slave	model,	where	
the	master	is	planning	the	queries	received	by	the	client	and	then	sends	them	to	a	worker.	This	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	41	of	115	
	

worker	 then	 optimizes	 the	 query	 plan	 and	 performs	 a	 combination	 of	 local	 calls	 and	 data	
requests	 from	 other	 workers,	 if	 needed,	 in	 order	 to	 perform	 complex	 queries	 in	 a	 resource	
efficient	manner.	

Wrappers	
As	 presented	 by	 Koley	 et	 al.	 (Kolev	 et	 al.,	 2015)	 the	 wrappers	 are	 developed	 in	 the	 form	 of	
plugins	 to	 the	 query	 engine.	 They	 handle	 the	 interaction	 with	 the	 local	 data	 stores	 and	 the	
translation	of	CloudMdsQL	queries	into	local	queries.	Specifically,	the	wrappers	are	responsible	
for	 four	 tasks:	 a)	 execution	 of	 local	 sub-queries,	 b)	 transformation	 of	 data	 into	 the	 form	
expected	 by	 the	 client,	 c)	 data	 delivery	 to	 the	 operator	 engine	 and	 d)	 instantiation	 of	 other	
named	expressions	in	the	local	table	storage,	which	works	like	a	cache	memory.	

2.6.2 Logic	and	Data	Separation	
The	 highly	 distributed	 BASMATI	 architecture	 necessitates	 the	 separation	 of	 data	 from	 the	
business	 logic	of	the	hosted	applications,	 in	order	to	achieve	higher	scalability,	 lower	resource	
demand	and	thus	lower	costs.	This	gives	rise	to	a	set	of	implementation	challenges,	both	in	the	
creation	of	new	modules	and	in	the	integration	of	older	modules	in	the	BASMATI	platform.	

When	creating	new	services	it	is	simple	to	develop	them	with	this	separation	in	mind	but	when	
dealing	with	older	and	perhaps	locked	under	copyright	laws	software	components	it	is	harder.	A	
possible	 solution	 is	 to	 create	 interfaces	 or	 even	wrappers	 in	 order	 to	 translate	 the	 local	 data	
calls	of	a	service	into	other	calls,	either	local	or	remote	based	on	the	application	needs.	

2.6.3 File	System	Support	by	BUDaMaF	
As	discussed	in	an	earlier	section	the	BUDaMaF	will	be	based	on	the	CoherentPaaS	project.	This	
project	 has	 already	 developed	 and	 tested	 usecase	 based	 on	 MongoDB,	 which	 is	 a	 noSQL,	
document	based	system.	It	also	provides	support	for	other	file	based	systems	like	Hbase,	which	
is	a	Hadoop	file	system	data	store.	

A	 transition	 to	 another	 file	 system	 is	 a	 simple	matter	 of	 wrapping	 the	 file	 system	 in	 a	more	
platform	friendly	form.	This	can	be	done	in	one	of	two	ways,	either	the	file	system	is	converted	
into	 a	 noSQL	 database	 and	 then	 accessed	 by	 the	 BUDaMaF	 or	 a	wrapper	 is	 created	 that	will	
translate	the	commands	issued	by	the	BUDaMaF	into	file	editing	commands.	

2.6.4 Data	Located	on	Mobile	Devices	
Some	of	the	data	used	 in	BASMATI	applications	will	be	 located	 in	the	end	users’	devices,	be	 it	
laptops,	 smartphones	 or	 other	 micro-computers.	 This	 creates	 an	 issue	 for	 the	 unified	
framework.	 It	 can	 manipulate	 the	 integrated	 databases	 seamlessly	 but	 it	 has	 limited	 to	 no	
access	on	the	end	user	devices.	

Two	solutions	are	proposed	for	this	challenge;	the	first	is	keeping	duplicates	of	the	relevant	data	
that	will	 be	 kept	 synchronized	 to	 the	 actual	 data	 into	 a	multi-cloud	 controlled	 database.	 This	
solution,	 of	 course,	 is	 increasing	 the	 cost	 exponentially	 but	 it	 is	 ensuring	 the	data	 availability.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	42	of	115	
	

The	 second	 solution	 is	 requesting	 access	 to	 the	 data	 by	 the	 end	 users,	 thus	 creating	 a	
connection	 between	 the	 user’s	 device	 file	 system	 and	 the	 BUDaMaF.	 This	 connection	will	 be	
using	 its	 own	 wrapper	 and	 work	 in	 a	 loosely	 coupled	 fashion.	 Of	 course,	 an	 intermediate	
solution	 can	 be	 achieved	 by	 employing	 the	 cloudlets	 as	 a	mediator	 layer.	 The	 data	 could	 be	
accessed	through	the	cloudlet	devices	and	then	managed	by	the	BUDaMaF,	which	will	already	
have	access	to	the	cloudlet	data.	

2.6.5 Raspberry	Pi	used	for	Bluetooth	Beacons		
Creating	a	database	of	 trajectories	 is	 imperative	 in	order	 to	understand	user	mobility	 in	 a	big	
event,	like	Das	Fest.	A	solution	proposed	is	creating	a	network	of	Bluetooth	beacons	that	will	act	
as	checkpoints,	logging	each	user’s	ID	and	time	of	arrival	and	departure	as	the	users	are	passing	
through	these	beacons.	This	will	create	a	rough	trajectory	with	timeframes	for	each	user	in	the	
area.	

In	order	to	minimize	the	work	needed	and	the	cost	of	implementation,	the	usage	of	Raspberry	
Pies	as	beacons	was	proposed.	This	 requires	a	detailed	analysis	of	each	application	 run	 in	 the	
Raspberries	 in	 order	 to	 avoid	 overloading	 them	 with	 resource	 demands.	 If	 using	 them	 as	
beacons	 is	 endangering	other	 services	 running	on	 them,	optimization	of	 the	 services	must	be	
performed	and	if	that	fails	another	solution	must	be	explored.	

2.6.6 Data	Replication	and	Consistency	Mechanism	
As	 a	 failsafe	 to	 the	 prediction	model	 and	 self-learning	 adaptive	mechanism,	 presented	 in	 the	
research	challenges,	a	data	replication	mechanism	is	proposed.	It	will	consume	more	resources,	
thus	 increasing	 the	 cost,	 but	 it	 is	 a	 tested	 way	 of	 maintaining	 the	 QoS	 requirements	 across	
different	nodes	of	the	multi-cloud.	It	ensures	minimum	effort	by	the	applications	for	accessing	
and	 manipulating	 the	 data	 and	 creates	 a	 more	 solid	 data	 structure,	 also	 ensuring	 the	 data	
availability	at	all	times.	 In	this	case,	though,	we	will	encounter	a	 lot	of	replication	and	possibly	
data	 consistency	 issues	 that	 need	 to	 be	 countered.	 The	 OPTIMIS	 project	 (OPTIMIS,	 n.d.)	 has	
created	a	toolkit	that	deals	with	data	replication	issues	on	large	cloud	platforms	so	it	could	form	
a	basis	for	tackling	this	challenge.	

2.6.7 Predictive	Mechanism	for	Cost	Efficiency	
A	mechanism	for	predicting	the	costs	of	moving,	accessing	and	editing	data	for	each	application	
must	 be	 created.	 This	 mechanism	will	 function	 as	 a	 basis	 for	 data	management	 decisions.	 It	
could	dictate,	for	example,	when	and	where	to	move	the	data	and	how	much	of	the	data	related	
to	an	application	to	move.	For	example,	an	application	could	use	a	large	chunk	of	data	during	its	
initialization	 and	 never	 use	 them	 before.	 This	 big	 chunk	 of	 data	 does	 not	 need	 to	 follow	 the	
application	that	could	be	moving	between	different	nodes	of	a	cloudlet.	So	the	data	that	will	be	
following	 this	 specific	 application	 are	 considerably	 smaller	 in	 volume	 and	 thus	 the	 cost	 of	
moving	them	is	lowered	significantly.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	43	of	115	
	

It	is	hard	to	acquire	a	priori	knowledge	of	each	specific	application’s	needs	regarding	the	data	so	
we	 have	 to	 rely	 on	 estimations	 and	 predictions	 based	 on	 our	 expert	 knowledge	 of	 how	 the	
application	works	 in	 addition	 to	 a	 detailed	 analysis	 of	 historical	 data.	 In	 addition,	 the	 cost	 of	
moving	 the	data	or	having	an	application	access	 the	data	 remotely	also	have	 to	be	estimated	
according	 to	 the	 SLAs	 signed	 with	 the	 users	 and	 the	 infrastructure	 providers.	 On	 one	 hand,	
moving	the	data	will	require	extra	resources	that	will	 increase	the	cost	of	infrastructure	usage,	
on	the	other	hand,	accessing	the	data	remotely	could	lead	to	QoS	violations,	increasing	the	cost	
towards	the	end	users.	

Tackling	this	challenge,	according	to	these	factors,	necessitates	the	creation	of	two	models,	one	
for	 estimating	 the	 data	 needs	 for	 each	 application	 and	 one	 that	 estimates	 the	 costs	 for	 each	
data	regarding	the	action.	These	models	will	work	in	unison,	creating	a	set	of	scenarios	for	data	
handling	for	each	application	with	a	prediction	of	the	cost	that	each	scenario	will	impose	on	the	
service	 provider.	 The	 scenario	 will	 include	 the	 volume	 of	 data	 that	 need	 to	 follow	 the	
application,	the	location	of	the	data	stores	that	will	be	used,	the	resources	needed	and	the	cost	
of	this	scenario.	

2.6.8 Data	Workload	Predictive	Model	
Predicting	the	data	workload	of	an	application	is	a	simple	matter	of	analyzing	the	historical	data	
and	our	expert	knowledge	on	how	the	application	is	behaving	during	its	life	cycle.	The	main	bulk	
of	work	is	in	finding	the	correct	features	that	will	allow	us	to	create	a	valid	and	close	to	reality	
predictive	model	of	 the	expected	workload.	Plenty	of	work	has	been	done	on	 this	 field	and	 it	
seems	 that	 two	methodologies	 have	 emerged	 in	 the	 literature,	 the	Artificial	Neural	Networks	
(ANNs)	and	the	Autoregressive	integrated	moving	average	(ARIMA)	(Calheiros	et	al.,	2015;	Fang	
et	al.,	2012;	Prevost	et	al.,	2011;	Roy	et	al.,	2011;	Saripalli	et	al.,	2011;	Zhang,	2003).	

Artificial	Neural	Networks	are	a	machine	learning	algorithm,	based	on	multiple	nodes	(neurons),	
each	neuron	performing	a	fast	and	simple	function.	As	discussed	by	(Prevost	et	al.,	2011),	these	
neurons	are	composed	of	two	parts,	one	that	adds	weights	to	the	input	data,	forming	a	learning	
curve,	 and	 one	 that	 processes	 the	 data	 in	 a	 simple	 manner.	 The	 actual	 algorithm	 used	 in	
resource	demand	prediction	 in	called	Multi-layer	perceptron	network,	 in	which	many	 layers	of	
neurons,	 also	 known	 as	 perceptrons,	 are	 stacked	 on	 top	 of	 one	 another.	 Each	 layer’s	 output	
becomes	the	next	layer’s	input,	always	adding	more	processing	power,	until	a	set	of	predictions	
are	 calculated,	 usually	 accompanied	 by	 their	 predictive	 strength,	 the	 chance	 of	 each	 one	
happening.	

ARIMA	methodology	differs	largely	from	ANNs.	As	(Zhang,	2003)	is	writing	“In	an	autoregressive	
integrated	 moving	 average	 model,	 the	 future	 value	 of	 a	 variable	 is	 assumed	 to	 be	 a	 linear	
function	of	several	past	observations	and	random	errors”.	This	means	that	this	methodology	is	
not	 learning	by	historical	 data,	 it	 just	 assumes	 that	 the	 resource	demand	 is	 following	 a	 linear	
function.	 So	 if	 we	 know	 a	 series	 of	 demand	 values	 we	 can	 calculate	 the	 rest	 by	 just	moving	
ahead	on	the	time	axis	of	this	function.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	44	of	115	
	

2.6.9 Cost	Predictive	Model	
In	order	to	predict	the	cost	of	any	decision	regarding	the	data	management	plan	in	regard	to	an	
application,	we	have	to	take	into	account	multiple	variables.	In	their	work,	Roy	et	al.	(Roy	et	al.,	
2011),	they	have	created	an	equation	that	takes	into	account	the	three	most	important	of	these	
variables;	 the	 cost	 of	 SLA	 violations,	 the	 cost	 of	 leasing	 a	 virtual	 machine	 and	 the	 cost	 of	
reconfiguring	a	machine.		

Based	 on	 their	 equation	 we	 can	 create	 a	 similar	 one	 for	 calculating	 the	 cost	 of	 certain	 data	
management	decisions.	For	example,	we	could	calculate	the	cost	of	moving	a	certain	percentage	
of	the	data	required	by	an	application	to	an	infrastructure	that	is	more	easily	accessible	by	the	
application	 and	 then	 the	 cost	 of	 leaving	 the	 data	where	 they	 are	 and	 then	 compare	 the	 two	
costs.	If	we	generalize	this	into	a	multi-objective	problem,	we	can	arrive	at	conclusions	showing	
us	the	most	cost	efficient	policy	for	data	management	for	each	application	instance.	

2.6.10 Self-training	Error	Prediction	Mechanism	
The	predictions	generated	by	the	predictive	mechanism	give	us	a	prior	knowledge	of	 the	data	
demands	 and	 costs	 of	 each	 application,	 as	 noted	 in	 the	 previous	 section.	 The	 self-training	
mechanism,	on	the	other	hand,	will	provide	real-time	corrections	on	this	prior	knowledge.	It	will	
be	an	online	learning	system,	using	unsupervised	machine	learning	that	will	be	trained,	in	near-
real	time,	by	data	generated	during	the	application	runtime.	A	promising	solution,	proposed	by	
(Bashar,	 2013)	 is	 based	 on	Bayesian	Networks	 in	 order	 to	 create	 an	 online	 learning	model.	 A	
more	 fitting	 algorithm	 though	 used	 also	 by	 (Dean	 et	 al.,	 2012),	 is	 called	 Self-Organizing	Map	
(SOM).	 It	 is	 recommended	due	 to	 its	 low	resource	demand	nature,	enabling	 its	usage	also	 for	
streaming	data	applications,	 like	 in	 the	 case	of	BASMATI.	 SOM	 is	using	a	network	of	neurons,	
much	 like	an	artificial	neural	network,	but	with	a	more	specific	 focus,	being	optimized	for	 fast	
learning.	

	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	45	of	115	
	

Figure	14:	SOM	Neuron	Training	Process	[Source:	Dean	et	al.,	2012].	

This	mechanism	will	have	a	dual	purpose.	Firstly,	it	will	provide	error	detection,	in	the	cases	that	
the	prior	prediction	falls	far	from	the	real	data	gathered	during	the	application	runtime,	which	
can	 be	 used	 as	 a	 feedback	 on	 the	 predictive	 mechanism.	 Secondly,	 it	 could	 change,	 during	
runtime,	the	data	policies	created	during	the	application	deployment.	This	second	function	will	
be	 available	 in	 order	 to	 predict	 errors	 in	 the	 predictive	 models	 and	 try	 to	 avoid	 them.	 This	
change	in	policy	of	course	will	not	be	able	to	cover	actions	already	taken,	like	retrieval	of	data	
chunks	 that	 were	 deleted	 or	 left	 behind	 during	 data	 relocation,	 but	 it	 could	 change	 future	
actions	during	the	rest	of	the	application’s	life	cycle.	

In	order	to	tackle	this	research	challenge,	an	error	location	mechanism	must	be	created	as	well	
as	an	online,	unsupervised	machine	learning	algorithm	and	a	model	that	will	predict	failures	of	
the	predictive	models.	The	real	challenge	is	figuring	out	what	an	“error”	actually	is	in	the	context	
of	cost	and	data	usage	predictions,	finding	a	 list	of	features	that	will	be	directly	related	to	this	
error	 locating	 mechanism	 and	 creating	 a	 viable	 model	 for	 error	 prediction	 in	 real	 time	 and	
possibly	for	streaming	data.	The	SOM	methodology	gives	us	a	viable	solution	for	both	 locating	
and	predicting	the	errors	by	 looking	at	the	whole	of	data	provided	by	monitoring	the	usage	of	
applications.	 In	 order	 to	 extract	 these	 data	 though,	 we	 still	 need	 a	 monitoring	 mechanism	
attached	to	each	application.	

2.6.11 Privacy	Protection	in	the	Multi-cloud	
In	the	frame	of	the	BASMATI	project,	the	two	most	common	approaches	to	protect	contextual	
data	acquisition	from	unintended	and	unauthorized	analysis	are	envisioned:	Pseudonymization	
and	anonymization.	Both	terms	are	legally	defined	and	refer	to	the	concept	of	identifiability	of	a	
person	based	on	the	information	given	in	a	dataset.	Identifiability	of	a	person	is	one	of	the	basic	
characteristics	 of	 personal	 data.	 “Anonymization”	 is	 defined	 as	 processing	data	 in	 such	 a	way	
that	 the	data	subject	 is	no	 longer	 identifiable.	For	 the	matter	of	understanding	one	could	add	
“to	no	one”	–	so	anonymized	data	is	by	definition	no	personal	data	and	therefore	not	subject	to	
data	protection.2	In	contrast,	Pseudonymization	is	the	separation	of	data	from	direct	identifiers	
so	 that	 linkage	 to	 an	 identity	 is	 not	 possible	 without	 additional	 information	 that	 is	 held	
separately.	Pseudonymized	data	stays	personal	data	as	is	someone	who	is	able	to	map	the	data	
to	the	original	subjects	that	applies	to	any	person	who	has	access	to	the	additional	information.	
Flowingly	pseudonymized	data	 is	still	 subject	 to	data	protection.	 Ideally,	 for	a	person	who	has	
sole	 access	 to	 the	 data	 –	 e.g.	 some	 service	 provider	 or	 partner	 processing	 the	 data	 alone	 -	
pseudonymized	data	does	not	reveal	any	information	that	identifies	the	data	subject.	Therefore,	
such	 techniques	 significantly	 reduce	 the	 risks	 associated	 with	 data	 processing,	 while	 also	
maintaining	the	data’s	utility.	For	this	reason,	the	new	data	protection	legislation	and	especially	

2	See	EU directive 95/46/EC	(26)	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	46	of	115	
	

the	GDPR	 recommends	 and	 even	 creates	 incentives	 for	 controllers	 to	 pseudonymize	 the	 data	
that	they	collect.		

2.6.11.1 	Methods	to	Generally	Anonymize	Data	
For	complex	(statistical)	data	records	exist	several	measures	like	k-anonymity,	n-diversity	and	t-
closeness.	The	term	k-anonymity	requires,	that	each	combination	of	sensitive	attributes	applies	
to	at	least	a	number	of	k	different	data	records	which	implies	that	there	is	no	combination	that	
is	identifying	a	single	data	subject	(person).	The	l-diversity	measure	enhances	k-anonymity	with	
regards	to	so-called	homogeneity	and	background	knowledge	attacks.	The	former	uses	the	fact	
that	k-anonymity	does	not	exclude	k	datasets	having	identical	values	of	a	sensitive	attribute.	In	
the	latter	case,	an	attacker	knows	the	equivalence	class	(k)	a	single	subject	belongs	to.	 In	case	
this	 class	 determines	 the	 sensitive	 attribute.	 Flowingly	 l-diversity	 requires	 elements	 of	 an	
equivalence	 class	 having	 at	 l	 different	 values	 for	 each	 sensitive	 attribute.	 The	 t-closeness	
measure	 enhances	 l-diversity	 with	 regard	 to	 cases,	 in	 which	 the	 l	 distinct	 values	 within	 an	
equivalence	class	are	semantically	close.	E.	g.	in	a	collection	of	health	records.	In	case	all	values	
within	 l	 describe	 some	 serious	 illness	 the	 attacker	 still	 receives	 highly	 sensitive	 information.	
Therefore,	 t-closeness	 requires	 the	 distribution	 of	 attribute	 values	 in	 l	 having	 a	 maximum	
distance	of	t	to	the	distribution	of	the	whole	table.	We	refer	the	reader	to	see	(Danezis,	2005)	
and	 (Rai,	 2016)	 for	 an	 encompassing	 presentation	 and	 discussion	 of	 several	 approaches.	
However,	all	methods	 to	anonymize	data	 introduce	a	 loss	of	expressiveness	by	 introducing	an	
(increasingly)	course	classification.	So	 it	strongly	depends	on	the	concrete	scenario	 if	and	how	
they	might	be	applied.	

2.6.11.2 	Challenges	in	BASMATI	
In	Basmati	the	most	important	data	source	is	mobility	data	–	i.e.	tracking	information	from	users	
from	which	at	least	some	additional	information	is	given.	Mobility	data	is	required	to	determine,	
which	 computational	 and	 storage	 resources	 and	 data	 are	 required	 to	 serve	 his	 needs.	 These	
data	are	potentially	sensitive	and	in	addition,	introduce	some	special	difficulties	with	respect	to	
methods	applied.	Firstly,	tracking	information	is	identifying	and	might	hold	sensitive	information	
at	 the	 same	 time.	 Application	 of	 k-anonymity	 and	 its	 extensions	 in	 the	 standard	 approach	
requires	 that	 it	 is	 possible	 to	 treat	 both,	 to	 some	 extent,	 separately.	 Secondly,	 background	
information,	 which	 can	 originate	 from	 a	 variety	 of	 other	 and	 often	 openly	 accessible	 data	
sources,	is	an	issue.	In	complete	user	tracking	records,	an	identification	at	any	location	or	point	
in	time	or	in	combination	has	to	be	effectively	prevented.	As	a	result,	the	measures	to	be	taken	
significantly	 reduce	 the	 expressiveness	 of	 data	 and	 thereby	 their	 utility.	 The	 same	 applies	 to	
pseudomyzed	data,	as	pseudomyzation	is	performed	in	order	to	keep	the	additional	information	
required	 for	 identification	 secret.	 If	 an	 attacker	 can	 infer	 the	 person	 from	 the	 data	 alone,	
pseudomyzation	 is	 impossible.	 The	 individual	 potential	 to	 work	 with	 techniques	 like	
anonymization	 and	 pseudonymization	 depend	 on	 the	 use	 case	 and	 the	 kind	 of	 service	 in	
question.	However,	some	general	statements	are	possible:	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	47	of	115	
	

• In	 scenarios	 like	adaption	of	general	 system	resources,	 it	 should	be	considered	 to	use	
data	on	(predicted)	people	frequency	and	demand.		

• Regarding	 the	 detection	 of	 mobility	 patterns,	 individual	 adaption	 pseudonymization	
should	be	used	but	combined	with	an	informed	consent	as	a	pseudonym	is	likely	to	be	
lifted.	

• In	 the	 case	 of	 an	 individual	 service	 offer	 to	 dedicated	 users	 of	 BASMATI	 neither	
anonymization	nor	pseudomyzation	can	be	applied.	An	informed	consent	is	required.		

In	any	case	if	possible	technical	and	otherwise	organizational	precautions	have	to	be	applied	in	
order	to	treat	tracking	data	confidential	except	for	clearly	defined	and	transparent	purposes.		

Within	 the	 BASMATI	 project,	 the	 decision	 of	 when	 and	 how	 to	 use	 pseudonymization	 and	
anonymization	will	be	based	on	the	use	case	analysis	and	especially	on	an	analysis	of	what	kind	
of	 data	 will	 exactly	 be	 analyzed	 and	 for	 what	 purpose.	 The	 appropriate	 mechanisms	 can	 be	
decided	only	when	there	are	concrete	use	cases	at	hand.	

2.6.12 BASMATI	Data	Management	Requirements	and	Specifications	
In	 our	 case	we	need	both	pseudonymization	 and	 anonymization,	 as	 BASMATI	will	 be	 a	multi-
cloud	platform	having	a	plethora	of	users,	varying	from	people	to	services	and	mobile	devices.	
So	a	strict	data	governance	mechanism	must	be	created	in	order	to	preserve	these	data	and	at	
the	same	time	a	data	management	engine	must	be	created	in	order	to	ensure	all	the	QoS	needs	
that	the	users	demand.	

As	 mentioned,	 BASMATI	 will	 be	 using	 a	 plethora	 of	 devices	 in	 the	 form	 of	 a	 multi-cloud	
architecture.	 Each	 type	 of	 device	 gathers	 or	 creates	 data	 in	 a	 format	 that	 is	 not	 always	
compatible	with	each	one	of	the	other	devices.	Of	course	in	order	to	form	a	cloud,	or	a	cloudlet,	
of	 devices	 a	 common	 data	 structure	 and	 common	 data	 storage	must	 be	 defined,	 so	 that	 the	
devices	 that	 form	 this	 cloud	 can	 exchange	 information	 freely.	 BASMATI	 takes	 that	 one	 step	
further	 forming	 a	 federation	 of	 clouds.	 This	 federation	 of	 clouds	will	 require	 a	 common	 data	
management	 solution	 in	order	 to	 function	 in	a	unified	way,	as	one	multi-cloud.	This	 creates	a	
number	 of	 challenges,	 mainly	 caused	 by	 the	 heterogeneity	 of	 the	 available	 data	 and	 their	
volume,	which	a	strong	data	management	platform	should	tackle.	

The	BASMATI	applications	will	be	handling	various	data	from	multiple	sources	and	private	data	
will	be	among	 them.	A	protection	mechanism	must	be	created	and	preserved	 throughout	 the	
travel	 routes	 of	 the	 data.	 A	 possible	 solution	 lies	 in	 the	 block-chain	 methodology	 but	 needs	
further	analysis	before	being	adapted.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	48	of	115	
	

3 	Cloud	Federation		

3.1 Federation	Technologies		
This	 section	 of	 this	 document	 provides	 the	 state	 of	 the	 art	 of	 cloud	 federation,	 or	 federated	
cloud.		

Several	 different	 appreciations	 will	 now	 be	 given,	 taken	 from	 various	 public	 sources	 on	 the	
Internet,	 to	 give	 perspective	 to	 the	 complex	 subject	 of	 cloud	 federation	 and	 to	 expose	 the	
different	meanings	that	these	words	may	take	in	different	companies’	minds.		

3.1.1 Definition	of	Cloud	Federation	
Various	 research	 works	 have	 defined	 cloud	 federation.	 Haile	 and	 Altmann	 (2015b)	 described	
cloud	federation	as	a	“strategic	alliance	between	cloud	providers,	in	which	cloud	providers	have	
reached	 a	 cross-site	 agreement	 for	 cooperating	 regarding	 the	 deployment	 of	 service	
components	and	the	use	of	capacity	from	each	other	to	cope	with	demand	variations	of	clients”	
(Haile	&	Altmann,	 2015b).	Another	definition	 is	 offered	by	Altmann	and	Kashief	 (2014)	 as	 “	 a	
model	 for	 enabling	 convenient,	 on-demand	 network	 access	 to	 a	 shared	 pool	 of	 configurable	
computing	 resources	 (e.g.,	 networks,	 servers,	 storage,	 applications,	 and	 services)	 that	 can	 be	
rapidly	 provisioned	 and	 released	 with	 minimal	 management	 effort	 or	 service	 provider	
interaction”	(Altmann	&	Kashef	(2014).		

Apart	from	the	academic	works,	several	IT	companies	also	described	cloud	federation	from	their	
point	of	view.	Two	such	definitions	are	given	below.		

“Cloud	 Federation	 refers	 to	 the	unionization	of	 software,	 infrastructure	 and	platform	 services	
from	 disparate	 networks	 that	 can	 be	 accessed	 by	 a	 client	 via	 the	 internet.	 The	 federation	 of	
cloud	resources	is	facilitated	through	network	gateways	that	connect	public	or	external	clouds,	
private	or	internal	clouds	(owned	by	a	single	entity)	and/or	community	clouds	(owned	by	several	
cooperating	 entities);	 creating	 a	 hybrid	 cloud	 computing	 environment.	 It	 is	 important	 to	 note	
that	 federated	 cloud	 computing	 services	 still	 rely	 on	 the	 existence	 of	 physical	 data	 centers.”	
(APPRENDA,	2016).	

“A	 federated	 cloud	 (also	 called	 cloud	 federation)	 is	 the	 deployment	 and	 management	 of	
multiple	external	and	internal	cloud	computing	services	to	match	business	needs.	A	federation	is	
the	union	of	several	smaller	parts	that	perform	a	common	action”.	(TechTarget,	2011).	

3.1.2 Cloud	Federation	Benefits	
“The	federation	of	cloud	resources	allows	clients	to	optimize	enterprise	IT	service	delivery.	The	
federation	of	cloud	resources	allows	a	client	to	choose	the	best	cloud	services	provider,	in	terms	
of	 flexibility,	 cost,	 and	 availability	 of	 services,	 to	 meet	 a	 particular	 business	 or	 technological	
need	 within	 their	 organization.	 Federation	 across	 different	 cloud	 resource	 pools	 allows	
applications	to	run	in	the	most	appropriate	infrastructure	environments.	The	federation	of	cloud	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	49	of	115	
	

resources	 also	 allows	 an	 enterprise	 to	 distribute	 workloads	 around	 the	 globe,	 move	 data	
between	disparate	networks	and	implement	innovative	security	models	for	user	access	to	cloud	
resources.”	 (APPRENDA,	2016).	Further	discussions	on	 the	benefits	of	 cloud	 federation	can	be	
found	in	Kim,	Kang	&	Altmann	(2014).	

3.1.3 Cloud	Federation	Implementation	
“One	 weakness	 that	 exists	 in	 the	 federation	 of	 cloud	 resources	 is	 the	 difficulty	 in	 brokering	
connectivity	 between	 a	 client	 and	 a	 given	 external	 cloud	provider,	 as	 they	 each	possess	 their	
own	 unique	 network	 addressing	 scheme.	 To	 resolve	 this	 issue,	 cloud	 providers	 must	 grant	
clients	 the	permission	 to	specify	an	addressing	scheme	for	each	server	 the	cloud	provider	has	
extended	 to	 the	 Internet.	 This	 provides	 customers	 with	 the	 ability	 to	 access	 cloud	 services	
without	 the	 need	 for	 reconfiguration	 when	 using	 resources	 from	 different	 service	 providers.	
Cloud	 federation	can	also	be	 implemented	behind	a	 firewall,	providing	clients	with	a	menu	of	
cloud	services	provided	by	one	or	more	trusted	entities.”	(APPRENDA,	2016).	

3.1.4 Hybrid	Cloud	vs	Federated	Clouds	
“As	cloud	computing	continues	to	gain	in	popularity,	people	are	also	looking	for	ways	to	make	
the	 cloud	 fit	 their	 own	 personal	 or	 organizational	 needs.	 As	more	 changes	 occur,	 people	 are	
trying	to	decide	what	kind	of	cloud	they	should	use,	and	one	of	the	decisions	they	must	make	
includes	whether	 to	use	a	hybrid	cloud	or	a	 federated	cloud,	or	whether	 to	use	public	clouds.	
One	 question	 that	 more	 and	 more	 people	 ask	 is	 if	 there	 is	 a	 difference	 between	 federated	
clouds	and	hybrid	clouds	as	they	seem	to	be	more	and	more	interchangeable.”	(Smith,	2013).	

“A	federated	cloud	is	an	amalgam	of	several	internal	and	external	clouds	that	are	put	together	
to	 meet	 an	 individual	 or	 a	 business’s	 needs.	 Just	 as	 in	 the	 political	 science	 definition	 of	
federation,	 a	 federated	 cloud	 is	 the	 joining	 or	 the	 union	 of	 several	 smaller	 parts	 in	 order	 to	
perform	together	to	accomplish	one	particular	and	specific	action.”	(Smith,	2013).	“In	a	nutshell,	
a	federated	cloud	is	a	cloud	environment	that	is	composed	of	offerings	from	multiple	vendors	—	
a	synonymous	term	is	multi-cloud	environments.”	(Navarro,	2015).	

“Over	the	last	few	years,	many	new	cloud	vendors	have	entered	the	market	—	they	offer	slightly	
different	services,	with	different	focuses,	different	hardware,	and	with	data	centers	in	different	
locations.	At	the	same	time,	the	barriers	between	these	vendors	have	dropped.	Cloud	services	
are	more	compatible	than	they	ever	were	previously,	and	by	offering	open	APIs,	they	create	the	
opportunity	for	clients	to	build	bespoke	cloud	environments	that	meet	their	needs	better	than	
any	 single	vendor	could.	Data	can	be	more	easily	moved	between	platforms,	and	 integrations	
layers	 like	 computenext	 make	 it	 quite	 simple	 to	 combine	 offerings	 and	 manage	 federated	
clouds.”	(Navarro,	2015)	

	“Understanding	 hybrid	 clouds	 depends	 on	 an	 understanding	 of	 two	 other	 cloud	 modalities:	
private	 clouds	 and	 public	 clouds.	 Public	 clouds	 are	what	 is	 familiarly	 understand	 by	 the	 term	
cloud:	they	are	the	prototypical	cloud	environment.	Public	clouds	use	virtualization	technology	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	50	of	115	
	

to	 offer	 infrastructure	 and	 software	 services	 to	 the	 public.	 The	 underlying	 infrastructure	 is	
shared	by	many	different	users.	Amazon	Web	Services	are	a	public	cloud	platform.”	 (Navarro,	
2015)	 “A	hybrid	cloud	 is	using	“the	cloud”	 in	a	way	 that	an	organization	or	business	manages	
some	of	 the	 cloud	 resources	 in-house,	while	 other	 resources	 come	 from	external	 sources.	An	
organization	may	use	a	public	cloud	service	for	to	archive	older	data,	but	they	may	use	in-house	
cloud	 storage	 for	 customer	 information	 that	 is	more	 up-to-date.	Using	 a	 hybrid	 cloud	 system	
allows	things	that	are	perhaps	less	important	to	be	stored	in	the	less	expensive	public	sector	of	
cloud	 computer,	 while	 maintaining	 the	 more	 sensitive	 information	 and	 data	 internally.	 By	
keeping	the	less	sensitive	material	internal,	it	is	more	protected	from	outsiders	hacking	into	the	
information.	(Smith,	2013).		

“Ultimately,	there	is	no	difference	between	federated	and	hybrid	clouds.	Both	terms	discuss	the	
joining	of	internal	and	outside	clouds	in	order	to	accomplish	one	goal.	Term	federated	cloud	has	
been	around	longer,	but	as	time	goes	by,	the	term	hybrid	cloud	has	been	used	more	to	describe	
the	accomplishing	the	same	task.	The	terms	and	hybrid	and	federated	are	just	different	names	
that	describe	the	same	process	or	existing	practice	to	make	 it	more	universally	understood	by	
practitioners.”	(Smith,	2013).		

“Private	 clouds	use	 the	 same	virtualization	 technology	as	 the	public	 cloud,	but	 the	underlying	
hardware	 and	 all	 the	 virtual	 machines	 and	 services	 that	 run	 on	 it	 are	 used	 by	 only	 one	
organization.	Typically	private	clouds	are	hosted	in	private	data	centers	or	on	co-located	servers.	
As	you	might	have	guessed,	hybrid	clouds	are	a	cloud	environment	that	combines	both	public	
and	private	clouds.	Often	a	company	will	deploy	its	core	computing,	and	storage	infrastructure,	
on	a	private	cloud	and	augment	that	capability	with	components	drawn	from	the	public	cloud.”	
(Navarro,	2015).	

	“It	 should	 be	 clear	 that	 although	 hybrid	 and	 federated	 clouds	 are	 not	 identical,	 they	 can	 be	
related.	 It’s	perfectly	possible,	 and	 indeed	common,	 for	a	 federated	cloud	 to	also	be	a	hybrid	
cloud	 —	 we	 speak	 of	 them	 as	 separate	 categories	 because	 it	 makes	 it	 easier	 to	 pick	 out	
important	 features.	Pundits	 frequently	trumpet	the	rise	of	public	clouds,	or	the	ascendency	of	
private	 clouds,	 as	 if	 they	 were	 somehow	 in	 competition;	 they	 aren’t.	 Each	 vendor	 and	 each	
cloud	modality	has	 its	strengths	and	domain	of	optimal	application.	The	most	 intelligent	cloud	
strategy	 is	 to	combine	cloud	deployment	methods,	 service	modalities,	and	vendor	offerings	 in	
ways	that	best	meet	the	operational	needs	of	a	specific	business.”	(Navarro,	2015)	

3.1.5 Examples	of	Federated	Clouds		
The	future	of	the	cloud	is	federated,	and	when	you	look	at	the	broad	categories	of	apps	moving	
to	 the	 cloud,	 the	 truth	of	 this	 statement	begins	 to	become	clear.	Gaming,	 social	media,	Web,	
eCommerce,	 publishing,	 CRM	 –	 these	 applications	 demand	 truly	 global	 coverage,	 so	 that	 the	
user	experience	is	always	on,	local	and	instant,	with	ultra-low	latency.	That’s	what	the	cloud	has	
always	promised	to	be.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	51	of	115	
	

The	problem	is	that	end	users	can’t	get	that	from	a	single	provider,	no	matter	how	large.	Even	
market	giants	like	Amazon	have	limited	geographic	presence,	with	infrastructure	only	where	it’s	
profitable	for	them	to	invest.	As	a	result,	outside	the	major	countries	and	cities,	coverage	from	
today’s	‘global’	cloud	providers	is	actually	pretty	thin.	Iceland,	Jordan,	Latvia,	Turkey,	Malaysia?	
Good	 luck.	Even	 in	the	U.S.,	you	might	find	that	the	closest	access	point	to	your	business	 isn’t	
even	in	the	same	state,	let	alone	the	same	city.	

Of	 course,	 these	 locations	 aren’t	 devoid	of	 infrastructure.	 There	are	hosting	providers,	 telcos,	
ISPs	 and	 data	 center	 operators	 pretty	much	 everywhere.	 If	 you	 own	 infrastructure	 in	 one	 of	
these	locations,	you	already	have	a	working	business	model	for	your	local	market.	And,	like	most	
providers,	you	are	likely	to	have	spare	capacity	almost	all	of	the	time.	

So,	what	 if	 there	was	 a	way	 to	 pool	 that	 capacity	 and	make	 it	 available	 as	 a	massive	 pool	 of	
cloud	resources	to	anyone	who	needs	it?	That’s	what	federated	cloud	is	all	about:	capitalizing	on	
this	geographically	dispersed	infrastructure	to	finally	deliver	the	promise	of	the	cloud.	

The	federated	cloud	connects	these	 local	 infrastructure	providers	to	a	global	marketplace	that	
enables	 each	 participant	 to	 buy	 and	 sell	 capacity	 on	 demand.	 As	 a	 provider,	 this	 gives	 you	
instant	 access	 to	 global	 infrastructure	 on	 an	 unprecedented	 scale.	 If	 your	 customer	 suddenly	
needs	a	few	hundred	new	servers,	you	just	buy	the	capacity	they	need	from	the	marketplace.	If	
a	customer	needs	to	accelerate	a	website	or	an	application	in	Hong	Kong,	Tokyo	or	Latvia,	you	
simply	subscribe	to	those	locations	and	make	use	of	the	infrastructure	that’s	already	there.	

As	 part	 of	 a	 cloud	 federation,	 even	 a	 small	 service	 provider	 can	 offer	 a	 truly	 global	 service	
without	spending	a	dime	building	new	infrastructure.	For	companies	with	spare	capacity	in	the	
data	center,	the	federation	also	provides	a	simple	way	to	monetize	that	capacity	by	submitting	it	
to	the	marketplace	for	other	providers	to	buy,	creating	an	additional	source	of	revenue.	

There	are	immediate	benefits	for	end	users,	too.	The	federated	cloud	means	that	end	users	can	
host	apps	with	their	federated	cloud	provider	of	choice,	 instead	of	choosing	from	a	handful	of	
“global”	cloud	providers	on	the	market	today	and	making	do	with	whatever	pricing,	app	support	
and	 SLAs	 they	 happen	 to	 impose.	 Cloud	users	 can	 choose	 a	 local	 host	with	 the	 exact	 pricing,	
expertise	and	support	package	that	fits	their	need,	while	still	receiving	instant	access	to	as	much	
local	or	global	 IT	 resources	as	 they’d	 like.	They	get	global	 scalability	without	 restricted	choice,	
and	without	having	to	manage	multiple	providers	and	invoices.		

The	 federated	 cloud	model	 is	 a	 force	 for	 real	 democratization	 in	 the	 cloud	market.	 It’s	 how	
businesses	will	 be	 able	 to	 use	 local	 cloud	 providers	 to	 connect	with	 customers,	 partners	 and	
employees	anywhere	 in	 the	world.	 It’s	how	end	users	will	 finally	get	 to	 realize	 the	promise	of	
the	cloud.	And,	it’s	how	data	center	operators	and	other	service	providers	will	finally	be	able	to	
compete	with,	and	beat,	today’s	so-called	global	cloud	providers.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	52	of	115	
	

3.1.5.1 EGI	
EGI	is	a	federation	of	computing	and	storage	resource	providers	united	by	a	mission	to	support	
research	and	development.	

The	EGI	federated	e-infrastructure	is	publicly	funded	and	consists	of	(as	of	September	2016):	

• 826,500	cores	available	for	High-Throughput	Compute	
• 6,600	cores	available	for	Cloud	Compute	
• 285	PB	for	Online	Storage	
• 280	PB	for	Archive	Storage	

The	federation	is	governed	by	the	participants	represented	in	the	EGI	Council	and	coordinated	
by	the	EGI	Foundation.	

3.1.5.2 ONAPP	
It	 can	be	 tempting	 to	 think	of	 ‘the	 cloud’	 as	 a	ubiquitous	global	phenomenon:	 always	on	and	
always	 available,	 everywhere	 to	 anyone.	 And,	 it’s	 easy	 to	 assume	 that	 cloud	 providers	 like	
Amazon	 are	 the	 only	 way	 you	 can	 get	 access	 to	 that	 kind	 of	 global	 capability.	 The	 reality,	
however,	 is	 really	quite	different.	 That	 is	why	a	new	approach	 to	 the	cloud	–	one	based	on	a	
federated	model	–	will	be	increasingly	important	for	cloud	providers	and	users	alike.	

3.1.5.3 	COMPATIBLEONE	
The	 adoption	 of	 Cloud	 computing	 as	 a	 new	 business	 model	 has	 induced	 the	 proliferation	 of	
several	Cloud	service	providers.	Cloud	end	users	are	then	faced	with	choosing	the	appropriate	
provider	offers	in	terms	of	supported	technologies,	geographic	locations,	security,	access	rules,	
billing,	 etc.	 As	 described	 above	 in	 section	 2.4.5	 in	 the	 context	 of	 service	 deployment,	 the	
platform	resulting	from	the	CompatibleOne	project	provides	solutions	to	assist	Cloud	end	users	
in	their	provider’s	choice.	The	CompatibleOne	broker	is	based	on	the	open	standard	OCCI,	and	
uses	a	newly	defined	object-based	description	model	called	CORDS.	CORDS	serves	to	model	the	
various	 Cloud	 resources	 that	 are	 managed	 by	 the	 main	 CompatibleOne	 platform	 called	
ACCORDS.	 This	 platform	 is	 also	 referred	 to	 as	 the	 Open	 Source	 Cloud	 Broker	 since	 it	 allows	
aggregation	of	all	major	public	and	private	cloud	technology	types.	

3.1.5.4 	EASICLOUDS	
EASI-CLOUDS,	 an	 ITEA2	 project	 that	 would	 provide	 a	 comprehensive	 open-source,	 innovative	
and	validated	cloud-computing	infrastructure,	the	future	pillar	of	this	fast-growing	market.	This	
infrastructure	will	 feature	 the	 three	classical	categories	–	 infrastructure-as-a-service,	platform-
as-a-service	and	software-as-a-service	–	with	superior	reliability,	elasticity,	security	and	ease-of-
use.	 The	 infrastructure	 will	 be	 used	 to	 set	 up	 an	 application	 type-specific	 cloud	 for	 private,	
public	or	hybrid	use	and	 implementing	a	given	 level	of	security,	privacy	and	quality	of	service.	
The	 study	 of	 the	 feasibility	 of	 Cloud	 Federation	 was	 an	 important	 aspect	 of	 this	 project	 and	
resulted	in	a	prototype	for	the	technical	deployment	and	delivery	of	application	resources	over	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	53	of	115	
	

an	 embryonic	 cloud	 federation	 based	 on	 Open	 Source	 cloud	 technology	 from	 the	 French	
National	FUI	CompatibleOne	project.		

3.1.5.5 	MICROSOFT	
Microsoft	 uses	 the	 term	 federation	 simply	 as	 a	 commercial	 hook	 to	 bring	 attention	 to	 their	
Microsoft	Windows	Azure	Cloud	Services.	

3.1.5.6 	GOOGLE	
Similar	to	Microsoft	Google	uses	the	term	federation	to	bring	attention	to	their	Google	Compute	
Engine	Cloud	Services,	a	homogeneous	global	cloud	only	operated	by	google.		

3.1.5.7 AMAZON	AWS	
The	dominant	market	position	of	AMAZON	AWS	as	“THE”	major	public	cloud,	with	their	Amazon	
Web	 Service	 Elastic	 Compute	 Cloud,	 means	 that	 their	 provisioning	 systems	 are	 used	 by	 the	
majority	of	added	value	service	providers,	when	preparing	their	offer	of	service	for	deployment	
to	customers	and	for	subsequent	integration	in	eventually	federated	solutions.	

The	recent	announcement	relating	to	the	availability	of	VMWARE	based	solutions	through	the	
AMAZON	 commercial	 framework	 shows	 that	 commercial	 and	 business	 developments	 are	
currently	underway	in	this	area	of	cloud	federation.

3.1.5.8 BEACON	
The BEACON project a framework with a cloud federation capability, which enables applications
to be setup in cross-cloud scenario (BEACON project, 2017).

3.1.5.9 SUNFISH	
SUNFISH plans to develop a secure cloud federation environment with special emphasis on
services in the public sector (SUNFISH project, 2017).

3.1.6 Analysis	
The	 remainder	 of	 this	 section	 of	 this	 document	 will	 be	 devoted	 to	 the	 analysis	 of	 this	
information	and	 the	different	points	of	 view	 that	are	exposed	with	an	aim	 to	 formulating	 the	
BASMATI	definition	of	CLOUD	FEDERATION.	Two	 important	points	need	 first	 to	be	 clarified	 to	
provide	a	reference	by	which	the	various	descriptions	above	may	be	compared.	

Federated	Cloud	or	Cloud	Federation?	
Firstly,	it	is	necessary	to	look	carefully	at	the	wording	used	throughout	the	different	descriptions	
above	 where	 the	 terms	 Cloud	 Federation	 and	 Federated	 Cloud	 are	 used	 synonymously.	 This	
feels	uncomfortable	 in	 that	 the	Object	of	 each	expression	 is	 clearly	 very	different.	 In	 the	 first	
case	 the	Object	being	 the	Federation	and	 in	 the	second	case	 the	object	 is	 the	Cloud.	The	 first	
case	really	signifies	a	Federation	of	Clouds	whilst	the	second	is	more	concerned	with	the	idea	of	
a	 Cloud	 that	 is	 the	 result	 of	 Federation.	Whilst	 the	 term	 Cloud	 is	 often	 used	 to	 obscure	 the	
boundaries	 of	 the	 data	 center	 oriented	 modern	 computing	 paradigm,	 the	 idea	 that	 many	
different	Clouds	exist	is	now	widely	recognized	and	as	such	the	term	Federated	Cloud	feels	out	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	54	of	115	
	

dated	and	will	be	taken	to	refer	to	a	Single	Cloud	that	is	indeed	the	result	of	the	Federation	of	
different	 parties.	 This	 is	 important	 because	 the	 problems	 that	 can	 arise	 when	 discussing	 the	
subject	of	Cloud	Federation,	and	of	course	Federated	Cloud,	involve	the	way	in	which	partners	
can	 operate	 not	 only	 together	 but	 also	 alone,	 hence	 the	 term	 Federation,	 where	 individual	
partners,	 retaining	 their	 individual	 identities	 and	 operational	 scope	 and	 abilities,	 enhance	 the	
technical	 and	 commercial	 range	 of	 their	 individual	 offer	 by	 entering	 into	 the	 partnership	
agreement	of	the	Federation.	

Cloud	Brokerage	or	Cloud	Federation?	
Secondly	it	 is	necessary	to	look	carefully	at	the	difference	between	the	terms	Cloud	Brokerage	
and	Cloud	Federation	 in	order	 to	be	able	 to	clearly	define	the	relationships	between	different	
actors	within	a	complex	commercial	scenario.	Although	both	terms	clearly	 involve	the	concept	
of	commercial	partners	working	together	within	the	field	of	Cloud	computing,	the	first	relates	to	
the	 Client	 facing	 situation	 where	 a	 Broker	 is	 responsible	 for	 the	 procurement	 of	 application	
resources	 for	 their	 customers	 and	 in	 doing	 so	 will	 make	 use	 of	 secondary	 cloud	 partners	 as	
appropriate	 to	 satisfy	 the	 customers’	 requirements.	 In	 order	 to	 qualify	 as	 “Brokerage”,	 this	
should	be	performed	in	a	transparent	manner	(cf.	NIST	Cloud	Definition)	such	that	the	customer	
is	perfectly	aware	of	the	identity	of	the	cloud	operator,	or	cloud	operators,	that	will	be	involved	
in	providing	and	managing	their	provisioned	application	resources.	In	contrast,	the	second	term,	
Federation,	 relates	 to	 the	Business	 to	Business	 relationships	 that	 exist	 behind	 the	 scenes	 and	
has	no	particular	obligation	of	 transparence	with	respect	 to	 the	eventual	customer	since	each	
partner	 within	 the	 federation	 would	 be	 effectively	 and	 contractually	 responsible	 for	 the	
deployment	and	management	of	the	provisioned	application	resources	made	available	to	their	
customers.	

3.1.7 BASMATI	Federation	Requirements	and	Specifications	
The	BASMATI	project	 intends	to	make	use	of	computing	 infrastructure,	available	 in	both	back-
end	 cloud	 data	 centers	 and	 front	 end	 edge	 computing	 environments,	 to	 perform	 dynamic	
migration	and	offloading	of	deployed	applications,	and	their	operational	components,	for	use	on	
mobile	 devices	 by	mobile	 end	 users.	 The	 emphasis	 is	 on	 end	 user	mobility	while	maintaining	
compliance	 with	 declared	 and	 SLA	 governed	 performance	 criteria.	 Application	 end	 users	 will	
launch	 their	 applications	 through	 the	 BASMATI	 platform	 and,	 over	 time	 as	 users	 roam,	 the	
applications	 may	 be	 migrated	 as	 required	 to	 ensure	 compliance.	 Migration	 will	 be	 primarily	
geographical,	to	ensure	the	best	performance	over	the	so	called	last	mile.	Efficient	geographical	
migration	 is	 not	 however	 possible	 using	 one	 single	 cloud	 provider	 alone,	 since	 economic	
constraints	mean	 that	 cloud	operators	 simply	 cannot	 afford	 to	have	data	 centers	 in	 each	and	
every	 town	 of	 every	 country.	 This	 requires	 that	 migration	 must	 be	 performed	 across	
technological	boundaries,	from	one	cloud	operator	to	another,	from	one	cloud	technology	type	
to	 another.	 To	 alleviate	 the	 problems	 that	 both	 geographical	 and	 technical	 cloud	 migration	
raise,	BASMATI	intends	to	base	its	cloud	provisioning	on	the	concept	of	the	CLOUD	FEDERATION.	
This	 federation	 will	 comprise	 partner	 operators,	 each	 of	 which	 will	 specialize	 in	 particular	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	55	of	115	
	

technical	or	geographical	cloud	domains.	The	federation	members	will	comply	with	centralized	
federation	 protocol	 as	 defined	 by	 the	 BASMATI	 project	 and	 will	 allow	 individual	 federation	
members	to	commercialize	their	services	to	their	customers	alone	and	in	collaboration	with	the	
other	 federation	 members.	 This	 concept	 has	 been	 touched	 upon	 by	 both	 ComputeNext	 and	
ONAPP	 in	 the	 overview	 of	 the	 current	 state	 of	 the	 commercial	 art	 of	 cloud	 federation.	 Both	
companies	 provide	 proprietary	 commercial	 solutions	 for	 the	 aggregation	 of	 data	 centers	 and	
cloud	providers.	The	approach	of	BASMATI	will	take	this	one	step	further	providing	the	methods	
and	tools,	for	the	construction	of	a	federation	of	cloud	service	providers,	and	cloud	operators,	
that	are	able	 to	seamlessly	aggregate	not	only	private	data	centers	and	public	clouds	but	also	
the	new	generation	of	edge	computing	environments	and	their	associated	providers.	Although,	
not	surprisingly,	the	major	Public	cloud	operators,	AMAZON,	MICROSOFT	and	GOOGLE,	firm	in	
belief	 of	 their	 own	 individual	 strengths	 make	 no	 claim	 or	 reference	 to	 this	 degree	 cloud	
federation,	they	will	probably	become	the	corner	stones,	and	work	horses	of	such	future	cloud	
federations.	

The	BASMATI	cloud	federation	will	provide	solutions	in	the	form	of	both	the	tools	and	methods	
to	the	following	problem	domains.	

3.1.7.1 Accounts,	Costs,	Billing	and	Identity	
• Each	member	of	the	cloud	federation	will	cater	to	the	needs	of	their	own	customers.	As	

such	 each	 member	 will	 have	 cloud	 provisioning	 subscriptions	 with	 the	 various	 cloud	
providers	 with	 which	 they	 work	 for	 the	 placement	 of	 their	 resources	 and	 will	 be	
responsible	for	the	costs	incurred	for	the	operation	of	those	resources.	

• Each	member	of	the	federation	will	be	responsible	for	the	billing	of	their	own	customers	
based	on	the	service	level	agreements	and	associated	pricing	models	that	they	practice	
with	their	customers.	

• Members	 of	 the	 federation	will	 be	 able	 to	 request	 deployment	 of	 resources	 by	 other	
members	 of	 the	 federation	 for	 use	when	 building	 application	 solutions	 for	 their	 own	
customers.	

• The	federation	member	requesting	deployment	by	another	federation	member	will	be	
responsible	 for	 payment	 of	 the	 costs	 incurred	 as	 described	 in	 the	 service	 level	
agreement	between	the	different	federation	members.	

• The	notion	of	a	standard	 federation	 level	 identity	 is	very	 important	 in	order	 to	ensure	
transparency	and	 interoperability	between	the	members	of	 the	 federation	at	 this	very	
important	financial	level.	

3.1.7.2 	Application	Modelling	
Generic	application	modelling	constructions	should	be	shared	between	the	different	federation	
members,	or	at	very	 least	provision	must	be	made	for	the	appropriate	real-time	conversion	of	
description	domains	between	the	different	members.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	56	of	115	
	

3.1.7.3 	Agreement	Terms	
Service	 level	agreements	will	have	been	negotiated	and	accepted	by	the	various	stake	holders	
that	are	participating	in	the	federation	scenario.	

3.1.7.4 	Resource	Placement	
The	resource	placement	decision	is	the	moment	when	federation	extensions	may	be	selected	in	
order	to	satisfy	a	customer’s	application	resource	requirements	outside	of	ones’	own	domain	of	
competence.	

3.1.7.5 	Resource	Deployment	
Resource	deployment	across	the	federation	will	be	handled	by	the	appropriate	member	of	the	
federation	that	has	been	selected	during	the	placement	procedure.	

3.1.7.6 	Resource	Monitoring	
Resource	 monitoring	 and	 subsequent	 decision	 taking	 will	 be	 under	 the	 responsibility	 of	 the	
service	 level	agreement	manager	of	 the	corresponding	 federation	member	 through	which	 the	
customer	has	initially	been	in	contact.	This	is	important	in	order	to	ensure	that	monitoring	flows	
through	the	different	federation	members	do	not	overtly	impede	their	own	local	operations.	

3.2 Economic	Models	of	Cloud	Federation	
Based	on	Buyya	et	al.	(Buyya,	Ranjan,	&	Calheiros,	2010)	Cloud	computing	is	“network	of	virtual	
services”	which	allow	end	users	 to	access	application	services	 from	anywhere	 in	 the	world	on	
demand.	 It	 delivers	 infrastructure,	 platform,	 and	 software	 at	 competitive	 costs	 depending	 on	
users	 QoS	 (Quality	 of	 Service)	 requirements	 without	 large	 capital	 outlays	 in	 hardware	 and	
software	 infrastructures.	 Nevertheless	 even	 biggest	 Cloud	 service	 providers	 (CSP)	 cannot	
establish	data	centers	at	all	possible	geographical	locations.	For	example,	Google	has	three	point	
of	location	data	centers	in	US	(mostly	in	the	East	coast),	in	the	north	part	of	Europe	and	in	Asia	
(Singapore	 and	 Taiwan)	 (Google	 Data	 Centers,	 2016).	 So	 in	 some	 cases	 CSP	may	 not	 provide	
service	 that	 meets	 QoS	 because	 of	 user’s	 multiple	 geographical	 locations	 (Risch	 &	 Altmann,	
2009a).		

Worse	 situation	 have	 small	 data	 centers:	 no	 ability	 to	 dynamically	 expand	 capacity,	 to	 offer	
market	 competitive	 price	 and	 to	 provide	 QoS	 aware	 services.	 All	 they	 have	 is	 limited	 local	
market	that	to	not	give	them	opportunity	to	maximize	profit	and	grow.	Only	way	to	solve	this	
issue,	 in	what	 all	 scholars	 unanimously	 agree	 (Buyya,	 Ranjan,	&	 Calheiros,	 2010),	 (Altmann	&	
Kashef,	2014),	(Kim,	Kang	&	Altmann,	2014),	(Haile	&	Altmann,	2015b),	(Kurze	et	al.,	2011),	is	to	
share	their	resources	and	clients	and	build	so	called	Federated	Cloud.	Cloud	federation	contains	
services	from	different	providers	aggregated	in	a	single	environment	enabled	by	interoperability	
features	 such	 as	 resource	 migration,	 resource	 redundancy	 and	 the	 combination	 of	
complementary	resources.	So	users	get	profit	 from	lower	costs	and	better	performance,	when	
CSP	can	offer	more	optimized	services	(Kurze	et	al.,	2011).	In	(Kim,	Kang	&	Altmann,	2014)	the	
authors	 compare	 big	 CSP	 with	 a	 federation	 of	 small	 CSP	 based	 on	 economies	 of	 scale	 and	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	57	of	115	
	

network	externalities	 in	an	oligopolistic	environment.	The	results	of	the	paper	provide	a	guide	
for	designing	economic	models	for	Cloud	federation	to	analyze	their	sustainability.		

On	 the	 other	 hand,	 sharing	 resources	 brings	 out	 not	 only	 the	 technical	 aspect	 of	 integration	
process	but	also	economic	(Haile	&	Altmann,	2015a;	Haile	&	Altmann	2016).	It	is	not	possible	to	
write	complete	contracts,	i.e.,	contracts	containing	all,	even	future	aspects	of	business	relations	
(Kurze	et	al.,	2011).	

To	begin	the	study	of	economic-based	methods	of	Cloud	federation	lets	discuss	the	economy	of	
a	 single	Cloud.	Early	approaches	with	different	 types	of	pricing	strategies	were	presented	 in	a	
various	 papers	 (Samimi,	 Teimouri,	 &	 Mukhtar,	 2014;	 Weinhardt	 et	 al.,	 2009;	 Weiss,	 2007),	
(Altmann,	 Courcoubetis,	 &	 Risch,	 2010)	 which	 distribute	 cloud	 resources	 to	 users.	 These	
methods	 can	 be	 subdivided	 into	 fixed	 methods	 and	 dynamic	 methods.	 The	 most	 popular	
method,	which	is	 implemented	by	major	CSPs	(Weinhardt	et	al.,	2009),	(Armbrust	et	al.,	2010;	
Al-Roomi,	Al-Ebrahim,	Buqrais,	&	Ahmad,	2013),	 is	the	“pay-per-use”	method.	Each	resource	is	
assigned	a	fixed	price.	In	the	case	of	the	subscription	model,	any	number	of	cloud	resources	can	
be	used	for	a	fixed	price	for	a	certain	period	of	time.	In	(Hamsanandhini	&	Mohana,	2015),	the	
authors	 consider	 the	 “pay-per-use”	 method	 to	 propose	 a	 set	 of	 policies	 that	 allocate	 VMs	
according	 to	 user’s	 QoS	 purchased.	 However,	 the	 authors	 only	 discuss	 cloud	 resources	 as	 a	
virtual	 pool	 of	 the	 physical	 infrastructure	 and	 do	 not	 go	 deep	 into	 resource	 specification.	 Al-
Roomi	 et	 al.	 used	 dynamic	 pricing	 to	 allow	 CSPs	 or	 users	 to	 change	 the	 price	 depending	 on	
pertinent	factors	(Al-Roomi	et	al.,	2013).	Auctions	are	also	dynamic	methods	(Wang,	Tianfield	&	
Mair,	 2014).	 For	 example,	 Amazon	 EC2’s	 spot	 instance	 is	 a	 sealed-bid	 uniform	 price	 auction.	
These	 economic-based	 methods	 are	 only	 applied	 to	 the	 management	 of	 external	 resources	
usage.	

Negotiation	between	CSPs	should	consider	a	wide-ranging	number	of	parameters,	 such	as	 the	
provider’s	 incoming	 workload,	 the	 cost	 of	 outsourcing	 additional	 resources,	 the	 revenue	 for	
renting	 unused	 resources,	 or	 the	 cost	 of	 maintaining	 the	 provider’s	 resources	 (Altmann,	
Hovestadt	&	Kao,	2011;	Goiri,	Guitart,	&	Torres,	2012).	To	solve	this	issue	Goiri	et	al.	presented	
an	approach	where	CSPs	make	decision	based	on	maximization	of	expected	profit	in	5	possible	
situations:		

• Run	VMs	using	local	resources.	
• Run	VMs	on	federated	providers	(outsource).	
• Offer	idle	resources	to	other	federated	providers	(insource).	
• Turn	on	off	nodes.	
• Turn	off	idle	nodes.		

Authors	 obtained	 equations	 that	 establish	 the	 relationship	 between	 the	 utilization	 and	 the	
capacity	 for	 provider’s	 profitability.	Where	 CSP	 is	 profitable	when	 revenue	 is	 higher	 than	 the	
capital	costs	(CAPEX),	and	the	operational	costs	(OPEX)	(Altmann	&	Kashef,	2014).	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	58	of	115	
	

To	 analyze	 cost	 model	 in	 more	 detail	 (Altmann	 &	 Kashef,	 2014;	 Kashef	 &	 Altmann,	 2011)	
presented	 an	 algorithm	 for	 making	 service	 placement	 decisions	 in	 federated	 hybrid	 clouds.	
Authors	 identified	 21	 different	 cost	 factors	 structured	 and	 categorized	 into	 six	 main	 groups:	
electricity,	 hardware,	 software,	 labor,	 business	 premises,	 and	 service.	 To	 find	 the	 optimal	
service	 placement	 presented	 algorithm	 calculates	 the	 total	 cost	 for	 each	 possible	 service	
placement	option	on	a	private	cloud	and	a	number	of	federated	public	clouds.	And	as	the	main	
outcomes	authors	underlined	two	issues	that	need	to	be	considered	closely	in	federated	clouds:	
(1)	 the	 deployment	 cost	 has	 a	 strong	 impact	 on	 the	 optimal	 service	 placement,	 (2)	 the	 data	
transfer	cost	is	a	significant	cost	factor	in	federated	clouds	(Altmann	&	Kashef,	2014).	

As	 another	 idea	 for	 implementation	 of	 economic	models	 in	 distribution	 federated	 computing	
resources	 (Altmann,	 Courcoubetis	 &	 Risch,	 2010;	 Altmann	 et	 al.,	 2008;	 Majhi	 &	 Bera,	 2014)	
present	 to	 integrate	an	auction	 (bidding)	 in	 the	VM	migration	process.	Authors	developed	the	
algorithm	of	 the	 interaction	 of	 CSPs	 in	 VM	marketplace	 based	 on	 English	 and	Dutch	 auctions	
with	describing	components	as	actors,	relations,	and	business	model.		

Federation	models	can	also	be	based	on	autonomic	computing	engine	(Breskovic	et	al.,	2011).	
The	paper	on	CometCloud	by	Petri	et	al.	(2014)	differentiates	task	in	the	Cloud	as	the	number	of	
workers	allocated	to	local	and	external/remote	requests.	When	one	CSP	cannot	to	process	tasks	
from	its	local	users	within	their	deadlines	it	negotiate	for	the	outsourcing	of	tasks	to	other	CSP.	
The	 negotiation	 considers	 the	 cost	 for	 local	 jobs	 and	 cost	 for	 remote	 jobs.	 As	well	 as	 polices	
must	be	fulfilled	as	the	local	task	is	always	accepted	first	or	remote	task	is	accepted	if	the	price	
is	higher	than	cost.	

3.3 BASMATI	Federation	Business	Requirements	
BASMATI	aims	to	provide	a	set	of	tools	for	the	development,	deployment	and	configuration	of	
federated	cloud	environments	from	multiple	platforms	and	providers.	As	was	mentioned	above	
there	is	no	one	standard	economic	method	of	distribution	of	virtual	resources.	So	BASMATI	will	
have	to	face	the	issue	of	interpretation	of	socio-economic	criteria	from	the	complete	ecosystem.	
As	 a	 dynamic	 system	 of	 supporting	 the	 decisions	 through	 runtime	 adaptable	 deployment	
patterns	 of	 the	 brokerage	 platform,	 BASMATI	 cannot	 assign	 a	 fixed	 pricing	 method.	
Continuously	 change	 of	 prices	 that	 member	 of	 the	 federation	 accepting	 for	 providing	 the	
resources	 leaves	 no	 opportunity	 to	 set	 simple	 pricing	 plan.	 Moreover,	 large	 events,	 with	
thousands	of	visitors	and	their	mobile	devices,	such	as	festivals,	sports	events,	and	the	like	bring	
the	risk	of	demand	more	resource,	which	 in	certain	cloud	provider	hard	to	provide.	Since,	 it	 is	
difficult	to	assume	that	there	will	be	a	big	number	of	members	of	the	federation	from	the	same	
geographical	 area,	 any	 type	 of	 bid-based	 method	 with	 different	 rules	 of	 the	 auction	 can	 be	
immediately	dismissed.	Because	to	maximize	the	total	social	welfare	by	using	auction	methods	a	
marketplace	with	a	big	amount	of	players	interesting	in	purchasing	a	service	or	good	is	required.		

Negotiation	 between	 members	 of	 BASMATI	 should	 consider	 a	 wide-ranging	 number	 of	
parameters	 that	 accepted	 between	 the	 various	 stakeholders	 that	 are	 participating	 in	 the	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	59	of	115	
	

federation.	And	tree	simple	 rules	have	 to	be	underwritten:	 (i)	 local	 tasks	have	 to	be	deployed	
first,	(ii)	deployment	is	implemented	only	if	cost<price,	(iii)	replacement	is	implemented	if	only	
current	profit<new	profit.		

As	 one	 of	 the	 ambitions	 of	 BASMATI	 is	 to	 define	 innovative	 approaches	 for	 describing	 the	
application	usage	and	modes	a	new	concept	of	 the	economic	model	 should	be	applied	 in	 the	
project.	 Besides	 most	 of	 the	 method	 presented	 in	 the	 literature	 review	 consider	 a	 limited	
number	of	 socio-economic	parameters.	BASMATI,	 in	 its	 turn,	aims	 to	cover	a	broad	set	of	 the	
features	such	as	the	heterogeneity	of	resources,	ultra-scalable	resource	provisioning,	computing	
offloading	support,	data	integrity	issues,	context-	and	situation	detection,	quality	of	service	and	
protection	 assurance,	 user-	 and	 application	 modeling.	 It	 requires	 to	 establishing	 adequate	
Provider	SLAs	and	Mobile	SLAs,	which	assure	that	both	applications	and	infrastructure	meet	the	
promised	 performance	 benchmarks.	 Detailed	 list	 of	 parameters	 described	 in	 those	 SLAs	 will	
support	 the	 exploitation	 of	 heterogeneous	 and	 dynamic	 economic	 model	 already	 available	
solutions.		

3.4 Federation	Topologies	
Many	 approaches	 for	 intercloud	 aimed	 to	 the	 creation	 of	 unified	 access	 points	 that	 act	 as	 a	
gateway	 toward	 the	 whole	 cloud	 infrastructure	 resources.	 According	 to	 (Altmann	 &	 Kashef,	
2014,	 Kashef	 &	 Altmann,	 2012;	 Grozev	 and	 Buyya,	 2014),	 intercloud	 approaches	 can	 be	
categorized	as	centralized	with	a	central,	often	logical	entity	that	works	access	point,	or	flat,	in	
which	any	cloud	datacenter	can	work	as	an	access	point.	

3.4.1 Centralized	
InterCloud	(Buyya,	Ranjan	&	Calheiros,	2010)	is	a	federated	cloud	computing	environment	that	
enables	a	common	marketplace	in	which	applications	are	negotiated	among	brokers	and	cloud	
providers.	 InterCloud	 performs	 application	 scheduling,	 resource	 allocation	 and	 migration	 of	
workloads.	 Intercloud	 is	built	on	 three	concepts:	Cloud	coordinators,	Cloud	Brokers	and	Cloud	
Exchange.	A	Cloud	Coordinator	(CC)	exports	the	services	provided	by	a	cloud	to	the	federation	
by	 implementing	basic	functionalities	for	resource	management	such	as	scheduling,	allocation,	
workload	and	performance	models.	CCs	periodically	update	the	Cloud	Exchange	(CEx)	with	their	
availability,	 pricing,	 and	 SLA	 policies,	 which	 in	 turn	 aggregate	 information	 supplied	 by	 CCs	 in	
order	 to	 support	 the	Cloud	Brokers	activity.	 The	Cloud	Broker	 identifies	 suitable	 cloud	 service	
providers	published	on	the	CEx,	negotiating	with	CCs	for	an	allocation	of	resources	that	meets	
QoS	needs	of	users.	

The	 CONTRAIL	 (Carlini	 et	 al.,	 2011)	 approach	 is	 based	 on	 a	 conceptually	 centralized	mediator	
between	 Cloud	 users	 and	 providers,	 which	 offers	 resources	 belonging	 to	 different	 Cloud	
providers	 to	 users	 in	 a	 uniform	 fashion.	 Contrail	 focuses	 both	 on	 the	 vertical	 and	 horizontal	
integration	of	multiple	cloud	providers,	organizing	the	enforcement	of	QoS	by	the	definition	of	
federation-level	 SLAs,	which	 also	drive	 the	 resource	 selection	process	 and	 can	be	mapped	on	
single	cloud	providers	SLAs.	The	vertical	integration	is	realized	by	means	of	the	unified	platform	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	60	of	115	
	

to	access	 the	different	 flavours	of	 resources	provided.	The	horizontal	 integration	 is	performed	
by	the	interaction	of	the	different	Cloud	providers.		

Federated	Cloud	Management	(Marosi	et	al.,	2011)	is	an	inter-cloud	architecture	that	provides	
the	integration	of	multiple	IaaS.	It	 is	based	on	a	logically	centralized	component	called	Generic	
Meta	Brokering	Service	(GMBS)	that	receives	requests	from	the	cloud	users	and	redirect	them	
to	the	IaaS	chosen	for	the	execution.	

OPTIMIS	(Ferrer	et	al.,	2012)	realizes	a	services	toolkit	aimed	to	orchestrate	the	lifecycle	of	the	
applications,	which	in	turn	allows	the	self-management	of	the	cloud	federation.	It	provides	users	
with	a	platform	to	search	for	Cloud	services	given	a	set	of	requirements	regarding	the	allocation	
of	data	and	computation	such	as	elasticity,	energy	consumption,	risk,	cost,	and	trust.	Regarding	
provisioning	models	 of	 resources,	 OPTIMIS	 provides	 Cloud	 bursting,	multi-Cloud	 provisioning,	
and	federation	of	Clouds.		

3.4.2 Distributed	
In	the	distributed	models	(Altmann	et	al.,	2007;	Rochwerger	et	al.,	2010)	model,	each	resource	
provider	 is	 an	 autonomous	 entity	 with	 its	 own	 business	 goals.	 A	 provider	 can	 choose	 the	
providers	with	which	 to	 federate.	 There	 is	 a	 clear	 separation	 between	 the	 functional	 roles	 of	
service	providers	and	resource	providers.	Service	providers	are	the	entities	that	match	the	user	
needs	by	finding	resources	that	their	application	needs.	However,	service	providers	do	not	own	
the	resources,	but	rather	they	lease	such	resources	from	resource	providers.	RESERVOIR	defines	
a	 decentralized	 and	 distributed	 architecture	 for	 cloud	 federation	 in	 which	 providers	
communicate	 directly	with	 each	 other	 to	 negotiate	 the	 utilization	 of	 resources.	 RESERVOIR	 is	
based	 on	 Claudia	 (Rodero-Merino	 et	 al.,	 2010)	 an	 abstract	 layer	 for	 service	 management	 in	
cloud	federations,	now	integrated	with	OpenNebula	(Moreno-Vozmediano	et	al.,	2012).	

Dynamic	 Cloud	 Collaboration	 (DCC)	 (Celesti	 et	 al.,	 2010)	 is	 an	 approach	 for	 setting	 up	 highly	
dynamic	 intercloud	 federations.	 The	 cloud	 provider	 (CP)	 that	 wants	 to	 setup	 a	 federation	
assumes	 the	 role	of	 the	primary	 cloud	provider	 (pCP),	whereas	 the	 federated	 cloud	providers	
are	called	collaborating	CPs.	To	federate	new	collaborating	CPs,	adding	their	resource/services	
to	a	DCC	platform,	an	approval	of	other	providers	based	on	their	own	policies	is	needed.	Users	
request	 services	 published	 on	 the	 service	 catalogue	 of	 the	 pCP.	 Then	 the	 pCP	 finds	 suitable	
partners	 based	 on	 the	 business	 objectives,	 and	 stipulate	 a	 contract	 with	 specific	 SLAs	
requirements	for	each	partner	involved.	If	after	a	distributed	negotiation	an	agreement	among	
all	partners	is	reached	a	new	dynamic	cloud	became	operational.	

3.5 Interoperability	within	Federations	
Members	 of	 a	 federation	 come	 with	 heterogeneous	 data	 and	 service	 description	 schemes.	
Interoperability	 is	 a	 fundamental	 provision	 in	 order	 to	 manage	 communication	 and	
collaboration	within	federations.	This	section	provides	the	concept	and	issues	of	interoperability	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	61	of	115	
	

between	 multiple	 clouds,	 requirements	 of	 interoperability	 in	 achieving	 the	 objectives	 of	
BASMATI.		

3.5.1 Interoperability	and	Portability		
Interoperability	 is	 the	 ability	 of	 a	 component	 to	 work	 simultaneously	 with	 one	 or	 more	
components	 of	 other	 platforms,	 regardless	 of	 the	 differences	 between	 the	 platforms	 (Rezaei,	
2014;	 Brennan,	Walshe	&	O’Sullivan,	 2014).	 That	means,	 interoperability	 allows	 components,	
which	are	simultaneously	active	on	more	than	one	platform,	to	interact	(communicate)	to	serve	
a	common	purpose.		

In	 the	 case	 of	 cloud	 services,	 interoperability	 means	 that	 all	 components	 (i.e.,	 hypervisor,	
orchestration,	automation	systems,	and	metering	tools)	can	come	from	different	cloud	service	
providers.	An	 interoperable	service	platform	allows	for	the	creation	of	a	system	of	compatible	
suppliers.	This	allows	users	to	compose	the	best	cloud	services	and	to	meet	their	specific	needs	
on	 a	 pay-as-you-go	 basis	 (Rezaei,	 2014;	 Silva,	 Rose,	 &	 Calinescu).	 It	 helps	 users	 to	 compose	
solutions	that	are	highly	optimized	towards	their	needs.	

Figure	15:	Concept	of	interoperability	[Source:	Haile	&	Altmann,	2017]	

Another	important	and	related	provision	is	portability.	A	cloud	service	platform,	which	supports	
portability,	 allows	 data,	 applications,	 and/or	 virtual	machine	 images	 to	 be	moved	 easily	 from	
one	 provider	 to	 another.	 Customers	 should	 be	 able	 to	 select	 service	 providers	 depending	 on	
their	performance	needs,	 geographic	 location,	 and	budgets.	Any	 lack	of	portability	of	 services	
hampers	 flexibility	of	use,	as	 service	providers	have	no	easy	way	out	 from	a	cloud	platform	 if	
they	are	dissatisfied	with	the	services	offered	by	a	provider	and	seek	a	better	alternative	offered	
by	another	provider	(Haile	&	Altmann,	2017).	End	users	of	those	services	(e.g.,	enterprise	users)	
also	 benefit	 from	 the	 ability	 to	move	 their	 data	 to	 a	 comparable	 service	with	 less	 adaptation	
cost.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	62	of	115	
	

Figure	16:	Concept	of	portability	[Source:	Haile	&	Altmann,	2017]	

3.5.2 Cross-Cloud	Interoperability	Challenges		
There	are	many	examples	that	show	the	lack	of	interoperability	of	cloud	services.	For	example,	
Microsoft	provides	 .NET	application	containers	and	Azure	database	services	 (Microsoft,	2017),	
which	 cannot	 be	 integrated	 with	 Google	 App	 Engine	 (Google,	 2017)	 and	 vice	 versa.	 Another	
example	is	the	data	formats	used	by	different	social	media	websites	(e.g.,	Facebook),	making	it	
difficult	 to	move	 profile	 data	 from	one	platform	 to	 the	 other.	 The	 different	 technology	 types	
with	 potential	 issues	 of	 interoperability	 can	 be	 classified	 into	 programming	 frameworks,	
application	 programming	 interfaces,	 and	 data	 formats	 (Gebregiorgis	 &	 Altmann,	 2015).	
Consequently,	 those	 technology	 types	 represent	 the	means	 for	 achieving	 interoperability	 and	
portability:	

• Programming	 Frameworks:	 As	 service	 developers	 are	 used	 to	 their	 software	
development	 tools,	 programming	 languages,	 and	 runtime	 environments,	 they	 avoid	 a	
change	 of	 their	 programming	 frameworks.	 Thus,	 cloud	 service	 platforms	 need	 to	
support	 the	 programming	 frameworks	 that	 are	 in	 use	 today.	 Any	 change	 of	 a	
programming	 framework	would	 come	with	 the	 cost	 of	 learning	 a	 new	 technology	 for	
service	developers	(Rezaei,	2014;	Dustin,	Bartlett	&	Bruklis,	2010)	

• Application	 Programming	 Interface:	Many	 cloud	 service	 platform	 providers	 have	 their	
own	application	programming	 interface	 (API),	 preventing	orchestration	of	 applications	
across	 multiple	 service	 providers.	 The	 incompatibilities	 of	 the	 APIs	 for	 uploading,	
downloading,	inspecting,	and	configuring	are	a	significant	issue	for	interoperability.	For	
example,	 the	 Amazon	 EC2	 API	 (Amazon,	 2017)	 is	 different	 from	 the	 Datapipe	 API	
(Datapipe,	2017)	even	though	both	offer	similar	IaaS.	In	addition	to	this,	cloud	providers	
have	their	own	proprietary	services.	An	example	of	valuable	but	proprietary	services	is	
Amazon	 Elastic	 Load	 Balancing	 (Amazon,	 2017).	 This	 service	 only	 exists	 on	 a	 specific	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	63	of	115	
	

platform.	 Standardization	 of	 APIs	 would	 allow	 applications	 to	 be	 moved	 to	 different	
providers	without	any	additional	 integration	or	 switching	 cost.	Another	way	would	be	
the	 provisioning	 of	 programming	 toolsets	 which	 enable	 services	 to	 be	 deployable	 on	
multiple	 clouds	 (Machado,	 Hausheer	 &	 Stiller;	 Ortiz,	 2011).	 Although	 this	 kind	 of	
middleware	 could	 break	 the	 dependencies	 on	 specific	 APIs,	 it	 is	 only	 useful	 for	 new	
application	 developments	 (Bozman,	 2010).	 Similarly,	 the	 format	 of	 virtual	 machines	
(VM)	 is	 one	 of	 the	 major	 challenges	 for	 creating	 seamless	 portability	 among	 service	
platforms.	 As	 service	 platform	 customers	 have	 already	 different	 virtualization	
environments	 (e.g.,	 VMware,	 Hyper-V,	 KVM,	 and	 Xen)	 in	 their	 in-house	 data	 centers,	
cloud	 service	 providers	 should	 make	 sure	 that	 customers	 can	 use	 a	 familiar	 one	
(Bozman,	2010).		

• Data	 Format:	 Many	 application	 services	 provide	 their	 own	 semantic	 and	 format	 for	
storing	 data	 (Rezaei,	 2014),	 making	 it	 costly	 to	 access	 the	 data	 with	 a	 different	
application.	 If	 no	 standard	 for	 the	 data	 format	 exists,	 conversion	 tools	 are	 needed	 to	
translate	 the	 data	 format	 of	 one	 application	 service	 into	 the	 data	 format	 of	 another	
application	service	(Ranjan	et	al.,	2015).		

Though	 interoperability	 and	portability	will	 provide	 a	 reduction	 in	 cost	 for	 switching,	 learning	
new	technology,	and	integration,	it	is	to	be	noticed	that	incompatibility	is	a	logical	consequence	
of	 technological	 development	 and	 innovation	 (Haile	 &	 Altmann,	 2017).	 As	 innovation	 and	
technological	 development	 results	 in	 an	 increase	 in	 revenue,	 the	 challenge	 is	 to	 find	 a	
compromise	between	both	aspects:	cost	reduction	and	fostering	new	products.	

3.5.3 BASMATI	Interoperability	Requirements	and	Specifications	
The	Basmati	project	intends	to	provide	a	cloud	abstraction	layer	that	will	allow	the	construction	
of	 cloud	 federations	 comprising	 a	 collection	 of	 individual	 and	 federated	 cloud	 operators.	 In	
order	to	be	able	to	ensure	transparent	inter-operability	of	the	deployed	elements	required	for	
automated	 application	 provisioning	 across	 multiple	 and	 heterogeneous	 cloud	 providers	 and	
technologies,	the	choice	of	the	base	operating	system	is	of	utmost	importance.		

Not	only	must	the	same	version	of	the	system	be	available	on	each	provisioning	system	but	also	
it	should	be	extremely	stable	over	a	reasonable	period	in	terms	of	both	its	nomenclature	and	its	
technical	capabilities.		

In	addition,	in	order	to	facilitate	the	deployment	of	application	resources,	the	cloud	provisioning	
system	 must	 allow	 the	 “just-in-time”	 installation	 of	 new	 generation	 software	 configuration	
agents	on	the	fly	without	requiring	a	costly	collection	of	base	or	golden	images	to	be	prepared	in	
advance	in	each	region	of	each	cloud	provider	for	each	cloud	operators’	subscription	accounts.		

Hands	 On	 experience	 gained	 by	 Amenesik	 over	 the	 past	 6	 years	 working	 with	 the	 first	
CompatibleOne	Accords	Platform	and	then	the	industrial	version	of	the	Amenesik	Cloud	Engine,	
during	the	period	from	2010	to	the	time	or	writing,	demonstrates	that	only	the	Ubuntu	LINUX	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	64	of	115	
	

operating	system	is	able	to	satisfy	all	of	the	above	criteria,	and	again	not	only	for	all	major	public	
cloud	 platforms	 (Amazon	 AWS,	Microsoft	Windows	 Azure,	 Google	 Compute	 Engine,	 IBM	 Soft	
Layer	and	Cloud	Sigma)	but	also	the	majority	of	the	OpenStack	and	Eucalyptus	based	public	and	
private	cloud	operations	of	RackSpace,	OVH,	HP,	CloudWatt	and	Numergy.		

The	LTS	versions	(Long	Term	Support)	of	Ubuntu	10.04,	12.04,	14.04	and	more	recently	16.04,	
made	available	and	supported	by	Canonical	for	all	these	environments,	have	provided	not	only	a	
stability	 of	 nomenclature	 and	 technical	 functionality	 across	 the	 board,	 but	 have	 also	 ensured	
upward	 compatible	 binary	 portability	 for	 the	 compiled	 and	 linked	 system	 components	
comprising	 the	 software	 packages	 for	 the	 important	 cloud	management	 functionalities	 of	 the	
various	post-configuration,	scalability	and	monitoring	agents.	

The	 transition	 from	LTS	 version	 to	 LTS	 versions	 is	not,	however,	painless	 and	 requires	 that	 all	
software	 packages	 be	 qualified	 for	 operation	 on	 the	more	 recent	 versions.	 This	 is	 due	 to	 the	
changes	 in	 security	 and	 configuration	 procedures	 required	 for	 many	 of	 the	 major	 software	
packages	 such	 APACHE,	 PHP,	 MYSQL,	 POSTGRESQL	 and	 SMTP,	 which	 are	 imposed	 by	 the	
increasing	hostility	of	the	global	public	internet	operational	environment.		

It	 is	therefore	highly	recommended	that	the	Ubuntu	version	16.04	LTS	be	adopted	as	the	base	
operating	system	for	all	components	developed	for	Basmati	and	for	the	duration	of	the	project.	

4 Service	Level	Agreements		
Service	Level	Agreements	(SLAs)	play	a	key	role	in	cloud	computing	by	being	the	mechanism	that	
users	 have	 to	 enforce	 guarantees	 around	 performance,	 transparency,	 conformance	 and	 data	
protection.	As	cloud	adoption	increases,	cloud	users	will	be	seeking	more	tightly	defined	SLAs	as	
a	means	to	build	up	dependable	and	trustworthy	relationship	terms	with	cloud	providers	(Juan	
Ferrer	 &	 Montanera,	 2015).	 Common	 concerns	 with	 regards	 to	 cloud	 adoption;	 compliance,	
security,	 privacy	 and	 integrity,	 rely	on	 the	 inability	 for	users	 to	measure,	monitor	 and	 control	
activities	and	operations	in	Cloud’s	third	party	infrastructures	(Haile	&	Altmann,	2015b).	In	the	
following	 sections	 we	 analyze	 state	 of	 the	 art	 for	 SLA	 management	 in	 the	 three	 different	
environments	applicable	for	BASMATI	project.	

4.1 Federation	Level	Agreements	
In	a	 federated	cloud	scenario,	a	cloud	provider	sub-contracts	capacity	 from	other	providers	as	
well	as	offer	spare	capacity	to	a	federation	of	cloud	providers	(Altmann	&	Kashef,	2014).	Parts	of	
a	 service	 are	 placed	 on	 remote	 providers	 for	 improved	 elasticity	 and	 fault	 tolerance,	 but	 the	
initial	cloud	provider	is	solely	responsible	for	guaranteeing	the	agreed	upon	SLA.	The	federated	
cloud	 scenario	 is	 related	 to	 community	 cloud	 set-ups,	 or	 from	 a	 commercial	 perspective,	 for	
cloud	 providers	 that	 own	 multiple	 cloud	 installations	 in	 diverse	 regions,	 in	 order	 to	 balance	
workload	 among	 them.	 A	 number	 of	 research	 activities	 have	 analyzed	 SLA	 Federation	 in	 this	
context.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	65	of	115	
	

Besides	 the	 general	 problem	 described	 above	 the	 other	 big	 problem	 not	 solved	 today	 is	 the	
language	 barrier	 between	 providers.	 Each	 provider	 uses	 its	 own	 terminology	 to	 describe	 the	
terms	 of	 its	 SLAs	 which	 makes	 it	 difficult	 to	 impossible	 for	 the	 customer	 to	 compare	 the	
offerings	 of	 different	 providers	 and	 select	 the	 most	 appropriate	 for	 its	 actual	 service	
requirements	(Breskovic,	Altmann	&	Brandic,	2013).	While	it	is	hard	for	humans	to	compare	and	
select	 providers	 it	 is	 almost	 impossible	 to	 automate	 this,	 e.g.,	 when	 trying	 to	 organize	 a	
federation	including	multiple	providers	based	on	their	offerings.	Moreover,	the	current	practice	
requires	the	customer	to	manually	create	individual	SLAs	with	the	different	providers.		

OPTIMIS	Project	 (Ziegler	&	Jiang,	n.d.;	Ferrer	et	al.,	2012)	delivered	an	open	source	toolkit	 for	
automated,	 SLA-driven	 federation	 of	 resources	 from	 different	 Cloud	 providers.	 It	 considered	
four	different	cloud	deployment	 scenarios:	private	cloud,	 cloud	bursting,	 federated	and	multi-
cloud.	OPTIMIS	used	the	concept	of	Service	Manifest	in	order	to	express	user	requirements	later	
included	as	part	of	 the	SLA.	These	focused	on	service	or	provider	risk,	 trust,	ecological	or	cost	
levels	(TREC),	as	well	as	legal	requirements	(when	dealing	with	personal	data).	

SeaClouds	 project	 (SeaClouds,	 n.d.)	 investigated	 the	 role	 of	 SLAs	 in	multi-cloud	 environments	
composed	 of	 both	 IaaS	 and	 Cloud	 providers.	 It	 defined	 two	 levels	 of	 SLAs:	 Customer	 -	
Application	 Provider	 SLA	 and	 Application	 Provider	 -	 Cloud	 Provider	 SLA.	 The	 Customer	 -	
Application	 Provider	 SLA	 represented	 the	 SLA	 between	 the	 Application	 customer	 and	 its	
providers	whereas	 the	 Application	 Provider	 -	 Cloud	 Provider	 SLA	 detailed	 the	 SLA	 among	 the	
Application	provider	and	the	IaaS	or	PaaS	provider.		

The	 Contrail	 EU	 project	 (Contrail,	 n.d.)	 delivered	 multilevel	 SLA	 management:	 the	 final	 user	
negotiates	 a	 SLA	 with	 the	 Federation,	 which	 in	 turn	 negotiated	 SLAs	 with	 multiple	 Cloud	
providers	on	behalf	of	the	user,	and	then,	selecting	the	best	offer	based	on	user’s	criteria	(e.g.	
minimize	 overall	 costs);	 Contrail	 SLAs	 are	 expressed	 using	 the	 SLA@SOI	 Project	 defined	
formalisms	 (SLA@SOI,	 n.d.),	 and	 extend	 it	 in	 order	 to	 support	 also	 QoP	 terms	 (e.g.	 storage	
location).	

4.2 Provider	Level	Agreements	
At	all	levels	of	Cloud	Stack	(IaaS,	PaaS,	SaaS),	the	requirement	of	establishing	adequate	Provider	
SLAs	 is	 to	 assure	 that	 both	 applications	 and	 infrastructure	 meet	 the	 promised	 performance	
benchmarks.		

	Service	 Level	 Agreements	 (SLA)	 widely	 applied	 in	 research	 implementations	 rely	 on	 previous	
works	 performed	 by	 the	 research	 community	 in	 Grid	 computing	 (Risch,	 Brandic	 &	 Altmann,	
2009;	 Quan	 &	 Altmann,	 2009;	 Breskovic,	 Altmann	 &	 Brankic,	 2013).	 There	 are	 two	 major	
standardization	 efforts	 available	 addressing	 dynamic	 electronic	 management	 of	 Service	 Level	
Agreements	(SLA)	in	order	to	define	Provider	SLAs.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	66	of	115	
	

4.2.1 WSLA	-	Web	Service	Level	Agreements	
The		WSLA	(Web	Service	Level	Agreements)	specification	was	published	by	IBM	in	January	2003	
(Ludwig	et	al.,	2003;	Risch	&	Altmann,	2009b).	WSLA	is	currently	barely	used	due	to	issues	with	
flexibility	of	the	schema	which	always	requires	adaptation	to	be	used	in	a	specific	domain	and,	
moreover,	due	to	lack	of	community	support.		

4.2.2 WS-Agreement		
WS-Agreement	is	a	full	recommendation	of	the	Open	Grid	Forum	(OGF)	(OGF,	n.d.).	It	defines	a	
language	and	a	protocol	 to	create	SLAs.	The	defined	protocol	allows	both	one-step	and	multi-	
step	negotiation	between	a	provider	and	a	consumer	of	a	cloud	service.	Usually,	 it	 is	based	on	
templates	 of	 the	 QoS	 offerings	 defined	 by	 the	 provider.	 While	 the	 one-step	 negotiation	 is	
sufficient	 for	 a	 large	 number	 of	 cloud	 contracts,	 there	 are	 cases	 that	 require	 multi-round	
negotiation.	 For	 these,	 the	 process	 includes	 a	 series	 of	 offers	 and	 counter-offers	 that	 allow	
achieving	 a	 SLA	 agreement	 that	 satisfies	 both	 parties.	 This	 protocol	 is	 specified	 in	 WS-
Agreement	Negotiation	(OGF,	n.d.).	In	addition,	WS-Agreement	permits	to	plug-in	specific	term	
languages	to	define	main	concepts	and	particularity	of	services	and	 its	properties	 for	different	
domains.		

An	overview	of	different	standards	and	approaches	applied	for	SLA	Management	by	European	
Research	projects	 is	detailed	 in	 (Kyriazis,	2013).	This	 report	defines	a	 set	of	 recommendations	
for	further	research	in	the	area	highlighting	the	potential	and	need	for	standards,	encouraging	
SLA-relevant	 standards	 (i.e.	 OCCI)	 to	 add	 enhancements	 to	 enable	 SLA	 support	 as	 well	 as	 to	
consider	 overall	 SLA	 lifecycle:	 SLA	 specification,	 monitoring	 tools	 and	 the	 management	
frameworks.	

4.3 Mobile	SLA	Manager	
There	 are	 no	 works	 on	mobile	 SLA	manager	 available.	 Therefore	 this	 section	 focuses	 on	 the	
methods	of	QoS	management	in	mobile	cloud.	

QoS	 is	 recognized	 as	 one	 of	 the	 challenging	 issues	 for	 future	 development	 of	 Mobile	 Cloud	
together	with	security,	availability	seamless	mobility	and	billing	(Qureshi	et	al.,	2011).	However,	
already	 a	 number	 of	 different	 works	 have	 explored	 different	 approaches	 to	 the	 issue	 from	
diverse	perspectives.		

Klymash	et	al.	emphasize	the	QoS	challenges	in	Mobile	Cloud	due	to	dynamicity	in	the	available	
resources	(Klymash	et	al.,	2014),	among	others,	at	 level	of	bandwidth,	delay,	packet	 loss	ratio,	
battery	 life,	 and	 storage	 capacity.	 The	 proposed	 solution	 in	 this	 work	 addresses	 the	 specific	
network	QoS	management	challenges	of	multimedia	services	and	applications	in	IP	Multimedia	
Subsystems.	 In	order	 to	do	 so,	 it	 focuses	on	 three	 specific	parameters	 (packet	 loss,	delay	and	
jitter)	in	order	to	compare	QoS	provided	by	different	algorithms	for	traffic	control.	Although,	the	
proposed	work	 analyses	 these	 on	 the	 context	 of	mobile	 cloud,	 it	 does	 not	 take	 into	 account	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	67	of	115	
	

specific	 characteristics	 for	 application	 mobile	 to	 Cloud	 off-loading	 (as	 it	 is	 the	 objective	 in	
BASMATI).		

Differently,	 from	 previous	 work,	 (Ye	 et	 al.,	 2011)	 proposes	 a	 QoS	 and	 power	 management	
framework	for	mobile	to	service	cloud	task	off-loading.	The	overall	ambition	of	this	work	it	is	to	
address	 battery	 scarcity	 in	 mobile	 devices	 in	 order	 to	 select	 the	 execution	 platform	 (mobile	
device	 or	 service	 Cloud)	 that	 allows	 satisfying	 user’s	 defined	 QoS	 constrains	 while	 achieving	
maximum	 energy	 savings.	 In	 order	 to	 do	 so,	 it	 considers	 the	 trade-off	 among	 mobile	 local	
execution	 of	 a	 task	 and	 its	 associated	 energy	 consumption	 -	 versus	 the	 remote	 service	 cloud	
execution	 of	 the	 same	 task,	 therefore,	 incurring	 network	 transmission	 energy	 consumptions.	
The	proposed	framework	considers	two	operation	modes	with	regards	to	mobile	device	to	cloud	
task	migration	and	associated	data	transmission:	full	and	partial	migration.	Experimental	studies	
have	 focused	on	 two	QoS	attributes:	access	 latency	and	energy	consumption.	While	BASMATI	
approach	 does	 not	 specifically	 focus	 on	 the	mobile	 device	 energy	 optimization,	 the	 approach	
taken	 in	 this	 paper	 the	 trade-off	 approach	 among	 local	 and	 remote	 execution	 could	 be	 of	
applicability	for	BASMATI.	

Zhang	and	Yan	(2011)	propose	a	Mobile	Cloud	QoS	management	framework	taking	an	adaptive	
approach	 to	 QoS	management	 (Zhang	 and	 Yan	 2011).	 The	 framework	 is	 designed	 as	 follows.	
Each	 of	 the	 mobile	 devices	 has	 a	 QoS	 agent	 installed	 that	 monitors	 CPU	 consumption,	
connection	speed,	remaining	battery	and	packet	loss	rate,	among	others.	These	QoS	parameters	
are	 then	 centrally	 evaluated	 at	 Cloud	 environment	 so	 to	 decide	 among	 different	 execution	
models,	which	dynamically	adapt	Cloud	resources	assigned	to	the	service	execution.	

Yin	 et	 al.	 (2015)	 present	 a	 2-tier	 mobile	 cloud	 computing	 framework	 specifically	 tackling	 the	
needs	of	Big	Data	 (Yin	et	al.,	2015).	 It	enables	pay-per-use	and	on-demand	approach	of	Cloud	
instances	so	to	enable	multi-tenancy	of	Cloud	virtual	infrastructure.		

ThinkAir	 (Kosta	et	al.,	2012)	present	 (see	2.2.	 for	detail	description)	a	 framework	 that	enables	
method	 level	computation	off-loading	 to	Cloud	environments.	The	main	novelties	provided	by	
ThinkAir	 rely	 on	 a	more	 sophisticated	 use	 of	 Cloud	 computing	 environment	 aiming	 to	 exploit	
Cloud	 potential	 with	 regards	 to	 elasticity	 and	 scalability	 for	 Mobile	 Cloud	 benefit.	 ThinkAir	
provides	on-demand	cloud	resource	allocation	 in	order	to	cope	with	different	requirements	of	
mobile	applications	 to	off-load	at	 the	 level	of	CPU	and	memory	 resources.	Besides,	 it	 enables	
parallelization	 by	 dynamically	 managing	 virtual	 infrastructure	 in	 the	 Cloud	 environment,	
therefore	reducing	both	cloud	server’s	side	and	overall	application’s	execution	time	and	energy	
consumption.		

ThinkAir	 QoS	 management	 capabilities	 are	 being	 extended	 in	 the	 context	 of	 RAPID	 project.	
RAPID	 (López	 et	 al.,	 2016)	 proposes	 a	 new	 heterogeneous	 architecture	 that	 enables	 task	
offloading	on	the	client	side	and	handles	offloaded	tasks	in	the	cloud	side	with	remote	CPUs	and	
GPUs,	 thought	ThinkAir	 framework.	This	 is	enriched	with	monitoring	of	 the	activity	of	physical	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	68	of	115	
	

resources	 in	 Cloud	 and	 support	 of	 QoS	 aspects	 per	 each	 user.	 These	 way,	 ThinkAir	
implementation,	 and	 overall	 RAPID	 results	will	 not	 only	 realize	QoS-based	 offloading	 but	 also	
create	new	and	more	advanced	services	in	mobile	applications	thanks	to	remote	CPU	and	GPU	
accelerators.	

4.4 BASMATI	SLA	Management	Requirements	and	Specifications	
In	 order	 to	 tackle	 the	 challenge	 of	managing	 the	 federation	 of	 several	 CSPs	 a	 Federated	 SLA	
Management	 component	 is	 required	 within	 the	 BASMATI’s	 architecture.	 As	 one	 federated	
cloud-based	application	 in	BASMATI	 can	have	one	or	more	dependencies	on	underlying	 cloud	
service	providers,	the	defined	SLAs	should	include	the	agreed	terms	between	the	CSPs	and	the	
application	controller	(in	this	case	the	different	SLAs	should	all	be	linked	to	the	same	application	
controller).	To	support	the	modelling	of	the	SLA	hierarchy,	in	which	a	higher-level	SLA	depends	
on	a	lower-level	one,	the	implementation	at	the	modeling	level	could	take	different	approaches.	
On	 one	 hand	 the	 lightweight	 approach,	 all	 SLAs	 are	 independently	 modelled	 and	 their	
interactions	 are	 just	modelled	 through	 a	 particular	 property	 in	 the	 parent	 SLA.	 On	 the	 other	
hand,	in	a	more	integrated	approach,	all	SLAs	might	be	modelled	in	one	composite/master	SLA.		

In	any	case,	to	support	the	federation	we	might	need	to	consider	several	aspects	in	advance,	in	
order	to	enable	the	assessment	of	the	contracts	and	the	convenience	of	the	remedial	actions	at	
runtime:	

- Trustworthy	monitoring	sources	capable	of	collecting	the	information	of	an	application	
spread	across	a	federation	of	providers.		

- The	 federated	monitoring	 system	may	need	 to	aggregate	 the	 information	gathered	at	
different	levels	in	order	to	evaluate	the	application	SLOs.	

- We	may	need	to	express	complex	conditions	for	the	applicability	of	the	SLA.	
- Remedial	actions	should	be	known	beforehand	and		
- Penalties	 could	 be	 linked	 to	 policies	 associated	 with	 several	 domains:	 financial,	

performance	or	sustainability	among	others.	
- We	may	need	 to	 specify	 the	 association	between	 the	 low-level	 SLOs	 violated	 and	 the	

consequences	in	the	high-level	agreement.	

5 Brokerage		
Cloud	Service	Brokerage	(CSB)	represents	a	new	type	of	service	and	emerging	business	model	in	
the	 space	 of	 cloud	 computing,	 aimed	 at	 helping	 enterprises	 to	 address	 precisely	 those	
challenges,	 and	 to	 mitigate	 the	 risks	 that	 ensue	 from	 the	 complexity	 inherent	 in	 large-scale	
enterprise	cloud	environments.	In	an	analogy	to	the	way	other	kinds	of	intermediaries	operate	
within	different	areas	of	traditional	commerce,	a	Cloud	Service	Brokerage	is	an	entity	that	works	
on	behalf	of	a	consumer	of	cloud	services	to	intermediate	and	to	add	value	to	the	services	being	
consumed.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	69	of	115	
	

The	 US	 National	 Institute	 of	 Standards	 and	 Technology	 (NIST)	 defines	 cloud	 computing	 in	 its	
Reference	Architecture	for	Cloud	Computing	as	a	model	with	Cloud	Broker	as	one	of	five	main	
roles	 as:	 An	 entity	 that	 manages	 the	 use,	 performance,	 and	 delivery	 of	 cloud	 services;	 and	
negotiates	relationships	between	Cloud	Providers	and	Cloud	Consumers	(NIST,	2011).	

Gartner	defines	“brokerage”	as	a	model	of	business;	the	term	is	used	to	refer	to	“the	purpose	of	
a	business	that	operates	as	an	intermediary”.	More	specifically,	Gartner	uses	the	term	to	denote	
“any	 type	 of	 intermediation	 that	 adds	 value	 to	 the	 consumer’s	 use	 of	 a	 service”	 (Plummer,	
2011).	 According	 to	 the	 same	 analysts,	 a	 business	 cannot	 be	 considered	 a	 Cloud	 Service	
Brokerage	if	it	does	not	have	a	“direct	contractual	relationship	with	the	consumer(s)	of	a	cloud	
service”	(Plummer,	Lheureux	&	Karamouzis,	2010).		

According	 to	 Gartner	 (Plummer	 et	 al.,	 2011),	 Cloud	 Service	 Brokers	 deliver	 value	 via	 three	
primary	 roles:	 service	 aggregation;	 service	 integration;	 and	 service	 customization,	 while	
additional	 roles	 such	 as	 service	 arbitrage	 are	 also	 possible.	 By	 virtue	 of	 this	 broad	 definition,	
Gartner	 essentially	 considers	 any	 intermediation	 offering	 that	 adds	 some	 kind	 of	 value	 to	 a	
cloud	 service	 to	 qualify	 as	 a	 cloud	 service	 broker.	 Any	 provider	 of	 relevant	 services	 or	
technology,	 even	 with	 the	 most	 basic	 intermediation	 capabilities	 and	 a	 “simple”	 value	
proposition	already	qualifies	as	CSB.	

Gartner	analysts	draw	a	useful	distinction	between	 the	 terms	“brokerage”	and	“broker”.	They	
highlight	the	fact	that	these	terms	are	often	used	interchangeably	but	actually,	refer	to	different	
concepts.	In	Gartner’s	view,	a	broker	is	“a	person,	company	or	piece	of	technology	that	delivers	
an	 instance	 of	 brokerage	 or,	 the	 specific	 application	 of	 a	 mechanism	 that	 performs	 the	
intermediation	between	consumers	and	providers”.		

Forrester	 (Forrester	 ,2012),	 on	 the	 other	 hand,	 defines	 a	 Cloud	 Service	 Broker	 as	 the	 most	
complex	 business	 model,	 offering	 a	 wide	 value	 contribution	 in	 the	 emerging	 cloud	 space.	
Essentially,	this	model	leverages	skills	and	capabilities	from	all	three	of	the	traditional	business	
models	 of	 software,	 consulting,	 and	 infrastructure.	 They	 argue	 that	 there	 are	 no	 brokers	 in	
existence	yet.	Only	integrated	or	aggregated	services	which	bring	some	kind	of	value	out	of	the	
composition	 may	 qualify	 as	 a	 broker.	 According	 to	 Forrester	 an	 intermediary	 has	 to	 offer	 a	
certain	 complex	 “combined”	 value	 proposition	 in	 order	 to	 qualify	 as	 broker.	 Forrester	 also	
distinguishes	 three	 types	 of	 Cloud	Brokers,	 according	 to	 the	 level	 of	 the	 cloud	 stack	 at	which	
they	operate,	being	Simple	Cloud	Broker,	Full	Infrastructure	Broker,	and	SaaS	Broker	(Forrester,	
2012).	

The	 Broker@Cloud	 consortium	 defined	 a	 taxonomy	 of	 cloud	 service	 brokerage	 capabilities	
(Verginadis	 et	 al.,	 2013).	 This	 taxonomy	 represents	 a	 synthesis	 of	 present	day	 views	on	 cloud	
service	 brokerage,	 incorporating	 frequently-cited	 viewpoints	 by	 analysts	 such	 as	 Gartner	
(Plummer	 et	 al.,	 2011),	 Forrester	 (Forrester	 2012)	 and	 NIST	 (NIST,	 2011),	 and	 those	 of	 the	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	70	of	115	
	

Broker@Cloud	 consortium.	The	 taxonomy	 takes	 into	 consideration	 six	different	dimensions	of	
brokerage	capability:	

i) Service	Discovery	
ii) Service	Integration	
iii) Service	Aggregation	
iv) Service	Customisation	
v) Service	Quality	Assurance	
vi) Service	Optimisation	

Veloudis	et	al.	 (Veloudis	et	al.,	2014)	propose	a	minimal	Cloud	Service	Brokerage	 (CSB)	model	
based	 on	 the	 traditional	 Service	 Oriented	 Architecture	 (SOA)	 model	 by	 Massuthe	 et	 al.	
(Massuthe	et	al.,	2005)	and	with	a	focus	on	software-based	Cloud	Services.	The	proposed	model	
is	minimal	 in	 the	 sense	 that	 it	 only	 identifies	 the	 relevant	 roles,	 without	making	 any	 specific	
assumptions	 about	 potential	 interrelationships	 between	 the	 underlying	 entities	 that	 assume	
these	 roles.	 The	CSB	model	extends	 the	SOA	model	 through	 the	 introduction	of	 an	additional	
role,	namely	 the	Hosting	Platform,	 through	which	 the	various	 services	are	consumed,	and	 the	
substitution	of	the	Service	Registry	role	with	the	more	complex	Broker	role.	

5.1 Optimization	Factors	for	Service	Placement		

5.1.1 Application	Characteristics	

5.1.1.1 Mobile	Application	Types	and	Categories	
Smartphones	market	and	its	applications	are	growing	rapidly	every	year.	As	of	July	2015,	there	
were	1.6	million	apps	available	for	Android	users	and	1.5	million	apps	were	available	in	Apple's	
App	 Store	 (Statista,	 2015).	 As	 a	 result,	 smartphones	 increasingly	 became	 an	 essential	 part	 of	
human	 life.	 In	our	daily	 lives,	we	use	mobiles	 to	do	many	activities	 such	as	 social	networking,	
web	browsing,	emailing,	video	watching,	and	gaming.	Because	of	 the	unique	characteristics	of	
smartphones,	 they	 have	 become	 powerful	 ultra-portable	 personal	 computers	 supporting	 not	
only	 communication	 but	 also	 running	 a	 variety	 of	 complex,	 interactive	 applications	 (Banovic,	
2014).	Table	1	and	Table	2	show	the	different	types	and	categories	of	mobile	applications.	

	 	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	71	of	115	
	

Table	1.	Mobile	Application	Types	[Source:	Flora,	Wang	&	Chande,	2014]	

	 Type	 Description	 Example	

1	 Browser	 Access	
Apps	

Apps	 are	 not	 installed	 in	 the	 device	 and	 there	
data	 are	 not	 stored	 in	 the	 device.	 They	 can	 be	
accessed	 through	 native	 browser	 by	 hitting	 the	
URL	of	the	web.	Their	performance	is	dependent	
on	the	quality	of	the	browser.	

m.yahoo.com,	
www.google.com.		

2	 Native	Apps		 Apps	are	installed	in	the	device	itself.	Apps	data	
and	processing	 occur	 in	 the	 device	without	 any	
need	to	transfer	data	to	the	server.	

Notes	 &	 Reminder	 in	
iPhones.		

3	 Hybrid		

Apps	(Web)		

	

Apps	are	 installed	 in	the	device	but	running	the	
apps	always	requires	internet	connection.	

	

Social	 Networking	 Apps	
(Facebook,	 Twitter);	
Instant	 Messengers	
(Skype).	

E-Commerce	 (Flipkart);	
Internet	 Speed	 Testing	
(Speedtest).		

4	 Hybrid	 Apps	
(Mixed)		

Apps	 are	 installed	 in	 the	 device	 and	 the	
application	 execution	 may	 or	 may	 not	 require	
internet	connection.	

Medical	 apps;	 few	
games	(offline,	online)	

	

Table	2.	Mobile	Application	Categories	[Source:	Flora,	Wang	&	Chande,	2014]	

	 Categories	 Description	

1	 Communications		 E-mail	 clients,	 IM	 clients,	 Social	 networking	 clients,	 mobile/internet	
browsers,	News/Information	clients,	on	device	portals	(Java	portals)		

2	 Games		 Puzzle/Strategy,	Cards/Casino,	Action/Adventure,	Sports,	Leisure	Sports	

3	 Multimedia		 Graphics/Image	 viewers,	 Presentation	 viewers,	 Video	 players,	 Audio	
players,	Streaming	players	(Audio/Video)		

4	 Productivity		 Calendars,	 Calculators,	 Diary,	 Notepad/Memo/Word	 Processors,	
Spreadsheet,	 Directory	 Services,	 Banking	 and	 finance,	 Call	 recording,	
Mobile	health	monitoring,	Mobile	advertising		

5	 Travel		 Profile	Manager,	Idle	screens,	Screensavers,	Address	book,	Task	manager,	
Call	manager,	File	manager,	Mobile	search		

6	 Utilities		 Profile	Manager,	Idle	screens,	Screensavers,	Address	book,	Task	manager,	
Call	manager,	File	manager,	Mobile	search		

7	 Education		 Alphabet,	Numerical		
	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	72	of	115	
	

5.1.1.2 Characteristics	of	Mobile	Application	
Mobile	applications	have	key	characteristics	 that	make	them	different	 from	their	counterparts	
desktop	 and	 laptop	 applications.	 There	 are	 few	 works	 on	 the	 characteristics	 of	 mobile	
applications	 in	 the	 literature,	 such	 as	 Salmre	 (2004)	 and	 Flora,	 Wang	 &	 Chande	 (2014).	
According	 to	 a	 recent	 survey	 conducted	 by	 Flora	 et	 al.	 (2014)	 involving	 mobile	 companies,	
mobile	 app	 development	 team	 members,	 mobile	 experts,	 researchers,	 and	 relevant	
stakeholders,	 mobile	 applications	 are	 classified	 into	 three	 categories:	 Hardware,	 software	
(application	 interaction,	 application	 development,	 and	 application	 security),	 and	
communication.	 Following	 are	 the	 key	 characteristics	 of	 mobile	 applications	 as	 identified	 by	
Salmre	(2004)	and	the	results	of	the	survey	by	Flora,	Wang,	&	Chande	(2014).	

	

Table	3.	Characteristics	of	mobile	applications	[Source:	Flora,	Wang,	&	Chande,	2014;	Salmre,	2004]	

Category	 Characteristic	 Description	

	

	

Hardware-related		

Characteristics	

Less	Power	 Mobile	 app	 has	 small	 line	 code.	 Therefore,	 it	
requires	 less	 disk	 space	 (less	 memory),	 less	
computing	power,	less	energy	consumption.		

Input	Mechanism		 Minimum	 keyboard	 entries	 (Touch,	 pinch,	 and	
swipe).	

Star-up	Time		 Ability	 to	 quickly	 start-up	 s	 imperative	 for	 the	
mobile	 app	 as	 the	 user	 uses	 the	 mobile	 apps	
frequently.	

Physical	Parameters	 Illumination,	noise,	vibration	and	motion,	etc.	
Device	
Fragmentation		

Ability	 to	 run	 on	 all	 mobile	 platforms	 and	 be	
compatible	 with	 different	 devices	 versions	 and	
their	OS.	

	

	

	

	

	

Software-Related	

	Characteristics	

Application	
Interaction		

User	Experience,	User	 Interface,	 Integration	with	
Information	sources,	Integration	with	other	Apps,	
Acknowledgment	about	the	running	status	of	the	
app	(Action	feedback),	Error	Notification	

Focused	purpose	 Mobile	 apps	 should	 be	 focused	 and	 enabling	
special	features.	

Short-duration	
activates.	

Using	the	app	for	short	length	sessions.	

Convenience		 Simple,	ensuring	high	quality	content,	high	value	
and	user	acceptance.	

Responsiveness	 Ability	 to	 remain	 responsive	 when	 running	 long	
operations.	

Personalization	 Creating	 individual	 content	 and	 role	 based	 on	
personalized	context	or	usage.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	73	of	115	
	

Localization		 Ability	 to	 handle	 sensors	 that	 respond	 to	 device	
movement,	 numerous	 gestures,	 GPS,	 cameras,	
and	 multiple	 network	 protocol.		
Possibility	to	provide	location-based	information	

Reliability/	
Reachability	

Mobile	applications	can	be	considered	as	of	being	
“instant	access”.	Therefore,	 they	can	be	 reached	
at	any	time,	and	any	where	

Security		 Encryption,	 expire	 sessions,	 Request	 validity	
period	 (automatic	 session	 outs),	 Prevent	
repeated	request.	

From	Factor	 Ability	 to	 be	 used	 in	 crowded	 and	 noisy	 spaces,	
single-or	two-handed	operation	(Salmre,	2004)	

Communication	 -
Related	
Characteristics	

Network	
Connectivity		

Some	 apps	 are	 always	 connected	 and	 they	 are	
affected	 by	 the	 network	 conditions	 (Bandwidth,	
latency,	 unstable	 connection,	 data	 transfer	
charge,	battery	consumption).	

	

5.1.2 User	Preferences	and	User	Utility	
In	the	recent	years,	we	have	seen	a	steady	increase	in	the	human	dependency	on	smartphone	
devices	in	daily	life.	Mobile	devices	have	emerged	rapidly	from	a	simple	communication	device	
into	 multifunctional	 information	 and	 communication	 device	 (Ferreira,	 Goncalves,	 Kostakos,	
Barkhuus,	&	Dey,	2014).	With	the	increase	in	their	functionality	and	diversity	of	use,	smartphone	
devices	 are	 predicted	 to	 be	 the	 dominant	 future	 computing	 devices	 with	 highest	 user	
expectations	for	running	computationally	intensive	applications	like	those	of	powerful	desktop,	
notebook,	or	PCs	(Al-Athwari	&	Altmann,	2013;	Shiraz,	Gani,	Khokhar,	&	Buyya,	2013).	

A	significant	amount	of	work	has	been	done	on	smartphone	to	understand	how	users	 interact	
with	 their	 phones	 in	 the	 real	world	 (Church,	 Ferreira,	 Banovic,	&	 Lyons,	 2015;	 Demumieux	&	
Losquin,	 2005;	 Do,	 Blom,	 &	 Gatica-Perez,	 2011;	 Falaki	 et	 al.,	 2010;	 Ferreira	 et	 al.,	 2014;	
Froehlich,	Chen,	Consolvo,	Harrison,	&	Landay,	2007;	Jesdabodi	&	Maalej,	2015;	Jones,	Ferreira,	
Hosio,	Goncalves,	&	Kostakos,	2015;	Kang,	Seo,	&	Hong,	2011;	Kim,	Ilon,	&	Altmann,	2013;	Lim,	
Bentley,	 Kanakam,	 Ishikawa,	&	Honiden,	 2015;	McMillan,	Morrison,	 Brown,	 Hall,	 &	 Chalmers,	
2010;	 Ahmad	 Rahmati,	 Tossell,	 Shepard,	 Kortum,	 &	 Zhong,	 2012;	 Abouzar	 Rahmati	 &	 Zhong,	
2013).	 A	 typical	 methodology	 that	 has	 been	 used	 is	 to	 install	 a	 logger	 application	 on	 a	
smartphone	of	the	user	and	collect	actual	usage	data.	Their	common	findings	are	that	all	users	
have	a	unique	device	usage	pattern.	Despite,	 the	significant	amount	of	 research	about	mobile	
usage	with	different	sizes	of	samples	,	and	from	different	populations,	with	each	study	focused	
on	different	aspect	of	mobile	usage,	most	researchers	agree	that	studying	mobile	device	usage	
is	 still	 very	 challenging	 (Church	 et	 al.,	 2015)	 .	 Another	 common	 finding	 is	 that	 all	 users	 have	
unique	usage	patterns.	This	diversity	among	users	revealed	the	need	of	understanding	the	user	
behavior.	 Better	 understanding	 of	 user	 behavior	 helps	 in	 multiple	 ways	 in	 developing	 new	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	74	of	115	
	

mechanisms	 that	 better	 match	 user	 expectations	 (Falaki	 et	 al.,	 2010;	 Heikkinen,	 Nurminen,	
Smura,	 &	 Hämmäinen,	 2012).	 Technical	 solutions	 should	 learn	 and	 adapt	 user	 behavior	 to	
effectively	improve	user	experience	(Falaki	et	al.,	2010).	Without	understanding	user	behavior,	it	
is	not	possible	to	clearly	understand	the	 impact	of	any	optimization	on	user	experience	 (Shye,	
Scholbrock,	&	Memik,	2009).	

In	 the	 respect	 of	 cloud	 computing,	 the	 rapid	 growth	 of	 cloud	 services	 provided	 from	
heterogeneous	 cloud	 provider,	 the	 choice	 of	 cloud	 service	 become	 a	 significant	 challenge.	
Recently,	many	decision	making	methods	have	been	proposed	 to	assist	 the	process	of	 service	
selection	based	on	user	preferences	such	as	the	Preference-based	cLoud	Service	Recommender	
(PuLSaR),	 which	 has	 been	 developed	 by	 (Patiniotakis,	 Verginadis,	 &	 Mentzas,	 2015)	 in	 the	
context	of	the	EU	FP7	project	Broker@Cloud	(http://www.broker-cloud.eu/).	PuLSaR	is	a	cloud	
consumer	 preference	 based	 recommender	 that	 uses	 a	 holistic	 multi-criteria	 decision	 making	
approach	 for	 offering	 optimization	 as	 brokerage	 capability.	 The	 decision	 making	 approach	
considers,	 in	 a	 unified	 way,	 quantitative	 and	 qualitative	 aspects.	 To	 that	 end	 the	 SMICloud	
model	(Garg	et	al.,	2013)	is	extended	at	different	levels	by	introducing	more	qualitative	factors.	
PuLSaR	distinguishes	between	precise	quantitative	service	attributes	(e.g.	service	response	time)	
expressed	as	 crisp	 values	 and	 imprecise	qualitative,	more	 intuitive	 characteristics	 (e.g.	 service	
reputation)	 expressed	 as	 linguistic	 terms	 and	 fuzzy	 numbers.	 With	 such	 an	 approach	 users	
should	 be	 enabled	 to	 explicitly	 express	 fuzzy	 levels	 of	 requirements	 (e.g.	 bad,	 ok,	 good)	 and	
apply	 a	 fuzzy	 multi-criteria	 decision	 making	 method	 for	 preference-based	 ranking	 of	 cloud	
services.	Specifically,	it	develops	and	implements	a	fuzzy	Analytic	Hierarchy	Process	(fuzzy	AHP)	
approach	 that	 solves	 the	 problem	 of	 service	 ranking	 and	 allows	 the	 unified	 multi-objective	
assessment	of	 cloud	 services.	 Thus,	 PuLSaR	 copes	with	 the	 implicit	 uncertainty	or	 imprecision	
that	 exists	 in	 the	 cloud	 consumer’s	 preferences.	 It	 also	 lets	 consumers	 register	 feedback	 that	
cloud	service	providers	can	use	to	improve	services.	

5.1.3 BASMATI	Optimization	Requirements	and	Specifications	
BASMATI	 aims	 at	 providing	 a	 set	 of	 technologies	 for	 runtime	 optimization	 of	 brokerage	 and	
offloading	 decisions	 of	 mobile	 applications.	 Considering	 the	 BASMATI	 cloud	 federation,	 the	
choice	 of	 the	 cloud	 provider	 who	 can	 provide	 the	 resources	 required	 to	 execute	 a	 particular	
application	 is	 a	 complex	 decision	 due	 to	 the	 heterogeneity	 of	 the	 services	 provided	 by	 the	
different	providers	 in	 terms	of	 costs,	 resources,	 and	 technology.	 In	 fact,	when	deciding	which	
part	of	the	application	to	offload	and	which	cloud	provider	to	consider,	a	wide	range	of	factors	
affects	 the	offloading	decision	according	 to	 the	application	 requirements	and	 the	objective	of	
optimization.	

Considering	the	different	constraints	affecting	the	resource	allocation,	based	on	the	application	
requirements	 (e.g.,	 storage,	processing),	 there	 is	a	need	for	solutions	supporting	the	decisions	
on	placement	and	offloading	of	specific	application	services.	BASMATI	will	aim	at	supporting	the	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	75	of	115	
	

decisions	of	which	components	should	be	offloaded	as	well	as	when	and	where	to	place	and/or	
offload	new	service	instances	generated	at	runtime.	

The	BASMATI	run	time	optimization	of	brokerage	and	offloading	decisions	will	provide	solutions	
in	the	form	of	both	the	technologies	and	methods	to	optimize	at	runtime	the	parameters	and	
the	settings	governing	the	objective	function	of	the	static	and	dynamic	brokerage	and	offloading	
model	 according	 to	 runtime	 situations	 /	 contexts.	 To	 do	 that,	 BASMATI	 will	 leverage	 the	
information	 derived	 from	 the	 monitoring	 subsystem	 to	 infer	 the	 actual	 behaviour	 of	 the	
application	 in	 order	 to	 optimize	 its	 allocation	 of	 resources.	 User,	 application,	 situational-
awareness	and	the	adaptation	patterns	characterizing	the	mobile	applications	will	be	leveraged	
by	the	BASMATI	brokerage	platform	to	support	both	an	a-priori	decision	making	and	a	runtime	
optimization	process	involving	application	placement	and	offloading.		

In	this	regard,	BASMATI	will	provide:		

i) A	cost	model	for	predicting	the	required	resources	for	the	application	execution.	
ii) An	ad-hoc	complete	set	of	algorithms	and	methodologies	aimed	at	 identifying	 the	

different	the	optimal	set	of	resources	to	assign	to	the	mobile	cloud	applications,	and	
iii) 	An	 integrated	 set	 of	 techniques	 and	 solutions	 for	 driving	multi-objective	 optimal	

offloading	of	applications.		

In	multi-objective	optimization	problems,	two	or	more	objective	functions	should	be	considered	
simultaneously.	 There	 is	 no	 unique	 solution	 for	 multi-objective	 optimization	 problems,	 but	
instead,	a	set	of	good	trade-off	solutions	(Pareto	optimal	set)	(Coello,	2005).	The	primary	goal	of	
multi-objective	 optimization	 is	 to	 model	 a	 decision-maker’s	 preferences	 (ordering	 or	 relative	
importance	of	objectives	and	goals),	one	valid	categorization	of	the	methods	should	be	related	
to	 the	 way	 the	 decision-maker	 articulates	 these	 preferences.	 So,	 a	 priori	 articulation	 of	
preferences	 implies	 that	 the	 user	 indicates	 the	 relative	 importance	 of	 the	 objective	 functions	
before	 running	 the	optimization	algorithm,	a	posteriori	 articulation	of	preferences	 implies	 the	
selection	 of	 a	 single	 solution	 from	 a	 set	 of	 mathematically	 equivalent	 solutions,	 while	 in	
interactive	 articulation	 of	 preferences	 the	 decision-maker	 is	 continually	 providing	 input	
throughout	the	execution	of	the	algorithm	(Marler	&	Arora,	2004).	

BASMATI	 will	 deliver	 innovative	 solutions	 built	 upon	 existing	 state-of-the-art	 approaches	
(including	 machine-learning	 and	 economic-based	 approaches)	 able	 to	 efficiently	 address	 the	
resource	 selection	 problem	 in	 a	 complex,	 distributed	 and	 constrained	 scenario,	 and	 to	
determine	 when,	 what,	 where	 to	 offload	 (parts	 of)	 the	 mobile	 cloud	 applications.	 Runtime	
optimizations	 will	 take	 place	 to	 perform	 the	 fine-tuning	 of	 the	 applications	 depending	 on	
specific,	 unpredicted	 or	 unpredictable	 actually	 occurring	 conditions.	 The	 challenge	 here	 is	 to	
create	 an	 optimization	mechanism	 that	 is	 both	 effective	 and	 low	 cost,	 both	 in	 terms	of	 costs	
(energy,	time,	monetary)	considering	the	following	requirements	for	making	the	decision:	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	76	of	115	
	

5.1.3.1 User	context	
The	 user	 context	 information	 such	 as	 his	 mobility	 and	 the	 remained	 energy	 level	 should	 be	
considered	when	making	the	offloading	decision.	That	is,	user	context	(e.g.,	mobility	and	energy	
level)	 have	 a	 significant	 effect	 on	 the	 offloading	 decision.	 For	 example,	 when	 the	 remained	
energy	 in	the	smartphone	user	 is	 low	and	have	no	access	to	charge	his	mobile,	 in	this	case	he	
would	prefer	 to	offload	the	heavy	computation	tasks	 to	be	executed	on	the	cloud	to	save	the	
battery	energy.	Also,	 in	case	of	 the	user	mobility,	a	user	may	 lose	connectivity	 to	 the	 internet	
because	of	changing	his	 location	but	might	reconnect	again	later	after	short	time	or	might	not	
reconnect	to	the	internet	for	a	long	time.	Therefore,	the	availability	of	the	connectivity	for	the	
mobile	 user	 varies	 according	 to	 the	 current	 location	 of	 the	 user.	 Also,	 the	 availability	 of	 the	
network	 connectivity	 and	 its	 data	 rate	 for	 the	 mobile	 user	 may	 change	 during	 the	 remote	
execution	 time	 for	 one	 application	 (Magurawalage,	 Yang,	 Hu,	 &	 Zhang,	 2014).	 In	 addition,	
disconnection	during	the	application	execution	can	negatively	affect	the	user	experience.		

5.1.3.2 Application	analysis	
Application	 Analysis	 is	 a	 significant	 step	 for	 enabling	 any	 type	 of	 optimization	 and	 trade-off	
investigation.	 BASMATI	 will	 deliver	 innovative	 solutions	 built	 upon	 existing	 state-of-the-art	
approaches	that	have	been	proposed	for	analysing	application	behaviour.	

In	 general,	 we	 can	 distinguish	 between	 different	 kinds	 of	 constraints	 that	 hinder	 the	
achievement	of	the	BASMATI	vision	with	regards	to	the	application	analysis:	

Cloud	constraints:		
Such	 as	 the	 speed	 of	 cloud	 server,	 cloud	 server	 storage,	 cloud	 server	memory,	 and	 the	 cost	
charged	by	the	cloud	service	provider	for	the	computation.		

Network	constraints:		
When	 making	 the	 offloading	 decision	 it	 is	 necessary	 to	 consider	 the	 state	 of	 the	 available	
network	bandwidth	between	the	smartphone	and	the	cloud.	There	are	two	modes	of	network	
connection	 between	 the	 smartphone	 and	 the	 cloud.	 Those	 are	 WiFi	 network	 and	 cellular	
network	(3G	or	4G).	The	network	bandwidth	capacity	varies	according	to	the	type	of	the	used	
network.	It	also	varies	according	the	current	usage	of	the	link	between	the	smartphone	and	the	
cloud.	

Mobile	constraints:		
It	 includes	mobile	speed,	CPU	 load,	memory,	and	storage.	 In	case	of	 the	CPU,	the	mobile	CPU	
can	 be	 either	 idle,	 or	 have	 utilization	 from	 0-100%.	 Therefore,	 this	 constraint	 should	 be	
considered	when	making	the	offloading	decision.	

Application	Constraints:		
Such	as	data	size,	Computation	rate,	and	application	type.	For	example,	some	applications	(e.g.,	
chess	game)	have	small	size	of	data	but	the	amount	of	computation	is	extremely	large.	Whereas	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	77	of	115	
	

other	applications	(e.g.,	image	retrieval)	have	large	size	of	data	but	the	amount	of	computation	
is	 very	 small	 (Kumar	 &	 Lu,	 2010).	 Therefore,	 the	 application	 type	 has	 an	 influence	 on	 the	
offloading	and	need	to	be	considered	in	the	offloading	decision.	

5.1.3.3 Cost	
Before	 the	 smartphone	 runs	 the	 application,	 the	 cost	 of	 running	 the	 application	 locally	 on	 a	
smartphone	as	well	as	the	offloading	cost	for	the	executing	the	application	on	the	cloud	should	
be	estimated.		

The	cost	estimation	consists	of	three	subcomponents:		

Time	Cost:		
It	measures	the	time	required	to	execute	the	application	locally	on	the	smartphone	and	the	time	
required	 to	 execute	 the	 application	 on	 the	 federated	 cloud.	 The	 estimation	 of	 the	 time	 cost	
includes	the	following:	

Local	time	cost:	This	is	the	time	required	to	run	the	application	locally	on	the	smartphone.	It	is	
estimated	value	depends	on	the	amount	of	the	computation	and	the	smartphone	speed.	

Offloading	 Time	 Cost:	 This	 is	 the	 time	 required	 for	 running	 the	 application	 on	 the	 cloud.	 It	
comprises	of	time	required	for	transmitting	the	required	data	for	the	application,	waiting	for	the	
result,	 and	 receiving	 execution	 from	 the	 federated	 cloud.	 The	 calculation	 of	 the	 time	 cost	
depends	on	the	size	of	the	data	to	be	sent	and	received,	the	bandwidth	capacity	for	sending	and	
receiving	the	data,	the	computation	rate,	and	the	server	speed	of	the	cloud	(Kumar	&	Lu,	2010;	
Xia	et	al.,	2014).		

Energy	consumption	cost:		
To	 support	 the	 offloading	 decision,	 the	 energy	 consumption	 cost	 for	 local	 and	 offloading	
execution	of	the	application	need	to	be	estimated	before	deciding	whether	to	offload	or	not	as	
follows:	

Local	 energy	 consumption	 cost:	 This	 is	 the	 energy	 consumed	 by	 executing	 the	 computation	
locally	on	a	smartphone	can	be	calculated	based	on	the	power	consumed	and	the	average	time	
required	to	run	the	application	on	the	smartphone	.	

Offloading	energy	consumption	cost:	This	cost	is	the	energy	consumed	by	the	mobile	device	for	
executing	the	application	on	the	cloud.	This	includes	the	energy	consumed	for	transmitting	the	
required	data	of	the	application	to	the	cloud,	waiting	for	the	cloud	to	complete	the	execution,	
and	receiving	the	result	from	the	cloud.		

Monetary	Cost:		
Offloading	 the	 application	 to	 the	 cloud	 requires	 cost	 for	 the	 smartphone	 user	 based	 on	 the	
consumed	resources	for	communicating	and	running	the	application	on	the	cloud.	It	comprises	
communication	cost	and	computation	cost.		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	78	of	115	
	

Communication	cost:	This	involves	the	cost	of	wireless/	mobile	networks	and	the	cloud.	The	user	
can	offload	his	application	to	the	MCC	by	either	accessing	WiFi	or	use	3G/4G	mobile	network.	
However,	he	can	reduce	the	cost	by	using	WiFi	because	wireless	networks	such	as	3G	links	will	
charge	him	more	cost.	The	communication	cost	 is	based	on	the	amount	and	price	of	 the	data	
traffic	 for	 the	 communication	 required	 to	 execute	 the	 application	 on	 the	 cloud.	 This	 cost	 is	
determined	by	the	service	agreement	between	the	user	and	the	network	provider.	

Computation	cost:	This	is	the	usage	cost	of	the	cloud	resource.	Different	cloud	service	providers	
charge	 different	 rates	 for	 the	 same	 service.	 Usually,	 cloud	 service	 provider	 measures	 the	
computation	cost	based	on	a	number	of	CPU	cycles,	storage,	and	communication	traffic	(in	and	
out)	of	a	cloud	(Zhang,	Kunjithapatham,	Jeong,	&	Gibbs,	2011).		

5.2 Optimization	Methods		

5.2.1 Machine	Learning	Applications	
Many	popular	cloud	providers	already	offer	their	customers	the	ability	to	place	their	application	
into	 different,	 geographically	 sparse,	 datacenters.	 It	 is,	 for	 example,	 the	 case	 of	 Amazon	 EC2	
(with	 its	 Availability	 Zones)	 and	Microsoft	 Azure.	With	 the	 advent	 of	 the	multi-cloud	 and	 the	
technologies	 to	 make	 Cloud	 platforms	 interoperable	 (Toosi	 et	 al.,	 2014)	 the	 problem	 shifted	
from	the	brokering	of	applications	within	resources	controlled	by	the	same	entity	to	resources	
controlled	by	many	Cloud	providers.	In	the	multi-cloud	context,	as	is	the	case	of	BASMATI,	it	is	
the	main	task	of	the	brokerage	platforms	to	offer	the	ability	to	dynamically	choose,	on	behalf	of	
the	user,	the	best	resources	for	the	applications.	

Dynamic	application	placement	(Li,	Tordsson	&	Elmroth,	2011;	Wang	et	al.,	2013)	considers	the	
requirements	of	applications	to	be	variable	(e.g.	request	spikes),	as	well	as	the	conditions	of	the	
cloud	providers	(e.g.,	variable	prices).		

In	this	case,	the	brokering	approaches	should	run	continuously	in	order	to	adapt	the	placement	
to	the	changing	environment	(Taleb	and	Ksentini,	2013).	The	dynamic	brokering	is	similar	to	the	
static	one,	but	 it	presents	additional	 challenges,	 in	particular,	 the	management	of	monitoring,	
the	consideration	of	the	cost	of	the	migration	and	the	mechanisms	to	enable	service	availability	
and	continuity	(Rehman	et	al.,	2015).	Many	brokering	strategies	consider	data	as	the	main	entity	
to	 move	 across	 different	 cloud	 resources.	 Finding	 a	 proper	 placement	 for	 the	 data	 requires	
taking	 into	account	data	availability	and	often	requires	dealing	with	other	 issues,	such	as	 legal	
and	economic	aspects	(Berenbrink	et	al.,	2013).	However,	moving	data	is	not	enough	for	mobile	
cloud	applications,	as	also	the	computation	shall	happen	closer	to	the	users	(Malet	et	al.,	2010).		

Due	to	the	importance	of	the	problem	and	the	diffusion	among	industry	and	research	of	multi-
cloud	environments,	dynamic	brokering	of	computation	has	been	tackled	using	many	different	
technologies.	 Several	 of	 the	 approaches	 employ	 linear	 programming	 formulations	 and	 rule-
based	 algorithms	 (Berenbrink	 et	 al.,	 2013;	 Malet	 et	 al.,	 2010),	 which	 offers	 better	 results	 in	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	79	of	115	
	

terms	of	scalability	but	suffer	when	the	dimension	of	the	problem	is	large.	These	issues	fostered	
the	 realizations	 of	 high-level	 approaches	 which	 combine	 the	 ability	 to	 work	 with	 highly	
dimensional	 problems	 such	 as	 solutions	 based	 on	 genetic	 algorithms	 (Anastasi	 et	 al.,	 2014),	
machine	 learning	 (Unuvar	 et	 al.,	 2015)	 and	 economic-modelling	 approaches	 (Altmann	 and	
Kashef,	2014).		

Machine	Learning	(ML)	is	a	wide	area	of	computer	science	embracing	a	series	of	tools,	methods,	
models	and	algorithms,	which	are	designed	to	learn	from	stored	data	and	make	a	prediction	on	
new	 data.	 In	 the	 context	 of	 BASMATI,	 ML	 will	 be	 exploited	 to	 resolve	 problems	 such	 as	
classification,	 clustering,	 and	 ranking	 of	 application	 and	 resources.	 Classification	 requires	 the	
labelling	of	data	pieces	in	order	to	assign	them	to	a	category.	In	classification,	if	the	set	of	labels	
to	 be	 assigned	 to	 the	 data	 items	 are	 given	 beforehand,	 it	 is	 called	 supervised	 learning.	
Otherwise,	 if	 the	 labels	 are	 unknown	 a	 priori,	 the	 problem	 becomes	 a	 clustering	 problem,	 in	
which	labels	themselves	are	to	be	learned.	In	the	context	of	dynamic	application	placement,	ML-
based	 classification	has	been	exploited	 to	 assign	 virtual	machines	 to	data	 centers	 by	 labelling	
each	datacenter	 in	accordance	with	 its	ability	 to	satisfy	a	given	QoS	(Unuvar	et	al.,	2015).	The	
ranking	 problem	 in	ML	 is	 usually	 referred	 to	 as	 learning	 to	 rank	 (L2R)	 (Li	 2014;	 Cheng	 et	 al.,	
2012;	Hopkins	&	May,	2011;	Liu	2009)	and	provides	a	ranking	of	data	items	according	to	defined	
objectives.	 A	 L2R-based	 function,	 which	 scores	 a	 set	 of	 candidate	 objects	 according	 to	 their	
relevance	to	a	given	query,	is	learned	from	a	ground-truth	composed	of	many	training	examples.	
The	scoring	function	learned	by	a	L2R	algorithm	aims	to	approximate	the	ideal	ranking	from	the	
examples	 observed	 in	 the	 training	 set.	 L2R	 models	 are	 usually	 classified	 into	 three	 broad	
categories:	 point-wise,	 pair-wise	 and	 list-wise.	 Point-wise	 methods	 are	 regression	 or	
classification	 algorithms	 aiming	 at	 predicting	 the	 relevant	 label	 associated	 with	 each	 query-
object	pair	in	the	training	set.	Pair-wise	methods	consider	pairs	of	objects	as	training	instances,	
and	they	explore	scoring	functions	that	are	able	to	discriminate	the	best	document	among	the	
two.	 The	 learning	 process	 for	 point-wise	models	 tries	 to	 optimize	 loss	 functions	 such	 as	 root	
mean	 squared	 error	 (RMSE)	with	 respect	 to	 object	 relevance	 labels,	while	 pair-wise	methods	
typically	optimize	the	number	of	misclassified	pairs.	 IR	quality	measures	that	are	a	 function	of	
the	 full	 set	 of	 results	 for	 a	 given	 query	 cannot	 be	 directly	 optimized	 by	 the	 above	 two	
approaches.	To	this	end,	list-wise	methods	have	been	introduced	to	directly	optimize	list-based	
metrics.		

When	 it	 comes	 to	 selecting	an	ML	method	 for	 solving	a	problem,	 there	are	many	dimensions	
that	 need	 to	 be	 considered,	 such	 as	 the	 size	 of	 the	 training	 data,	 the	 characteristics	 and	 the	
number	 of	 the	 features,	 and	 the	 requirements	 in	 terms	 of	 performance.	 Therefore,	 several	
methods	shall	be	evaluated.	Logistic	regression	is	the	simplest	form	of	learning	and	can	be	used	
for	 both	 classification	 and	 ranking.	 Logistic	 regression	 can	 be	 made	 very	 efficient	 exploiting	
parallelization	 (Chu	 et	 al.,	 2007),	 but	 it	 requires	 the	 features	 to	 be	 linearly	 dependent.	 In	 the	
case	of	non-linear	 features,	or	when	the	number	of	 features	 is	high,	Support	Vector	Machines	
(SVM)	(Joachims,	2012)	would	represent	a	better	choice.	However,	SVMs	may	face	performance	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	80	of	115	
	

problems,	 as	 they	 are	 usually	 slow	 to	 train.	 For	 example	 tree-based	 learning,	 using	 random	
forest,	can	be	used	when	the	number	of	features	is	high,	and	recent	development	(Lucchese	et	
al.,	 2015)	 improved	 its	 performance	 over	 large	 training	 sets.	 Two	 of	 the	most	 effective	 L2R-
based	rankers	are	based	on	additive	ensembles	of	regression	trees,	namely	GRADIENT-BOOSTED	
REGRESSION	TREES	(GBRT)	(Friedman,	2001),	and	LAMBDA-MART	(λ-MART)	(Burges,	2010).	Due	
to	the	thousands	of	trees	to	be	traversed	at	scoring	time	for	each	document,	these	rankers	are	
also	the	most	expensive	in	terms	of	computational	time,	thus	impacting	on	response	time	and	
throughput	 of	 query	 processing.	 Therefore,	 devising	 techniques	 and	 strategies	 to	 speed-up	
document	ranking	without	loosing	in	quality	 is	definitely	an	urgent	research	topic	(Lucchese	et	
al.,	2015).	

5.2.2 Socio-Economic	Models	
The	 broker	 is	 one	 of	 the	 key	 elements	 for	 enabling	 federation	 of	 Clouds	 and	 auto-scaling	
application.	 Cloud	 brokers	 have	 different	 delimitations	 by	 organizations	 dealing	 with	 cloud	
paradigm	(Altmann	et	al.,	2008;	Khanna	&	 Jain,	2015).	The	application	broker	 is	defined	as	an	
automated	entity	with	the	following	responsibilities	(Grozev	&	Buyya,	2014)	:	

• Automatic	provisioning	and	management	of	resources	(e.g.	virtual	machines	(VMs)	and	
storage)	 for	 a	 given	 application	 across	 multiple	 clouds.	 Typically,	 this	 would	 include	
allocation	and	de-allocation	of	the	resources.	

• Deployment	 of	 the	 components	 of	 the	 application	 in	 the	 provisioned	 resources	
automatically.	

• Scheduling	and	load	balancing	of	the	incoming	requests	to	the	allocated	resources.	

Therefore,	 provisioning	 the	 resources	within	 the	 federated	 clouds	 could	be	driven	by	market-
oriented	principles	for	efficient	resource	allocation	depending	on	user	QoS	targets	and	workload	
demand	 patterns.	 The	 commonly	 used	 economic	 models	 (Buyya	 et	 al.,	 2002)	 that	 can	 be	
employed	for	resource	brokering	environment	include:	

5.2.2.1 The	Commodity	Market	Model		
In	 this	 model,	 the	 resource	 providers	 define	 their	 price	 and	 customers	 define	 their	 needs	
accordingly.	 In	 this	 case,	 pricing	policies	will	 depend	on	many	parameters	 such	as	usage	 time	
(e.g	peak-load	pricing)	or	usage	quantity	(e.g.	price	discrimination).	The	pricing	schemes	can	be	
either	 flat	 (fixed),	 usage	 duration	 (time),	 subscription	 based,	 or	 variable	 price	 based	 on	 the	
supply-and-demand	(Altmann,	Courcoubetis	&	Risch,	2010;	Breskovic,	Altmann	&	Brandic,	2013;	
Altmann	et	al.,	2008).	For	executing	applications,	the	resource	broker	is	responsible	for	carrying	
out	the	following	steps	(on	behalf	of	the	user):	

1. The	broker	identifies	service	providers;	
2. It	 identifies	 the	 resources	 which	 are	 suitable	 for	 a	 given	 application	 and	 determines	

their	prices;	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	81	of	115	
	

3. It	selects	resources	that	meet	the	user’s	utility	function	and	objectives	(lower	cost	and	
deadline	 requirements	met).	 Typically,	 while	 selecting	 the	 resources,	 the	 broker	 uses	
heuristics	and/or	historical	knowledge	and	mapping	jobs	to	them.	

4. It	manages	the	job	processing	using	the	resource	services	and	also	it	issues	payments	as	
agreed.	

5.2.2.2 The	Auction	Model		
Auctions	 are	 the	most	 extensively	market	models	 studied	 through	 the	 literature.	 The	 auction	
model	 supports	 one-to-many	 negotiation,	 between	 a	 service	 provider	 (seller)	 and	 many	
consumers	(buyers).	The	negotiation	is	reduced	to	a	single	value	(i.e.	price).	The	auctioneer	sets	
the	rules	of	the	auction,	acceptable	for	the	provider	and	the	consumers.	Auctions	basically	use	
market	 forces	 to	negotiate	a	 clearing	price	 for	 the	 service.	Auctions	can	be	classified	 into	 five	
types:	English	auction	(first-price	open	cry);	first-price	sealed-bid	auction;	Vickrey	(second-price	
sealed-bid)	auction;	Dutch	auction;	and	double	auction	(continuous).	

5.2.2.3 The	Posted	Price	Model	
The	posted	price	model	 is	 similar	 to	 the	commodity	market	model,	except	 that	 resources	and	
offer	 prices	 are	 advertised	 in	 order	 to	 attract	 (new)	 consumers	 to	 establish	market	 share	 or	
motivate	users	to	consider	using	cheaper	slots.	 In	this	case,	brokers	use	posted	prices	without	
any	need	 to	negotiate	directly	with	SPs	 for	 the	price,	because	 the	posted	prices	are	generally	
cheaper	compared	to	regular	prices.	The	posted	price	offers	will	have	usage	conditions,	but	they	
might	be	attractive	for	some	users.	

5.2.2.4 The	Bargaining	Model	
Unlike	the	previous	models	in	which	the	broker	pays	access	price	fixed	by	the	SP,	the	barraging	
model	resource	broker	bargains	with	Service	Providers	(SPs)	for	lower	access	prices	and	higher	
usage	durations.	Both	brokers	and	SPs	negotiate	with	each	other	to	meet	their	objectives.	The	
SPs	may	 start	with	 a	higher	price	 and	 the	brokers	with	 a	 very	 low	price.	 They	both	negotiate	
until	 they	 reach	 a	 mutually	 agreeable	 price	 or	 one	 of	 them	 is	 not	 willing	 to	 negotiate	 any	
further.	 This	 negotiation	 is	 driven	 by	 user	 requirements	 (e.g.,	 a	 deadline	 is	 too	 relaxed)	 and	
brokers	can	take	risks	and	negotiate	to	minimize	the	cost	as	much	as	possible	to	meet	the	user	
requirements.	 To	 avoid	 the	 lower	 utilization	 of	 resources,	 SPs	might	 be	willing	 to	 reduce	 the	
price	 instead	 of	 wasting	 resource	 cycles.	 Brokers	 and	 SPs	 generally	 employ	 this	model	 when	
market	 supply	 and	 demand	 and	 service	 prices	 are	 not	 clearly	 established.	 The	 users	 can	
negotiate	 a	 lower	 price	 with	 the	 promise	 of	 some	 kind	 of	 favour	 or	 the	 promise	 of	 being	 a	
customer	of	SP’s	services	even	in	the	future.	

5.2.2.5 The	Tendering/Contract-net	Model	
This	model	 is	 one	 of	 the	most	widely	 used	models	 to	 negotiate	 for	 a	 service	 in	 a	 distributed	
problem-solving	 environment.	 It	 is	 based	 on	 the	 contracting	 mechanism	 model	 used	 by	
businesses	 to	manage	 the	 exchange	 of	 services	 and	 goods.	 It	 helps	 in	 finding	 an	 appropriate	
service	provider	to	work	on	a	given	task.	A	user/resource	broker	announces	its	requirements	for	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	82	of	115	
	

a	 given	 service	 is	 called	 the	 manager	 and	 the	 provider	 that	 might	 be	 able	 to	 provide	 the	
resources	is	called	the	potential	contractor.	

5.2.2.6 The	Bid-Based	Proportional	Resource	Sharing	Model	
Market-based	proportional	resource	sharing	systems	are	quite	popular	in	cooperative	problem-
solving	environments	 such	as	 clusters	 (in	a	 single	administrative	domain).	 In	 this	model,	users	
compete	for	shared	resources	in	a	cluster.	The	resources	in	this	model	are	proportionally	based	
on	costs	that	competing	users	are	willing	to	pay.		

5.2.3 Multi-Objective	Optimization	
The	 concept	 of	 offloading	 the	 computation	 and	 data	 to	 the	 cloud	 is	 used	 to	 address	 the	
limitation	of	mobile	devices	by	using	the	resources	provided	by	the	cloud	rather	than	the	mobile	
device	 itself	 to	 run	 the	 mobile	 application	 (Fernando,	 Loke	 &	 Rahayu,	 2013).	 Computation	
offloading	 is	 a	 solution	 to	 augment	 the	 mobile’s	 capabilities	 by	 migrating	 computation	 from	
mobile	 phones	 to	 more	 powerful	 and	 resourceful	 computing	 servers	 located	 in	 the	 cloud	
(Kumar,	 Liu,	 Lu	&	Bhargava,	 2013).The	process	of	moving	 computation	 from	mobile	device	 to	
the	 cloud	 is	 called	 computation	 offloading.	 It	 is	 typically	 used	 to	 boost	 the	 computational	
capability	 of	 a	 resource-constrained	 mobile	 device.	 In	 mobile	 Cloud	 computing	 (MCC)	
environment,	 the	 computation	offloading	 is	 defined	 as	 the	mechanism	of	migrating	 resource-
intensive	 computation	 from	mobile	 device	 to	 the	 resource-rich	 cloud	 (Enzai,	 Idawati	 &	 Tang,	
2014).		

Recently,	 several	 computational	 offloading	 frameworks	 have	 been	 proposed	 for	 offloading	
computational	 intensive	 mobile	 applications	 partially	 or	 entirely	 to	 the	 cloud.	 The	 latest	
developments	in	the	computation	offloading	frameworks	in	MCC	have	aimed	at	augmenting	the	
resources	of	mobile	devices	by	leveraging	the	resources	and	services	of	the	cloud	(Ahmed,	Gani,	
Sookhak,	 Ab	 Hamid,	 &	 Xia,	 2015).	Most	 of	 the	 existing	 offloading	 frameworks	 focus	 on	what	
components	of	the	application	to	offload,	how	to	offload	the	components	and	where	to	offload	
the	intensive	component	of	the	application	(Shiraz,	Sookhak,	Gani	&	Shah,	2015).		

The	 state	 of	 the	 art	 application	 offloading	 frameworks	 are	 designated	 to	 address	 different	
objectives.	Among	popular	objectives	are	minimizing	energy	consumption,	minimizing	execution	
time,	 minimizing	 the	 monetary	 cost,	 and	 reducing	 the	 network	 latency.	 Table	 4	 presents	 a	
comparison	 between	 the	 state-of-the-art	 computation	 offloading	 frameworks	 based	 on	 the	
offloading	objectives.	

	 	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	83	of	115	
	

Table	4	Comparison	of	Computation	offloading	frameworks	based	on	their	Objectives	

	
Offloading		
Objective		

Literature	
ThinkAir,	
(Kosta	 et	
al.,	2012)	

MAUI	
(Cuervo	
	et	al.,		
2010)		

Wolski		
at	al.,		
2008	

Cuckoo	
(Kemp		
et	 al.,	
2012)	

CloneCloud	
(Chun		
et	al.,	
	2011)		
	

Phone2Cloud	
(Tarkoma.	et	al.	
,	2014	

Calling	
the	 Cloud	
(Giurgiu	
et	 al.,	
2009)	

Minimizing	
Energy	
consumption		

O	 O	 	 O	 O	 O	 	

Minimizing	
Execution	
time(Improve	
the	
performance)		

O	 O	 O	 O	 O	 O	 O	

Minimizing	
monetary	cost		

	 	 	 	 	 	 	

Reducing	
Network	
Latency		

	 	 	 	 	 	 O	

	

ThinkAir	 (Kosta	 et	 al.	 (2012))	which	 already	 introduced	 in	 section	 2.2	&	 section	 4.3,	 aims	 at	
reducing	 the	 execution	 time	 and	 the	 energy	 consumption	 It	 logs	 the	 energy	 consumption,	
execution	 time,	and	network	conditions,	and	use	 them	to	make	a	decision	whether	a	method	
should	be	offloaded	or	not.	However,	due	to	the	intensive	profiling	mechanism,	the	offloading	
decision	of	the	ThinkAir	framework	is	complex.		

The energy- ware mobile application offloading framework MAUI	 Cuervo	 et	 al.	 (2010)	 which	
also	introduced	in	section	2.2	continuously	collects	essential	data	such	as	energy	consumption,	
CPU	utilization,	and	network	bandwidth	condition,	at	runtime.	The	collected	data	by	the	profiler	
is	 then	used	 to	decide	whether	 the	method	should	be	executed	 locally	or	 remotely.	Although	
MAUI	 significantly	 improves	 the	 battery	 life	 of	 a	 mobile	 device	 and	 incorporates	 the	 user	
mobility,	it	does	not	address	the	transmission	latency	and	scalability,	and	does	not	provide	the	
QoS	 features	 (Ahmed	et	al.,	 2015).	 In	addition,	 the	MAUI	mechanism	 for	 run-time	application	
profiling	and	solving	involves	additional	computing	resources.	

Wolski et al. (2008)	 consider	 the	 bandwidth	 aspect	 and	 present	 a	 framework	 for	 making	
computation	 offloading	 decisions	 to	 improve	 the	 performance.	 They	 have	 examined	 various	
decision	strategies	for	offloading	in	a	grid	computing	case.	The	authors	predict	the	time	required	
to	execute	the	computation	locally	and	remotely	and	use	offloading	to	minimize	total	execution	
time.	They	do	not	consider	the	energy	aspect	of	offloading	as	they	used	the	bandwidth	between	
the	local	and	remote	endpoints	as	the	bottleneck.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	84	of	115	
	

Cuckoo	Kemp	et	al.	 (2010)	aims	at	minimizing	 the	energy	consumption	and	execution	time	of	
the	 application	 by	 offloading	 mobile	 applications	 to	 the	 cloud	 or	 nearby	 cloud	 servers	 .	 The	
frame	work	architecture	is	already	introduced	in	section	2.2.	Although	the	decision	parameters	
of	 the	Cuckoo	are	decided	at	 run	 time,	 it	 takes	static	decisions	 for	offloading	 that	are	context	
unaware.		

As already introduced in Section 2.2 the main goal of CloneCloud	 Chun	 et	 al.	 (2011)	 is	 to	
optimize	 the	 overall	 execution	 cost.	 The	 execution	 cost	 comprises	 energy	 cost	 and	 execution	
time.	The	energy	consumption	cost	consists	of	CPU	activity,	display	state,	and	the	network	state.	
The	computation	cost	takes	values	from	the	clone	cost	variables	when	the	method	runs	on	the	
clone	of	 the	mobile	device,	or	 from	the	mobile	device	cost	variables.	The	migration	cost	sums	
the	individual	migration	cost	of	those	invocations	whose	method	have	migration	points.	

phone2Cloud	Tarkoma	et	al.	(2014)	have	developed	a	computation	offloading-based	system	for	
energy	saving	on	smartphones	called	phone2cloud.	The	main	aim	of	this	system	is	to	reduce	the	
energy	consumption	and	enhance	the	performance	through	reducing	the	execution	time.	They	
implemented	the	prototype	of	the	phone2cloud	on	Android	and	Hadoop	environment.		

The objective of Calling the cloud	 Giurgiu	 et	 al.	 (2009)	 framework	 which	 was	 already	
introduced	in	section	2.2	is	to	minimize	the	interaction	latency	between	the	mobile	device	and	
the	 cloud	 server	while	 considering	 the	 exchange	data	 overhead.	 The	Calling	 cloud	 framework	
reduces	the	memory	consumption,	communication	cost,	and	interaction	time.	However,	due	to	
the	 dynamic	 analysis,	 profiling,	 synthesis,	 runtime	 partitioning	 and	 offloading,	 it	 employs	
compute-intensive	offloading	process.	The	framework	also	requires	continuous	synchronization	
that	keeps	the	mobile	device	in	active	state	for	the	whole	session	of	distributed	platform.	

In	two	previous	studies	on	offloading	algorithms,	bandwidth	was	the	only	network	parameters	
considered	(Kumar	&	Lu,	2010;	Wolski	et	al.,	2008).	Furthermore,	the	authors	assumed	that	the	
same	 power	 consumption	 is	 required	 for	 sending	 and	 receiving	 data,	 but	 Feeney	 and	Nilsson	
(2001)	 showed	 that	 wireless	 network	 interfaces	 exhibit	 a	 complex	 range	 of	 consumption	
behavior	 (Feeney	 &	 Nilsson,	 2001).	 Hence,	 factors	 such	 as	 packet	 size,	 the	 number	 of	
broadcasts,	 and	 point-to-point	 traffic	 need	 to	 be	 considered	 when	 designing	 energy-aware	
offloading	protocols.	Wen	et	al.	(2012)	considered	the	features	of	wireless	channels	and	showed	
that	 execution	 policies	 depend	 on	 the	 input	 data	 size	 and	 completion	 deadline	 for	 the	
application,	as	well	as	the	wireless	transmission	model	(Wen,	Zhang,	&	Luo	2012).	

Although	 a	 few	 approaches	 proposed	 a	 context-aware	 offloading	 scheme	 for	 mobile	 cloud	
computing	 information	 (Ghasemi-Falavarjani,	 Nematbakhsh	 &	 Ghahfarokhi,	 2015;	 Lin	 et	 al.,	
2013;	Zhou	et	al.,	2015a;	Zhou	et	al.,	2015b),	they	did	not	consider	all	of	the	cost	factors	which	
incurred	by	the	offloading	,	the	context	of	the	user,	and	his	preference.	For	example,	Lin	et	al.	
(2013)	proposed	a	context-aware	decision	algorithm,	called	CADA	,	to	optimize	the	performance	
of	 the	mobile	device	with	various	optimization	criteria,	 including	short	 response	 time	and	 low	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	85	of	115	
	

energy	consumption.	The	proposed	system	profiles	the	user	location	and	time	of	the	day	when	
tasks	are	offloaded	for	remote	execution.	The	algorithm	takes	the	decision	whether	to	offload	
tasks	 or	 not	 based	 on	 historical	 log	 records	 such	 that	 the	 task	 is	 offloaded	 if	 its	 energy	
consumption	when	 it	was	offloaded	 in	the	past	 is	 lower	than	when	 it	was	executed	 locally	 for	
the	 same	 time	 of	 day	 and	 the	 same	 geographic	 location.	 Such	 approach	 that	 depends	 on	
historical	 records	 might	 not	 be	 suitable	 for	 present	 conditions	 and	 could	 lead	 to	 inaccurate	
offloading	decisions.		

Zhou et al. (2015) propose	a	 context-aware	offloading	decision	algorithm	 that	aims	 to	provide	
code	offloading	decisions	 at	 runtime	on	 selecting	wireless	medium	and	which	potential	 cloud	
resource	(nearby	mobile	cloud,	cloudlet,	or	public	cloud	VMs)	as	the	offloading	 location	based	
on	the	device	context.	They	present	cost	estimation	models	for	each	of	those	offloading	location	
and	use	the	estimation	results	and	device	context	to	provide	offloading	policies	of	where,	when	
and	how	to	offload	 for	 the	mobile	application.	The	cost	estimation	model	 includes	 the	energy	
consumption	and	task	execution	time	but	didn’t	include	the	monetary	cost.		

Ghasemi-Falavarjani et al. (2015)	 investigated	 the	 resource	 allocation	 problem	 in	 the	mobile	
cloud.	 They	 developed	 a	 context-aware	 offloading	 middleware	 for	 mobile	 cloud	 (OMMC)	 to	
collect	 contextual	 information	 of	 mobile	 devices,	 subtasks,	 and	 environmental	 variables,	 and	
also	to	manage	the	offloading	process.	However,	regarding	resource	allocation,	it	only	optimizes	
the	 energy	 consumption	 and	 execution	 time	of	 offloading	while	 considering	 some	 constraints	
such	as	user’s	acceptable	deadline,	service	providers’	residual	energy	,	and	budget	constraint.		

Magurawalage et al. (2014)	proposed	a	system	architecture	for	mobile	cloud	computing	(MCC)	
that	includes	a	cloudlet	layer	located	between	mobile	devices	and	their	cloud	infrastructure	or	
clones.	 This	middle	 layer	 is	 called	 a	 cloudlet	 layer	 as	 it	 composed	 of	 cloudlets.	 Cloudlets	 are	
deployed	 next	 to	 IEEE	 802.11	 access	 points	 and	 serve	 as	 a	 localized	 service	 point	 closed	 to	
mobile	devices	to	improve	the	mobile	cloud	services	performance.	They	proposed	an	offloading	
algorithm	on	top	of	this	architecture	with	the	purpose	of	deciding	whether	to	offload	to	a	clone	
or	a	cloudlet.	The	decision-making	considers	the	energy	consumption	for	task	execution	and	the	
network	status	while	satisfying	the	response	time	constraints	of	a	certain	task.	

Kovachev, Yu & Klamma (2012)	 use	 integer	 liner	 programming	 to	 address	 adaptive	
computation	 offloading	 as	 an	 optimization	 problem.	 Their	 approach	 considers	 energy	 usage,	
available	 memory	 and	 CPU	 as	 the	 criteria	 for	 offloading.	 The	 algorithm	 adapts	 dynamic	
approach	 to	 make	 the	 offloading	 decision	 by	 solving	 a	 new	 optimization	 problem	 each	 time	
parameters	 such	 as	 the	 available	 bandwidth	 and	memory	 updated	 their	 values	 in	 the	model.	
Another	 work	 by	 (Wu,	 2013)	 takes	 into	 consideration	 network	 unavailability	 to	 make	 the	
offloading	 decision.	 The	 model	 uses	 an	 application	 partitioning	 algorithm,	 and	 an	 offloading	
decision	 module	 intelligently	 decides	 on	 whether	 to	 offload	 by	 considering	 the	 network	
availability	 for	 remote	execution.	 (Ou,	 Yang	&	Hu,	2007)	proposed	CRoSS	algorithm	 to	 selects	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	86	of	115	
	

the	best	host	for	offloading	according	to	the	link	cost.	The	cost	of	the	link	includes	both	the	link	
failure	rate	and	the	bidirectional	transmission	rate.	

5.3 Interaction	with	Adaptation	Mechanisms		
One	 of	 the	 key	 objectives	 of	 BASMATI	 project	 is	 to	 provide	 a	 highly	 dynamic	 and	 efficient	
support	to	application	adaptivity.	That	is	a	fundamental	requirement	to	realize	next	generation	
applications,	targeting	both	current	and	future	cyber-infrastructures,	more	and	more	consisting	
of	a	large	and	complex	set	of	distributed	and	heterogeneous	resources.	Such	infrastructures	are	
expected	 to	 serve	 as	 the	 computational	 backend	 of	 a	 wide	 set	 of	 different	 applications	 and	
environments,	e.g.,	 IoT,	Smart	cities,	 Industry	4.0,	 large	events	with	multimedia	coverage,	etc.	
Even	 more,	 in	 recent	 times,	 researchers	 and	 practitioners	 are	 envisioning,	 as	 a	 key	 enabling	
feature	for	next	generation	Cyberinfrastructures,	the	ability	of	platforms	to	autonomously	react	
to	different	kinds	of	workloads	by	employing	a	distributed	and	differentiated	set	of	resources.	
Such	selection	 is	expected	 to	be	performed	by	 taking	 into	account	 the	sources	generating	 the	
workload	and	the	features	characterizing	the	workload	itself.	

Due	to	the	 inherent	complexity	characterizing	such	 infrastructures,	 the	conception,	 the	design	
and	the	development	of	applications	 targeting	such	computational	environments	 is	a	complex	
and	error-prone	task.	In	fact,	 in	such	scenarios,	 it	 is	not	feasible	and	realistic	to	statically	tailor	
applications	with	respect	to	a	specific	set	of	resources,	as	it	is	not	possible	to	know	in	advance	
the	 set	 of	 actual	 resources	 that	 will	 be	 exploited	 to	 host	 the	 (subsets	 of)	 applications.	 As	 a	
consequence,	 applications	 (and	 their	 runtime	 support)	 need	 to	 be	 able	 to	 self-configure	
themselves	to	the	dynamic	set	of	 resources	provided	by	the	 infrastructure,	either	by	adopting	
an	ex-post	(reactively)	or	ex-ante	(proactively)	fashion.	

A	 fundamental	 requirement	 to	 properly	 exploit	 such	 a	 dynamic	 platform	 to	 optimize	 the	
performance	of	applications	running	on	it,	consists	in	the	definition	of	an	ad-hoc	adaptation	and	
reconfiguration	 support.	 By	means	 of	 such	 a	mechanism,	 it	 is	 possible	 for	 the	 application	 to	
restructure	itself	in	order	to	exploit	the	most	appropriated	resources	within	the	ones	belonging	
to	the	cyberinfrastructure.		

Adaptation	 of	 applications	 can	 be	 characterized	 by	 different	 extent,	 and	 follow	 different	
approaches.	 In	 the	 remaining	 of	 this	 section	 are	 presented	 a	 set	 of	 notable	 approaches	
presented	in	the	literature.	

Existing Approaches

OnTimeMeasure	for	Performance	Intelligence	for	Future	Internet	applications	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	87	of	115	
	

	

Figure	14.	OnTimeMeasure	[Source:	Enabling	Performance	Intelligence	for	Application	Adaptation	in	the	Future	
Internet	–	Journal	of	Communications	and	Networks,	Dec.	2011]	

Autonomicity	in	the	Future	Internet	applications	is	pretty	close	to	the	BASMATI	approach,	it	will	
require	 a	 performance	 architecture	 that:	 (a)	 allows	 users	 to	 request	 and	 own	 ‘slices’	 of	
geographically	distributed	host	and	network	resources,	 (b)	measures	and	monitors	end-to-end	
host	and	network	status,	(c)	enables	analysis	of	the	measurements	within	expert	systems,	and	
(d)	provides	performance	intelligence	in	a	timely	manner	for	application	adaptations	to	improve	
performance	 and	 scalability.	 Calyam	 et	 al.	 (2011)	 presented	 an	 approach,	 called	
OnTimeMeasure,	 that	has	been	designed	 to	be	extensible,	 fault-tolerant,	 standards-compliant	
and	 secure	 (Calyam	 et	 al.,	 2011).	 It	 supports	 services	 to	 ‘measure’	 the	 performance	within	 a	
“user	 slice”,	 ‘analyze’	 and	 derive	 ‘intelligence’	 that	 can	 be	 used	 in	 a	 timely	 manner	 for	
application	adaptations	to	improve	performance	and	scalability.	The	authors	of	OnTimeMeasure	
gave	 proof	 of	 the	 effectiveness	 of	 closed-loop	 orchestration	 used	 in	 their	 approach,	which	 is	
critical	 for	 interoperability	with	other	existing	measurement	services,	particularly	when	a	 large	
number	 of	 application-specific	 measurements	 need	 to	 be	 orchestrated.	 They	 used	
OnTimeMeasure-enabled	performance	intelligence	to	compare	utility	driven	resource	allocation	
schemes	 in	 virtual	 desktop	 clouds,	 demonstrating	 how	 performance	 intelligence	 enables	
autonomic	nature	of	 FI	 applications	 to	mitigate	 the	 costly	 resource	overprovisioning	 and	user	
QoE	guesswork,	which	are	common	in	the	current	Internet.	

CometCloud

CometCloud	(CCloud)	is	an	autonomic	computing	engine	for	clouds	and	grids	environments	that	
enables	 the	 development	 and	 execution	 of	 dynamic	 application	 workflows	 in	 heterogeneous	
and	dynamic	clouds/grids	infrastructures	(Kim	et	al.,	2009).	It	supports	the	on-demand	bridging	
of	public/private	clouds	and	grids	as	well	as	autonomic	cloudbursts.	Conceptually,	CometCloud	
is	composed	of	a	programming	 layer,	service	 layer,	and	 infrastructure	 layer.	The	 infrastructure	
layer	uses	the	Chord	self-organizing	overlay,	and	the	Squid	information	discovery	and	content-
based	 routing	 substrate	 build	 on	 top	 of	 Chord.	 The	 programming	 layer	 provides	 the	 basic	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	88	of	115	
	

framework	 for	 application	 development	 and	 management	 including	 the	 master/worker/BOT,	
workflow	and	MapReduce/Hadoop.	

	

	

Figure	15.	CometCloud	[Source:	Cloud	Computing:	Methodology,	Systems,	and	Applications,	by	Lizhe	Wang,	Rajiv	
Ranjan,	Jinjun	Chen,	Boualem	Benatalla,	CRC	Press,	2011]	

GRACE

The	 GRACE	 project	 (Vardhan	 et	 al.,	 2009)	 is	 aimed	 at	 balancing	 the	 scope	 and	 frequency	 of	
energy-saving	 adaptations	 in	 multiple	 layers	 by	 leveraging	 a	 hierarchical	 approach.	 The	
surrounding	idea	is	to	define	two	different	kinds	of	adaptations.	Expensive	and	infrequent	global	
adaptation	 allocates	 resources	 among	 applications	 based	 on	 long-term	 predictions,	 and	
inexpensive	per-app	control	seeks	to	make	the	energy-optimal	use	of	these	resources	through	
localized	short-term	predictions	and	cross-layer	adaptations.	The	authors	of	GRACE	investigated	
an	 application	 or/and	 infrastructure	 adaptivity	 and	 determined	 how	 the	 adaptations	 affect	
performance	 as	 measured	 by	 time-to-completion,	 as	 well	 as	 cost.	 GRACE	 has	 been	 also	
integrated	into	CometCloud.	

	

At each stage of the workflow, the workflow manager
determines the number of ensemble members at the stage as
well as relative computational complexity of each member
and then it encapsulates each ensemble member as a task.
Once the tasks to be scheduled within a stage have been
identified, the autonomic scheduler analyzes the tasks and
their complexities to determine the appropriate mix of Ter-
aGrid (TG) and EC2 resources that should be provisioned.
This is achieved by (1) clustering tasks based on their
complexities to generate blocks of tasks for scheduling, (2)
estimating the runtime of each block on the available re-
sources using the cost estimator service and (3) determining
the allocations as well as scheduling policies for the TG and
EC2 based on runtime estimates as well as overall objectives
and resource specific policies and constraints (e.g., budgets).
More details are described in [5].

C. Dynamic Execution and Adaptivity of
EnKF using CometCloud

As stated earlier, we consider two types of adaptivity in
this paper. Infrastructure adaptivity explores a richer infras-
tructure space and selects appropriate numbers and types
(e.g., number and type of virtual machines), of resources
based on application requirements and overall constraints.
The second type of adaptivity is application adaptivity
which involves adapting the structure and behavior of
the applications based on application/system characteristics
(e.g., the size of ensemble members, problem size and
application configuration) and runtime state.

Infrastructure adaptivity is achieved by estimating each
ensemble member’s runtime on available resources and se-
lecting the most appropriate resources for them. To estimate
runtime on each different resource class, the CometCloud
autonomic scheduler asks a worker per resource class to
run the runtime estimation module, which is achieved by
inserting a runtime estimation (benchmark) task into the
Comet space. A worker running on each resource class pulls
the task, executes it and returns the estimated runtime back
to the scheduler.

If there is no active worker on a resource class, the
scheduler launches a new worker on the resource class.
The overhead of running an estimation task itself is 5%
of that of an actual task. However, if the scheduler should
start a new worker for estimation, it can cause additional
time overhead, for example, the overhead of launching a
new EC2 instance, or the waiting time in a queue after
submitting a pilot job for TG. This runtime estimation is
accomplished at the beginning of every stage because each
stage is heterogeneous and the runtime of the previous stage
can not be used for the next stage. Once the autonomic
scheduler gathers estimated runtimes from all resource
classes, it maps the ensemble members (encapsulated as
asks) to the most appropriate available resource class based

EnKF application

CometCloud

Cloud

Grid
Agent

Pull TasksPull Tasks

Push Tasks

HPC Grid

Mgmt. Info. Mgmt. Info.

HPC Grid CloudCloud

Cloud
Agent

Workflow
manager

Runtime
estimator

Autonomic
scheduler

Monitor

Analysis

Adaptation

Adaptivity
Manager

Application
adaptivity

Infrastructure
adaptivity

Fig. 1: Autonomic architecture for adaptivity. Workflow manager,
runtime estimator, autonomic scheduler as well as adaptivity
manager collaborate to reach a decision regarding the best resource
provisioning and application configuration.

on the defined policy. Policies determine whether runs are
made with deadline-based or cost-based (i.e. with budget
limits). After then the scheduler decides the number of
nodes (workers) for each resource class and the appropriate
mix of resources. Naturally, workers can consume more than
one task and the number of workers is typically smaller than
the number of tasks.

Application adaptivity on the other hand relies heavily on
the application infrastructure. Since the reservoir simulator
is based on PETSc [32], we have access to a wide variety
of direct and iterative solvers and preconditioners. The
selection of optimal solver and preconditioner combination
depends on the problem (stiffness, linearity, properties of
the system of equations, etc.) as well as the underlying
infrastructure. Since the simulator needs to perform sev-
eral iterations, the first few iterations are performed with
several solver/preconditioner combinations. This “optimiza-
tion” study is performed with ensemble member rank 0
only, also known as the “base–case” from which all other
ensemble members are generated. The combination with
the best performance (shortest wall-clock time) is then
selected and passed on to the next stage to reduce simulation
runtime.

The overall system architecture used in the experiments
is shown in Figure 1. Every stage of the application work-
flow is heterogeneous, and as a result, the selection of
infrastructure and application configurations for each stage
can be different. At every stage, the autonomic manager
collects information about both, the infrastructure and the
application, and analyzes this information to decide on ap-
propriate resources and application configuration. These de-
cisions affect both current stages (infrastructure adaptivity)
as well as subsequent stages (application adaptivity). After
reaching a decision on the most efficient infrastructure/ap-
plication configurations and mix of resources, resources are
provisioned and “ensemble-member-workers” are executed.
On the EC2, this translates to launching appropriate VMs
running custom images. On the TG, ensemble-member-

406

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	89	of	115	
	

	

Figure	16.	GRACE	[Source:	GRACE-2:	integrating	fine-grained	application	adaptation	with	global	adaptation	for	
saving	energy,	Int.	J.	Embedded	Systems,	Vol.	4,	No.	2,	2009]	

ThinkAir

ThinkAir	 (Kosta	 et	 al.,	 2012)	 proposes	 a	 different	 perspective	 with	 respect	 to	 the	 other	
approaches	 listed	 in	 this	 section.	 The	 idea	 proposed	by	 ThinkAir	 is	 to	 require	 a	 limited	 set	 of	
modifications	to	an	application’s	source	code	that	 is	coupled	with	the	ThinkAir	tool-chain.	The	
authors	of	ThinkAir	conducted	a	set	of	experiments	and	evaluations	with	micro	benchmarks	and	
computation	 intensive	 applications	 to	 demonstrate	 the	 benefits	 of	 ThinkAir	 for	 profiling	 and	
code	 offloading,	 as	 well	 as	 accommodating	 changing	 computational	 requirements	 with	 the	
ability	of	on-demand	VM	resource	scaling	and	exploiting	parallelism.	

Behavioural Skeletons

	

Figure	17.	Behavioural	skeletons	[Source:	Behavioural	skeletons	for	component	autonomic	management	on	grids,	
Making	Grids	Work,	Springer	2008]	

Behavioural	 skeletons	 (Aldinucc	 et	 al.,	 2008)	 aim	 to	 abstract	 parametric	 paradigms	 of	
components’	 assembly,	 each	 of	 them	 specialized	 in	 solving	 one	 or	 more	 management	 goals	

skeleton
behaviour
(e.g. Orc)

S

W

...

W

W
C

ABC

S

W

...

W

W
C

ABC

AM

Passive skeleton Active skeleton

skeleton
behaviour
(e.g. Orc)

Functional
server port

Functional
client port

Functional
server port

Functional
client port

Non-Functional
server ports

Non-Functional
server and client ports

Figure 1: GCM implementation of functional replication. ABC = Autonomic
Behaviour Controller, AM = Autonomic Manager, W = Worker component, S
= Server interface (one-to-many communication e.g. broadcast, data-parallel
scatter, unicast), C = Client interface (many-to-one communication e.g. from-
any, data-parallel gather, reduce, select).

client and server interface behaviours. First, a brief overview of the Orc lan-
guage is presented. A formal description of management plans is not presented
here. The skeleton designer can use the description to prove rigorously (manu-
ally, at present) that a given management strategy will have predictable or no
impact on functional behaviour. The quantitative description of QoS values of
a component with respect to a goal, the automatic validation of management
plans w.r.t. a given functional behaviour are interesting related topics, which
are the subject of ongoing research but outside the scope of the present work.

6.1 The Orc notation

The orchestration language Orc of Misra and Cook [14] is targeted at the de-
scription of systems where the challenge lies in organising a set of computations,
rather than in the computations themselves. Orc has, as primitive, the notion
of a site call, which is intended to represent basic computations. A site, either
returns a single value or remains silent. Three operators (plus recursion) are
provided for the orchestration of site calls:
Sequential composition: E1 > x > E2(x) evaluates E1, receives a result x,
calls E2 with parameter x. If E1 produces two results, say x and y, then E2 is
evaluated twice, once with argument x and once with argument y. The abbre-
viation E1 � E2 is used for E1 > x > E2 when evaluation of E2 is independent
of x.
Parallel composition: (E1 E2) evaluates E1 and E2 in parallel. Both eval-
uations may produce replies. Evaluation of the expression returns the merged

8

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	90	of	115	
	

belonging	 to	 the	 classical	 AC	 classes,	 i.e.	 configuration,	 optimization,	 healing	 and	 protection.	
Behavioural	skeletons	represent	a	specialization	of	algorithmic	skeleton	concept	for	component	
management.	 Algorithmic	 skeletons	 have	 been	 traditionally	 used	 as	 a	 vehicle	 to	 provide	
efficient	implementation	templates	of	parallel	paradigms.	Behavioural	skeletons,	as	algorithmic	
skeletons,	 represent	 patterns	 of	 parallel	 computations	 (which	 are	 expressed	 as	 graphs	 of	
components),	but	in	addition	they	exploit	the	inherent	skeleton	semantics	to	design	sound	self-
management	 schemes	of	 parallel	 components.	 Behavioural	 skeletons	 can	be	 identified	with	 a	
composite	component	with	no	loss	of	generality	(identifying	skeletons	as	particular	higher-order	
components).	 Since	 component	 composition	 is	 defined	 independently	 from	 behavioural	
skeletons,	 they	 do	 not	 represent	 the	 exclusive	 means	 of	 expressing	 applications,	 but	 can	 be	
freely	mixed	with	nonskeletal	components.	In	this	setting,	a	behavioural	skeleton	is	a	composite	
component	that	

• Exposes	a	description	of	its	functional	behaviour;	
• Establishes	a	parametric	orchestration	schema	of	inner	components;	
• May	carry	constraints	that	inner	components	are	required	to	comply	with;	
• May	carry	a	number	of	pre-defined	plans	aiming	to	cope	with	a	given	self-management	

goal.	

Behavioural	skeleton	usage	helps	designers	in	two	main	ways:	the	application	designer	benefits	
from	a	library	of	skeletons,	each	of	them	carrying	several	predefined,	efficient	self-management	
strategies;	 and,	 the	 component/application	 designer	 is	 provided	with	 a	 framework	 that	 helps	
the	design	of	new	skeletons	and	their	implementations.	The	former	task	is	achieved	because	(1)	
skeletons	 exhibit	 an	 explicit	 higher	 order	 functional	 semantics,	 which	 delimits	 the	 skeleton	
usage	and	definition	domain;	and	(2)	skeletons	describe	parametric	interaction	patterns	and	can	
be	designed	in	such	a	way	that	parameters	affect	non-functional	behaviour	but	are	invariant	for	
functional	behaviour.	

6 Requirements	Analysis		
The	 requirements	 generated	 from	 BASMATI	 use	 cases	 are	 presented	 here.	 A	 more	 detailed	
description	of	the	use	case	scenarios	can	be	found	in	the	upcoming	report	D2.2	and	D6.1.	

6.1 Use	case	1:	Mobile	Virtual	Desktop		
Mobile	Virtual	Desktop	 (MVD)	 is	 defined	 as	 a	 cloud	 service	 category	 in	which	 the	 capabilities	
provided	to	the	Cloud	Service	Customer	(CSC)	are	the	ability	to	build,	configure,	manage,	store,	
execute	and	deliver	users’	mobile	desktop	functions	remotely.	With	MVD,	the	user	experience	is	
achieved	through	a	UI,	which	is	presented	through	an	MVD	client	over	the	network.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	91	of	115	
	

	

Figure	18.	Conceptual	view	of	Mobile	Virtual	Desktop	

Instead	 of	 maintaining	 and	 running	 a	 mobile	 operating	 system	 and	 applications	 on	 CSC’s	
devices,	servers	of	a	CSP	located	in	the	cloud	are	used	to	execute	the	instances	of	users’	virtual	
desktops.	 This	 allows	 a	 party	 (e.g.	 an	 organization)	 to	 run	 end	 user’s	 operating	 systems	 and	
applications,	and	keep	their	data	in	cloud	computing	environment.	The	following	requirements	
derive	from	the	existing	MVD	application	from	the	observations	that	have	been	made	on	it.	

6.1.1 User	Requirements	
MVD	user	requirements	as	described	as	follows:	

• Quality	of	experience	(QoE):	MVD	services	need	to	be	provided	in	a	way	that	will	make	
the	experience	pleasant,	e.g.,	reduced	latency,	high	throughput,	etc.	[MVD.UR.1];	

• Configurability	of	the	virtual	environment:	end-user	should	be	able	to	specify	the	
features	characterising	the	hardware	characteristics	of	the	machine	[MVD.UR.2];	

• High	availability:	MVD	services	need	to	be	fault	tolerance	and	made	available	in	
regardless	the	actual	place	from	which	the	user	is	accessing	them	[MVD.UR.3];	

• Access	control:	only	authorized	user	should	be	able	to	access	to	MVD	services	
[MVD.UR.4].	

6.1.2 System	Requirements	
MVD	system	requirements	can	be	categorized	 into	operational	and	management	 requirement	
as	well	as	server-side	requirements.	

6.1.2.1 	Operational	and	Management	Requirements	
Operation	and	management	requirements	include:	

• Unified	management	interface:	It	is	recommended	that	a	CSC	be	capable	of	deploying,	
configuring,	managing,	and	monitoring	the	MVD	through	a	unified	management	
interface.	[MVD.SR.OMR.1]	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	92	of	115	
	

• Virtual	desktop	lifecycle	management:	It	is	required	that	a	CSP	supports	the	full	life	
cycle	management	of	virtual	desktop,	including	setup,	test,	delivery,	use,	maintenance,	
optimization,	shutdown,	and	deletion.	[MVD.SR.OMR.2]	

• Service-related	resource	maintenance:	It	is	required	that	a	CSP	maintains	MVD	service	
supporting	applications	and	data,	such	as	security	auditing	server,	performance	
monitoring	server,	active	directory,	database,	user	configuration,	file	server,	etc.	
[MVD.SR.OMR.3]	

• Status	monitoring:	It	is	recommended	that	the	current	running	status	of	virtualized	
resource	be	monitored	to	perform	the	change	the	status	requested	by	a	CSC.	
[MVD.SR.OMR.4]	

• System	load	monitoring:	In	order	to	achieve	an	appropriate	QoE,	it	is	recommended	
that	a	CSP	is	capable	of	monitoring	the	system	load	to	assign	virtualized	resources	to	a	
CSC	[MVD.SR.OMR.5].	

• Automated	management	interface:	It	is	recommended	that	the	MVD	management	
solution	is	accessible	through	a	consistent	interface.	[MVD.SR.OMR.6]	

• Accounting	and	charging:	It	is	recommended	that	a	CSP	collect	accounting	information	
based	on	computing	power,	network	use,	storage,	memory,	and/or	application	license	
fee.	Accounting	information	is	collected	per	service	and	per	customer.	It	is	also	
recommended	that	the	CSP	provide	a	charging	scheme	based	on	the	accounting	
information	and	charging	information	transparently.	[MVD.SR.OMR.7]	

• Managing	and	operating	pre-configured	environments:	It	is	recommended	that	a	CSP	
manage	and	operate	the	pre-configured	environments	which	are	prepared	after	
configuring	the	service	information	(such	as	server	processing	capacity,	the	prediction	of	
concurrent	users	and	the	capacity	of	the	resource	etc.)	and	it	is	recommended	that	a	
CSP	provide	the	preconfigured	environment	without	the	loss	of	user	functionality	and	
the	degradation	of	performance	when	service	is	requested.	[MVD.SR.OMR.8]	

• Monitoring	and	controlling	MVD:	It	is	recommended	to	monitor	and	control	the	
activities	of	an	MVD	server	without	impact	on	the	performance	of	an	MVD.	
[MVD.SR.OMR.9]	

• User	log	management:	It	is	recommended	that	a	CSP	keep	the	connection	log	
information	for	all	CSCs	and	their	event	logs	for	further	security/incident	analysis.	
[MVD.SR.OMR.10]	

6.1.2.2 	Server-Side	Requirements	
The	MVD	server-side	functional	requirements	include:	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	93	of	115	
	

• Maintaining	MVD	user	status:	It	is	required	that	a	CSC	be	capable	of	reconnecting	to	a	
virtual	desktop	in	the	same	virtual	desktop	state	as	left.	[MVD.SR.SSR.1]	

• Isolation	between	virtual	desktop	functions:	It	is	required	that	the	operation	of	the	
virtual	desktop	functions	of	one	CSC	should	not	be	negatively	impacted	by	the	use	of	
virtual	desktop	functions	by	other	CSCs.	[MVD.SR.SSR.2]	

• Graphic	processing	acceleration	support:	In	order	to	provide	the	ability	to	MVD	clients	
to	work	with	graphic	intensive	software	packages	(such	as	3D	computer-aided	design	or	
compression)	running	on	the	server,	it	is	recommended	that	the	MVD	provides	the	
acceleration	of	graphic	processing	to	MVD	clients.	[MVD.SR.SSR.3]	

• CSC	environment	backup:	It	is	recommended	that	a	CSP	backup	and	restore	the	
allocated	virtual	machines	with	user	environment	in	order	not	to	lose	user	data.	It	is	
recommended	that	CSP	do	not	damage	the	service	performance	from	the	process	
backing	up	and	restoring.	[MVD.SR.SSR.4]	

• Cloud-Provider-Agnostic:	The	MVD	system	is	not	locked	into	a	cloud	provider.	
[MVD.SR.SSR.5]	

• Transferring	MVD:	It	is	required	that	a	CSC	is	capable	of	reconnecting	to	virtual	desktop	
regardless	the	real	location	of	the	MVD	server.	[MVD.SR.SSR.6]	

6.1.3 BASMATI	Platform	Requirements	
MVD	is	an	application	that’s	very	sensitive	to	response	time.	Slow	response	time	is	resulting	in	
jerky	movements	of	 the	application	and	 low	satisfaction	of	 the	users.	 In	order	 to	maintain	an	
acceptable	QoE,	 response	 time	 lower	 than	 150	ms	 is	 needed.	One	 of	 the	methods	 to	 reduce	
response	time	is	to	make	MVD	servers	as	near	as	possible	to	MVD	clients.	Since	a	single	cloud	
service	provider	cannot	be	available	in	all	areas,	the	availability	of	federation	cloud	in	BASMATI	
is	a	great	advantage	in	providing	a	fast	response	time.	Because	a	federation	cloud	consisted	of	
multiple	cloud	service	providers	can	cover	more	areas.	As	a	result,	the	traveling	MVD	users	can	
access	their	desktops	with	fast	response	time	anywhere	they	go.	

Backend	 offloading	 of	 BASMATI	 is	 aiding	MVD	 servers	 to	 balance	 the	 work	 load	 to	 different	
region	and	different	cloud	service	provider.	However,	since	the	amount	of	data	that	should	be	
transferred	is	big,	it	is	advisable	to	schedule	the	transfer.	For	example,	if	a	user	is	traveling	from	
South	Korea	to	Italy	using	an	airplane.	During	his/her	commute	in	an	airplane,	MVD	servers	are	
transferring	 his/her	 data	 from	 a	 server	 in	 South	 Korea	 to	 a	 server	 in	 Europe.	 By	 means	 of	
BASMATI	 advanced	 features,	 it	 will	 be	 possible	 to	 forecast	 the	 user	 mobility	 patterns,	 the	
application	 footprint	 patterns	 and	 trigger	 the	 corresponding	 actions	 aimed	 at	 transfer	 the	
application	to	a	cloud	nearby	the	future	location	of	the	end	user,	properly	selected	among	the	
available	 ones.	 Application	 back-ends	 can	 be	 also	 restructured	 to	 match	 user	 needs	 while	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	94	of	115	
	

leveraging	 the	 resources	 available.	 BASMATI	 platform	 will	 provide	 all	 the	 mechanisms	 for	
supporting	these	tasks.	

6.2 Use	Case	2:	Large	Events		
We	 are	 focusing	 on	 investigating	 new	 applications	 for	 major	 events.	 All	 case	 studies	 in	 this	
context	refer	to	the	large	event	Das	FEST	in	Karlsruhe	(Germany).	Das	FEST	is	an	open-air	event	
held	since	1985,	which	annually	attracts	200	to	400	thousand	visitors	 (within	a	 time	span	of	a	
weekend).	 The	music	 festival	 is	 the	main	 part,	 but	 unlike	 other	 festivals,	 an	 extensive	 sport,	
children's	and	family	programs	are	also	provided.	In	addition	to	sponsoring,	Das	FEST	is	mainly	
financed	by	the	sale	of	beverages.	Due	to	its	increasing	popularity,	the	entrance	to	the	site	had	
to	be	stopped	for	the	first	time	in	the	season	2006.	

	

Figure	19.	The	Das	Fest	Application	

The	 implementation	 of	 Das	 FEST	 requires	 the	 provision	 of	 an	 extensive	 infrastructure.	 The	
continuously	 high	 number	 of	 visitor-places	 demands	 on	 security,	 which	 has	 an	 effect,	 for	
example,	 on	 the	 division	 of	 the	 terrain.	 The	 festival	 site	 itself	 is	 a	 closed	 area.	 Access	 to	 the	
festival	site	 is	through	several	entrances	around	the	festival	grounds.	This	makes	 it	possible	to	
accurately	determine	the	number	of	users.	The	festival	is	easy	to	reach	by	public	transport.	Also,	
a	journey	by	bike	or	on	foot	is	possible.	Parking	spaces	for	cars	and	buses	are	available	in	limited	
numbers.	

Participating	in	the	event	naturally	requires	physical	presence	on	the	ground.	Thus	the	use	cases	
cover	 mainly	 visitors	 who	 participate	 in	 the	 live	 concerts	 and	 other	 events	 of	 the	 Das	 FEST.	
However,	it	is	getting	more	and	more	common	to	give	a	video	and/or	audio-streaming	coverage	
to	this	kind	of	events,	thus,	as	a	future	vision,	one	could	imagine	extending	the	participation	to	
peoples	who	receive	live	streams.	In	this	way	one	would	provide	a	kind	of	virtual	festival,	which	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	95	of	115	
	

ideally	complements	the	festival	on	site	with	a	further	dimension,	linking	both,	the	real	and	the	
virtual	world.

6.2.1 User	Requirements	
For	 the	 use	 cases,	 primarily	 relevant	 is	 the	 category	 of	 physical	 users3.	 The	 user	must	 have	 a	
recent	smartphone	on	which	the	Das	FEST	app	is	 installed.	For	reasons	of	data	protection,	the	
visitor	has	to	agree	that	he	will	be	tracked.	In	order	to	create	trust,	the	app	is	only	supposed	to	
perform	tracking	on	the	festival	grounds	and	in	its	surroundings.	The	data	are	anonymised	and	it	
is	intended	to	encrypt	it	on	the	server	after	processing.	

Users	 should	 be	 able	 to	 receive	 contextualized	 suggestion/recommendation,	 based	 on	 their	
position,	behaviour,	interests.	[LE.UR.1]	

Users	may	also	want	to	decide	to	which	extent	and	way	they	want	to	be	tracked	(e.g.,	using	only	
Bluetooth	or	WiFi;	sharing	all	their	past	visiting	paths	or	only	the	actual	position)	[LE.UR.2]	

6.2.2 System	Requirements	
Supported	are	 the	operating	 systems	Android	and	 iOS.	The	app	must	be	 installed	on	a	device	
with	 GPS	 capability.	 We	 assume	 that	 the	 device	 has	 today's	 usual	 connectivity	 options	
(Bluetooth,	WLAN,	a	cellular	network).	The	network	coverage	during	the	festival	 is	bad	due	to	
the	high	attendance	numbers	on	the	site	during	the	main	event.	Therefore,	when	designing	the	
application,	 it	 must	 be	 ensured	 that	 intermittent	 interruptions	 of	 the	 online	 operation	 can	
occur.	Certain	data	(such	as	tracking	data)	will	be	temporarily	stored	on	the	local	devices	until	a	
transfer	is	possible.	

D6.1	describes	the	infrastructure	in	detail,	including	problems	due	to	bad	connections.	Here	it	is	
only	assumed	that	the	position	of	the	visitor	can	be	recorded	with	sufficient	accuracy	every	30	
seconds.	

6.2.3 BASMATI	Platform	Requirements	
Front-End	Application	Manager	 and	 a	 Front-End	 Service:	Application	manager	and	 front-end	
service	will	be	used	to	load	BASMATI	services.	The	user	interface	will	run	on	the	user’s	mobile	
devices.	As	the	computing	power	of	modern	mobile	devices	is	sufficient,	resource	issues	are	not	
expected	from	executing	the	user	interface.	[LE.BPR.1]	

Application	&	User	Data	Collector:	The	Application	and	User	Data	Collector	 is	 informed	about	
the	tracking	activity.	According	to	 the	operator’s	policy	and	the	current	privacy	guidelines	 the	
user’s	position	data	are	not	to	be	related	to	any	identifying	personal	information,	not	passed	on	
to	 any	 third	 party	 and	 only	 processed	 for	 the	 purpose	 of	 managing	 the	 cloud,	 predict	

3	A	detailed	description	of	the	key	users	and	stakeholder	in	the	use	cases	is	presented	in	the	D2.2.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	96	of	115	
	

distribution	of	people	and	queue	length	and	determine	the	geo-fence	for	information	provision.	
[LE.BPR.2]	

Server-Side	Scaling:	The	backend	system	can	benefit	from	the	BASMATI	platform	by	means	of	
scalability	 and	 re-location.	 The	 backend	 consists	 of	 different	 loosely	 coupled	 components	
[LE.BPR.3]	

• Data	mining	process	
• Search		
• Data	collector	
• Monitoring/dashboard	
• Storage	

Each	component	can	be	dynamically	load-balanced	and	scaled	by	the	BASMATI	platform	during	
high	 peaks	 of	 activity.	 Especially	 the	 data	 mining	 process	 and	 the	 search	 need	 to	 scale	
horizontally	 because	 the	 resource	 consumption	 in	 these	 components	 grows	 in	 relation	 to	 the	
actual	 amount	 of	 users.	 Since	 it	 cannot	 be	 foreseen	 how	many	 visitors	 will	 use	 the	 tracking	
functionality	of	the	DAS	FEST	App,	we	will	rely	heavily	on	the	scalability	in	this	context.		

Application	Description:	As	the	core	components	of	the	DAS	FEST	server	are	to	be	deployed	and	
scaled	 differently,	 it	 is	 necessary	 to	 describe	 them	 in	 a	 human	 readable	 and	 machine	
interpretable	 way.	 The	 language	 to	 describe	 the	 application	 and	 its	 components	 should	 be	
expressive	and	rich	enough	and	at	the	same	time	easy	to	learn	and	use.	The	use	of	application	
description	templates	is	nice-to-have.	[LE.BPR.4]	

Multi-Cloud:	 The	 deployment	 on	 diverse	 cloud	 providers	 is	 relevant	 especially	 in	 event	
management:	 If	 all	 usage	and	business	 is	performed	 in	 several	 days	only,	 the	availability	of	 a	
service	within	 that	 short	 period	 is	much	more	 relevant	 compared	 to	 cases	where	 a	 service	 is	
used	 the	 whole	 year	 (an	 unavailable	 service	 for	 some	 hours	 is	 relatively	 unproblematic).	
[LE.BPR.5]	

Edge	 Computing:	 BASMATI	 platform	 enables	 the	 application	 to	 infer	 relevant	 insights	 where	
they	 occur	 by	 allocating	 locally	 available	 computing	 resources.	 Like	 in	 modern	 data	
architectures	 a	 huge	 benefit	 of	 BASMATI	 is	 to	 bring	 the	 computation	 to	 the	 data	 avoiding	
unnecessary	data	movements.	A	local	cloud	storage	would	be	nice	to	have	for	DAS	FEST.	It	will	
not	be	introduced	in	2017.	[LE.BPR.6]	

Deployment	of	Docker	Containers:	An	additional,	optional	requirement	within	this	use	case	is	to	
make	 it	 possible	 to	 deploy	 docker	 container4.	 This	 would	 make	 the	 reduce	 necessary	 VM	
configuration	effort	 even	more	 compared	 to	 the	deployment	of	 jar	 files	 that	 typically	 require	
additional	 scripts	 to	 be	 executed	 before/during	 the	 deployment.	 Since	 a	 docker	 container	

4	https://www.docker.com/what-container		

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	97	of	115	
	

contains	 and	 the	 docker	 file	 describes	 all	 artifacts	 required	 for	 the	 deployment	 environment,	
scaling	becomes	even	more	flexible	and	easy	to	manage.	[LE.BPR.7]	

Monitoring:	 In	 order	 to	 enable	 an	 automatic	 server-side	 horizontal	 scaling,	 monitoring	
information	needs	to	be	collected	within	to	be	scaled	VMs	and	additionally	on	the	application	
level	to	gather	as	much	relevant	and	informative.	[LE.BPR.8]	

• Central	for	all	nodes	belonging	to	a	dedicated	cluster	
• Flexible	definition	of	parameters	on	VM	and	application	level		
• Flexible	Def.	von	Parametern	auch	auf	App	Ebene	(VM)	
• Response	 time	 (The	 DAS	 FEST	 App	 sends	 “fire	 and	 forget	 request”	 in	 many	

cases,	a	dedicated	implementation	to	enable	networking	measure	and	react	on	
the	network	throughput	is	also	to	be	done	in	these	cases.)		

• Automatic	and	manual	react	(server	start/stop/scale	…)		
• Monitoring	the	costs	(optional)		

o Set	budget	
o Use	cost	calculations	for	scaling	decisions		
o Provider	selection	

Monitoring	for	Application	Reconfiguration:	As	an	extension	to	the	horizontal	scaling	based	on	
monitoring	information,	a	more	fine-grained	scaling	on	application	level	is	considered.	It	will	be	
investigated	 to	 what	 extent	 it	 is	 possible	 to	 reconfigure	 the	 application,	 e.g.	 replacing	 a	
clustering	algorithm	calculating	with	lower	precision	but	higher	performance.	[LE.BPR.9]	

6.3 Use	Case	3:	TripBuilder	
TripBuilder	 is	 an	 unsupervised	 system	 helping	 tourists	 to	 build	 their	 own	 personalized	
sightseeing	tour.		

Given	a	target	city,	the	time	available	for	the	visit,	and	the	tourist's	profile,	TripBuilder	provides	
a	 time-budgeted	 tour	 that	maximizes	 tourist's	 interests	 and	 takes	 into	 account	 both	 the	 time	
needed	to	enjoy	the	attractions	and	to	move	from	one	Point	of	Interest	(PoI)	to	the	next	one.	

Figure	20.	Tripbuilder	User	interface	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	98	of	115	
	

The	knowledge	base	feeding	the	sightseeing	tour	generation	algorithm	of	TripBuilder	is	entirely	
mined	from	publicly	available	sources,	namely,	Wikipedia,	Flickr	and	Google	Maps.	

TripBuilder	relies	on	a	scalable	and	robust	Cloud	architecture	(combining	both	stream	and	batch	
processing)	to	download	the	data	from	the	heterogeneous	sources	and	build	a	huge	TripBuilder	
knowledge	base	covering	most	popular	cities	worldwide.	

6.3.1 	User	Requirements		
TripBuilder	users	expect	from	the	system	to	receive:	

•	 Proposals	 of	 Contextualized	 POIs	 and	 Tripbuilding,	 namely	 to	 adapt	 the	 output	 for	 users	
depending	on	the	actual	place,	time,	preferences	and	side	conditions.	This	is	of	paramount	
importance,	as	it	is	the	core	of	the	TripBuilder	aims	[TB.UR.1]	

•	 Continuous	 updates	 to	 Trips,	 depending	 on	 what	 is	 actually	 happening	 in	 the	 area	
considered	by	the	system.	This	allow	users	to	be	reactive	with	respect	to	the	changing	status	
of	POIs,	and	related	items,	considered	by	the	system.	Such	as,	queues	for	fine	art	galleries	
[TB.UR.2]	

•	 Answers	with	 a	 very	 low	 latency.	One	 of	 the	 items	making	 TripBuilder	 a	 useful	 tool	 is	 its	
ability	 in	 answering	 queries	 in	 a	 timely	 fashion,	 but	 still	 taking	 into	 account	 the	 actual	
context	in	which	the	user	is	placed	[TB.UR.3].	

6.3.2 System	Requirements	
In	order	to	satisfy	the	functional	and	nonfunctional	requirements	posed	by	TripBuilder	users	and	
the	actual	software,	there	are	some	requirements	that	are	in	turn	posed	on	the	system.	

Figure	21.	Components	of	Tripbuilder	application	

	

	Access	to	data	collections.	Access	to	a	large	amount	of	geo-	and	time-referenced	data	in	order	
to	build	the	knowledge	base	to	leverage	for	building	Trips.	Such	access	should	be	available	at	an	
acceptable	cost	in	terms	of	bandwidth,	latency,	throughout	[TB.SR.1]	

Scalable	processing	of	data.	To	be	able	to	produce	meaningful	suggestions,	taking	into	account	
the	dynamicity	of	the	system	and	the	mass	of	people	located	in	a	given	area,	Trip	Builder	needs	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	99	of	115	
	

to	be	able	to	exploit	the	computational	resources	performing	data	analytics	in	a	scalable,	elastic	
and	continuous	way	[TB.SR.2]	

Elastic	Processing	of	end-users	requests.	TripBuilder	needs	to	be	elastically	scaled	depending	on	
the	amount	of	users	that	are	accessing	to	the	services	it	provides.	To	this	end	is	of	paramount	
importance	to	have	a	way	to	replicate,	distribute,	decompose	the	different	modules	composing	
the	TripBuilder	 architecture,	 as	 represented	 in	 the	 figure	 reported	above.	 Scalable	 and	elastic	
process	of	requests/queries	coming	from	end-users	[TB.SR.3]	

Distributed	Computing	Frameworks.	TripBuilder	has	been	conceived	with	scalability	in	mind.	It	
has	 been	 designed	 to	 leverage	 state-of-the-art	 frameworks	 for	 distributed	 processing	 and	
analytics.	 As	 a	 consequence,	 to	 fully	 support,	 in	 an	 efficient	 way,	 the	 abilities	 provided	 by	
TripBuilder	it	is	important	to	be	able	to	support	the	deployment	and	management	of	distributed	
processing	frameworks	in	a	cloud	environment.	In	particular,	TripBuilder	require	the	availability	
of	Apache	Spark	and	Storm	[TB.SR.4]	

Advanced	data	management	subsystem.	TripBuilder	exploits	the	HDFS	file	system	for	enabling	
the	data	exchange	between	different	 stages	 composing	 its	 processing	pipeline.	 To	 this	 end,	 it	
will	need	to	have	access	to	the	HDFS	volumes	from	different	locations	and	media,	leaving	to	the	
system	the	task	of	optimizing	data	replica	as	well	as	optimising	access	strategies	[TB.SR.5]	

6.3.3 BASMATI	Platform	Requirements		
TripBuilder	will	benefit	from	BASMATI	platform	in	different	ways	and	at	the	different	levels.	As	
aforementioned,	TripBuilder	can	be	seen	as	composed	of	three	different	systems.	The	first	two	
systems	are	parts	of	the	application	backend:	one	aimed	at	gathering	and	processing	data,	one	
providing	the	path	suggestions	in	which	the	application	is	structured.	The	third	system	is	the	one	
on	the	mobile	device	presenting	the	suggestions	to	the	user.		

The	 systems	 composing	 the	 backend	 can	 benefit	 from	 BASMATI	 as	 it	 will	 provide	 ways	 and	
manners	 supporting	 the	 automatic	 reconfiguration,	 decomposition	 and	 re-location	 of	 the	
application.		

By	means	of	the	re-location	support,	the	application	will	be	able	to	get	closer	to	the	origin	of	the	
workload,	i.e.,	the	end-users.	This	is	a	very	important	feature	when	a	number	of	users	increases	
as	well	as	the	mass	of	users	moves	from	their	home	location	and	get	concentrated	in	a	different	
area	 (e.g.,	 festivals,	 Olympic	 games,	 etc.).	 Furthermore,	 through	 the	 adaptivity	 support,	
BASMATI	 will	 allow	 achieving	 an	 automated	 scale-up	 and	 scale-down	 of	 the	 application	
accordingly	with	the	actual	requirements.	

TripBuilder	can	benefit	from	its	integration	with	BASMATI	also	on	the	mobile	application	side.	In	
fact,	TripBuilder	could	be	able	to	have	a	more	detailed	monitoring	of	the	application	behaviour	
and	drive,	consequently,	the	suggestions	proposed	to	the	end-users.	[TB.BPR.1]	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	100	of	115	
	

References	
Abrahamse,	W.,	Steg,	L.,	Vlek,	C.,	&	Rothengatter,	T.	(2007).	The	effect	of	tailored	information,	
goal	 setting,	and	 tailored	 feedback	on	household	energy	use,	energy-related	behaviors,	and	
behavioral	antecedents.	Journal	of	environmental	psychology,	27(4),	265-276.	

Abolfazli,	 S.,	 Sanaei,	Z.,	Ahmed,	E.,	Gani,	A.,	&	Buyya,	R.	 (2014).	Cloudbased	augmentation	 for	
mobile	 devices:	 motivation,	 taxonomies,	 and	 open	 challenges.	 Communications	 Surveys	 &	
Tutorials,	IEEE,	16(1),	337-368.	

Ahmed,	E.,	Gani,	A.,	Sookhak,	M.,	Ab	Hamid,	S.	H.,	&	Xia,	F.	(2015).	Application	optimization	in	
mobile	 cloud	 computing:	Motivation,	 taxonomies,	 and	open	 challenges.	 Journal	 of	Network	
and	Computer	Applications,	52,	52-68.	

Aldinucci,	M.,	Campa,	S.,	Danelutto,	M.,	Vanneschi,	M.,	Kilpatrick,	P.,	Dazzi,	P.	&	Tonellotto,	N.	
(2008,	February).	Behavioural	skeletons	in	GCM:	autonomic	management	of	grid	components.	
In	 16th	 Euromicro	 Conference	 on	 Parallel,	 Distributed	 and	 Network-Based	 Processing	 (PDP	
2008)	(pp.	54-63).	IEEE.	

Al-Roomi,	M.,	Al-Ebrahim,	S.,	Buqrais,	S.,	&	Ahmad,	I.	(2013).	Cloud	computing	pricing	models:	a	
survey.	International	Journal	of	Grid	&	Distributed	Computing,	6(5),	93-106.	

Al-Athwari,	B.	&	Altmann,	J.	(2015,	September).	Utility-Based	Smartphone	Energy	Consumption	
Optimization	 for	 Cloud-Based	 and	 On-Device	 Application	 Uses.	 In	 12th	 International	
Conference	on	Economics	of	Grids,	Clouds,	Systems,	and	Services,	Springer,	LNCS.	

Altmann,	J.,	Courcoubetis,	C.,	&	Risch,	M.	(2010).	A	marketplace	and	its	market	mechanism	for	
trading	 commoditized	 computing	 resources.	 annals	 of	 telecommunications-annales	 des	
télécommunications,	65(11-12),	653-667.	

Altmann,	J.,	Courcoubetis,	C.,	Stamoulis,	G.D.,	Dramitinos,	M.,	Rayna,	T.,	Risch,	M.,	Bannink,	C.	
(2008).	GridEcon	-	A	Market	Place	for	Computing	Resources.	GECON	2008,	Workshop	on	Grid	
Economics	and	Business	Models,	Springer	LNCS,	Las	Palmas,	Spain.	

Altmann,	 J.,	 Hovestadt,	M.,	 Kao,	 O.	 2011).	 Business	 Support	 Service	 Platform	 for	 Providers	 in	
Open	Cloud	Computing	Markets.	 INC2011,	 IEEE	7th	 International	Conference	on	Networked	
Computing,	Gumi,	South-Korea.	

Altmann,	 J.,	&	Kashef,	M.	M.	 (2014).	Cost	model	based	 service	placement	 in	 federated	hybrid	
clouds.	Future	Generation	Computer	Systems,	41,	79–90.	

Amazon	 Web	 Services	 (2017)	 Amazon	 elastic	 compute	 cloud.	 Retrieved	 from:	
http://aws.amazon.com/ec2		

Amazon	 Web	 Services	 (2017)	 Amazon	 elastic	 load	 balancing.	 Retrieved	 from:	
https://aws.amazon.com/elasticloadbalancing/	

Amazon	 Web	 Services	 (2017)	 CloudWatch.	 Retrieved	 from:	
https://aws.amazon.com/cloudwatch/	

Anand,	 A.,	Manikopoulos,	 C.,	 Jones,	Q.,	&	 Borcea,	 C.	 (2007).	 A	 quantitative	 analysis	 of	 power	
consumption	for	 location-aware	applications	on	smart	phones.	Paper	presented	at	the	2007	
IEEE	International	Symposium	on	Industrial	Electronics.	

Anastasi,	G.	F.,	Carlini,	E.,	Coppola,	M.,	&	Dazzi,	P.	(2014,	June).	Qbrokage:	A	genetic	approach	
for	qos	cloud	brokering.	 In	2014	IEEE	7th	International	Conference	on	Cloud	Computing	(pp.	
304-311).	IEEE.	

Apache	Software	Foundation	(2017)	CloudStack.	Retrieved	from:	https://cloudstack.apache.org/	
Apache	Software	Foundation	(2016)	Apache	jcloud.	Retrieved	from:	https://jclouds.apache.org.	
Apache	Software	Foundation	(2015)	Apache	Stratos.	Retrieved	from:	http://stratos.apache.org.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	101	of	115	
	

APPRENDA	 (2016)	 Cloud	 Federation.	 Retrieved	 from:	
https://apprenda.com/library/glossary/definition-cloud-federation/.	

Armbrust,	M.,	Fox,	A.,	Griffith,	R.,	Joseph,	A.	D.,	Katz,	R.,	Konwinski,	A.	&	Zaharia,	M.	(2010).	A	
view	of	cloud	computing.	Communications	of	the	ACM,	53(4),	50-58.	

Athukorala,	K.,	Lagerspetz,	E.,	von	Kügelgen,	M.,	Jylhä,	A.,	Oliner,	A.	J.,	Tarkoma,	S.,	&	Jacucci,	G.	
(2014).	 How	 carat	 affects	 user	 behavior:	 implications	 for	 mobile	 battery	 awareness	
applications.	 Paper	 presented	 at	 the	 Proceedings	 of	 the	 32nd	 annual	 ACM	 conference	 on	
Human	factors	in	computing	systems.	

Banerjee,	 N.,	 Rahmati,	 A.,	 Corner,	M.	 D.,	 Rollins,	 S.,	 &	 Zhong,	 L.	 (2007).	 Users	 and	 batteries:	
interactions	and	adaptive	energy	management	in	mobile	systems:	Springer.	

Banovic,	N.,	Brant,	C.,	Mankoff,	J.,	&	Dey,	A.	(2014).	ProactiveTasks:	the	short	of	mobile	device	
use	 sessions.	 Paper	 presented	 at	 the	 Proceedings	 of	 the	 16th	 international	 conference	 on	
Human-computer	interaction	with	mobile	devices	&	services.	

Bardam,	 J.E.	 The	 Java	 Context	 Awareness	 Framework	 (JCAF)	 –	 A	 Service	 Infrastructure	 and	
Programming	 Framework	 for	 Context-Aware	 Applications.	 In	 Volume	 3468	 of	 the	 series	
Lecture	Notes	in	Computer	Science,	98-115,	2005.		
Berenbrink,	P.,	Brinkmann,	A.,	Friedetzky,	T.,	Meister,	D.,	&	Nagel,	L.	(2013,	May).	Distributing	
storage	in	cloud	environments.	In	Parallel	and	Distributed	Processing	Symposium	Workshops	
&	PhD	Forum	(IPDPSW),	2013	IEEE	27th	International	(pp.	963-973).	IEEE.	

BEACON	Project	(2017).	Retrieved	from:	http://www.beacon-project.eu/	
BonFIRE	 (2014).	 European	 funded	 project	 bonfire-testbeds	 for	 internet	 of	 services	
experimentation.	Retrieved	from:	http://www.bonfire-project.eu/.		

Botta,	F.,	Moat,	H.	S.,	&	Preis,	T.	(2015).	Quantifying	crowd	size	with	mobile	phone	and	Twitter	
data.	Royal	Society	open	science,	2(5),	150162.	

Bozman,	J.	 (2010).	Cloud	computing:	The	need	for	portability	and	 interoperability.	 IDC	Analyze	
the	Future,	Sponsored	by	Red	Hat,	Inc.	

Brennan,	 R.,	 Walshe,	 B.,	 &	 O’Sullivan,	 D.	 (2014).	 Managed	 semantic	 interoperability	 for	
federations.	Journal	of	Network	and	Systems	Management,	22(3),	302-330.	

Breskovic,	 I.,	 Altmann,	 J.,	 Brandic,	 I.	 (2013).	 Creating	 Standardized	 Products	 for	 Electronic	
Markets.	Future	Generation	Computer	Systems,	Elsevier,	29(4),	1000-1011.	

Breskovic,	I.,	Maurer,	M.,	Emeakaroha,	V.C.,	Brandic,	I.,	Altmann,	J.	(2011).	Towards	Autonomic	
Market	 Management	 in	 Cloud	 Computing	 Infrastructures.	 CLOSER2011,	 International	
Conference	of	Cloud	Computing	and	Service	Science,	Noordwijkerhout,	Netherlands.	

Burges,	C.	J.	(2010).	From	ranknet	to	lambdarank	to	lambdamart:	An	overview.	Learning,	11,	23-
581.	

Buyya,	 R.,	 Abramson,	 D.,	 Giddy,	 J.,	 &	 Stockinger,	 H.	 (2002).	 Economic	 models	 for	 resource	
management	and	scheduling	 in	grid	computing.	Concurrency	and	computation:	practice	and	
experience,	14(13-15),	1507-1542.	

Buyya,	R.,	Ranjan,	R.,	&	Calheiros,	R.	N.	 (2010,	May).	 Intercloud:	Utility-oriented	 federation	of	
cloud	computing	environments	for	scaling	of	application	services.	In	International	Conference	
on	 Algorithms	 and	 Architectures	 for	 Parallel	 Processing	 (pp.	 13-31).	 Springer	 Berlin	
Heidelberg.	

Calheiros,	R.	N.,	Masoumi,	E.,	Ranjan,	R.,	&	Buyya,	R.	 (2015).	Workload	prediction	using	arima	
model	and	its	impact	on	cloud	applications’	qos.	IEEE	Transactions	on	Cloud	Computing,	3(4),	
449-458.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	102	of	115	
	

Calyam,	P.,	 Sridharan,	M.,	Xu,	Y.,	Zhu,	K.,	Berryman,	A.,	Patali,	R.,	&	Venkataraman,	A.	 (2011).	
Enabling	performance	intelligence	for	application	adaptation	in	the	Future	Internet.	Journal	of	
Communications	and	Networks,	13(6),	591-601.	

Carlini,	 E.,	 Coppola,	M.,	 Dazzi,	 P.,	 Ricci,	 L.	 &	 Righetti,	 G.	 (2011,	 August).	 Cloud	 federations	 in	
contrail.	 In	 European	 Conference	 on	 Parallel	 Processing	 (pp.	 159-168).	 Springer	 Berlin	
Heidelberg.	

Ceilometer	(n.d).	Retrieved	from:	https://wiki.openstack.org/wiki/Ceilometer.	
Celesti,	A.,	Tusa,	F.,	Villari,	M.,	&	Puliafito,	A.	(2010,	July).	How	to	enhance	cloud	architectures	to	
enable	cross-federation.	 In	2010	 IEEE	3rd	 international	 conference	on	cloud	computing	 (pp.	
337-345).	IEEE.	

Cesario,	 E.,	 Congedo,	 C.,	Marozzo,	 F.,	 Riotta,	 G.,	 Spada,	 A.,	 Talia,	 D.,	 &	 Turri,	 C.	 (2015,	 July).	
Following	soccer	fans	from	geotagged	tweets	at	FIFA	World	Cup	2014.	In	Spatial	Data	Mining	
and	 Geographical	 Knowledge	 Services	 (ICSDM),	 2015	 2nd	 IEEE	 International	 Conference	 on	
(pp.	33-38).	IEEE.	

Cesario,	E.,	 Iannazzo,	A.	R.,	Marozzo,	F.,	Morello,	 F.,	Riotta,	G.,	 Spada,	A.,	&	Trunfio,	P.	 (2016,	
July).	Analyzing	social	media	data	 to	discover	mobility	patterns	at	EXPO	2015:	Methodology	
and	 results.	 In	 High	 Performance	 Computing	 &	 Simulation	 (HPCS),	 2016	 International	
Conference	on	(pp.	230-237).	IEEE.	

Cheng,	F.,	Zhang,	X.,	He,	B.,	Luo,	T.,	&	Wang,	W.	(2012,	November).	A	survey	of	learning	to	rank	
for	real-time	twitter	search.	In	Joint	International	Conference	on	Pervasive	Computing	and	the	
Networked	World	(pp.	150-164).	Springer	Berlin	Heidelberg.	

Chu,	C.,	Kim,	S.	K.,	Lin,	Y.	A.,	Yu,	Y.,	Bradski,	G.,	Ng,	A.	Y.,	&	Olukotun,	K.	(2007).	Map-reduce	for	
machine	learning	on	multicore.	Advances	in	neural	information	processing	systems,	19,	281.	

Chun,	B.	G.,	Ihm,	S.,	Maniatis,	P.,	Naik,	M.,	&	Patti,	A.	(2011,	April).	Clonecloud:	elastic	execution	
between	 mobile	 device	 and	 cloud.	 In	 Proceedings	 of	 the	 sixth	 conference	 on	 Computer	
systems	(pp.	301-314).	ACM.	

Chun,	 B.G.,	 Ihm,	 S.,	 Maniatis,	 P.,	 Naik,	 M.,	 &	 Patti,	 A.	 (2011).	 Clonecloud:	 elastic	 execution	
between	mobile	device	and	cloud.	Paper	presented	at	the	Proceedings	of	the	sixth	conference	
on	Computer	systems.	

Church,	K.,	Ferreira,	D.,	Banovic,	N.,	&	Lyons,	K.	(2015).	Understanding	the	Challenges	of	Mobile	
Phone	Usage	Data.	Paper	presented	at	the	Proceedings	of	the	17th	International	Conference	
on	Human-Computer	Interaction	with	Mobile	Devices	and	Services.	

Clayman,	 S.,	 Toffetti,	 G.,	 Galis,	 A.,	 &	 Chapman,	 C.	 (2012).	Monitoring	 services	 in	 a	 federated	
cloud-the	 reservoir	 experience.	Achieving	 Federated	 and	 Self-Manageable	 Cloud	
Infrastructures:	Theory	and	Practice:	Theory	and	Practice,	242.		

Coello,	C.	A.	C.	(2005).	Recent	trends	in	evolutionary	multiobjective	optimization.	In	Evolutionary	
Multiobjective	Optimization	(pp.	7-32).	Springer	London.	

CoherentPaaS	(n.d).	Retrieved	from:	http://coherentpaas.eu/.	
collectd	(n.d).	The	system	statistics	collection	daemon.	Retrieved	from:	https://collectd.org/.		
CompatibleOne	 (n.d).	 Energy	 Efficient	 (Green)	 Cloud.	 Retrieved	 from:	 http://www.ens-
lyon.fr/LIP/RESO/eecloud/.		

Contrail	 (2010).	 Contrail-Open	 Computing	 Infrastructures	 for	 Elastic	 Services.	 Retrieved	 from:	
http://www.contrail-project.eu.		

Creus,	 G.	 B.,	 &	 Kuulusa,	 M.	 (2007).	 Optimizing	 mobile	 software	 with	 built-in	 power	 profiling	
Mobile	Phone	Programming	(pp.	449-462):	Springer.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	103	of	115	
	

Cuervo,	E.,	Balasubramanian,	A.,	Cho,	D.k.,	Wolman,	A.,	Saroiu,	S.,	Chandra,	R.,	&	Bahl,	P.	(2010).	
MAUI:	making	smartphones	last	longer	with	code	offload.	Paper	presented	at	the	Proceedings	
of	the	8th	international	conference	on	Mobile	systems,	applications,	and	services.	

Cuervo,	E.,	Balasubramanian,	A.,	Cho,	D.k.,	Wolman,	A.,	Saroiu,	S.,	Chandra,	R.,	&	Bahl,	P.	(2010).	
MAUI:	making	smartphones	last	longer	with	code	offload.	Paper	presented	at	the	Proceedings	
of	the	8th	international	conference	on	Mobile	systems,	applications,	and	services.	

Data	governance	(2016).	Retrieved	from:	https://en.wikipedia.org/wiki/Data_management		
Data	management	(2016)	Retrieved	from:	https://en.wikipedia.org/wiki/Data_management	
Datapipe	(2017).	Retrieved	from:	https://www.datapipe.com/	
De	Mulder,	Y.,	Danezis,	G.,	Batina,	L.,	&	Preneel,	B.	(2008,	October).	 Identification	via	location-
profiling	 in	 GSM	 networks.	 In	 Proceedings	 of	 the	 7th	 ACM	 workshop	 on	 Privacy	 in	 the	
electronic	society	(pp.	23-32).	ACM.	

Demumieux,	 R.,	&	 Losquin,	 P.	 (2005).	 Gather	 customer's	 real	 usage	 on	mobile	 phones.	 Paper	
presented	 at	 the	 Proceedings	 of	 the	 7th	 international	 conference	 on	 Human	 computer	
interaction	with	mobile	devices	&	services.	

Dey,	 A.	 K.	 (2000).	 Providing	 architectural	 support	 for	 building	 context-aware	 applications	
(Doctoral	dissertation,	Georgia	Institute	of	Technology).	

Dey,	 A.	 K.,	 Abowd,	 G.	 D.,	 &	 Salber,	 D.	 (2001).	 A	 conceptual	 framework	 and	 a	 toolkit	 for	
supporting	 the	 rapid	 prototyping	 of	 context-aware	 applications.	 Human-computer	
interaction,	16(2),	97-166.	

Do,	 T.	M.	 T.,	 Blom,	 J.,	 &	Gatica-Perez,	 D.	 (2011).	 Smartphone	 usage	 in	 the	wild:	 a	 large-scale	
analysis	 of	 applications	 and	 context.	 Paper	 presented	 at	 the	 Proceedings	 of	 the	 13th	
international	conference	on	multimodal	interfaces.	

Dustin,	 A.,	 Bartlett,	 J.,	 &	 Bruklis,	 R.	 (2010).	 Cloud	 Computing	 Use	 Cases	 White	 Paper.	 Cloud	
Computing	Communication,	6(2),	23-29.	

El	 Faouzi,	 N.	 E.,	 &	 Klein,	 L.	 A.	 (2016).	 Data	 Fusion	 for	 ITS:	 Techniques	 and	 Research	 Needs.	
Transportation	Research	Procedia,	15,	495-512.	

Enzai,	M.,	Idawati,	N.,	&	Tang,	M.	(2014).	A	taxonomy	of	computation	offloading	in	mobile	cloud	
computing.	 Paper	 presented	 at	 the	 Mobile	 Cloud	 Computing,	 Services,	 and	 Engineering	
(MobileCloud),	2014	2nd	IEEE	International	Conference	on.	

F.	Simini,	M.	C.	Gonzlez,	A.	Maritan,	and	A.	Barabsi.	(2012a).	A	universal	model	for	mobility	and	
migration	patterns.	Nature	484,	7392	(2012),	96–100.	

Falaki,	 H.,	 Mahajan,	 R.,	 Kandula,	 S.,	 Lymberopoulos,	 D.,	 Govindan,	 R.,	 &	 Estrin,	 D.	 (2010).	
Diversity	 in	 smartphone	usage.	Paper	presented	at	 the	Proceedings	of	 the	8th	 international	
conference	on	Mobile	systems,	applications,	and	services.	

Fang,	 W.,	 Lu,	 Z.,	 Wu,	 J.,	 &	 Cao,	 Z.	 (2012,	 June).	 RPPS:	 a	 novel	 resource	 prediction	 and	
provisioning	 scheme	 in	 cloud	 data	 center.	 In	 Services	 Computing	 (SCC),	 2012	 IEEE	 Ninth	
International	Conference	on	(pp.	609-616).	IEEE.	

Feeney,	L.	M.,	&	Nilsson,	M.	(2001).	Investigating	the	energy	consumption	of	a	wireless	network	
interface	 in	 an	 ad	 hoc	 networking	 environment.	 Paper	 presented	 at	 the	 INFOCOM	 2001.	
Twentieth	 Annual	 Joint	 Conference	 of	 the	 IEEE	 Computer	 and	 Communications	 Societies.	
Proceedings.	IEEE.	

Fernando,	 N.,	 Loke,	 S.	 W.,	 &	 Rahayu,	 W.	 (2013).	 Mobile	 cloud	 computing:	 A	 survey.	 Future	
Generation	Computer	Systems,	29(1),	84-106.	

Fernando,	 N.,	 Loke,	 S.	 W.,	 &	 Rahayu,	 W.	 (2013).	 Mobile	 cloud	 computing:	 A	 survey.	 Future	
Generation	Computer	Systems,	29(1),	84-106.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	104	of	115	
	

Ferreira,	D.,	 Dey,	 A.	 K.,	&	 Kostakos,	 V.	 (2011).	Understanding	 human-smartphone	 concerns:	 a	
study	of	battery	life	Pervasive	computing	(pp.	19-33):	Springer.	

Ferreira,	 D.,	 Ferreira,	 E.,	 Goncalves,	 J.,	 Kostakos,	 V.,	 &	 Dey,	 A.	 K.	 (2013).	 Revisiting	 human-
battery	interaction	with	an	interactive	battery	interface.	Paper	presented	at	the	Proceedings	
of	the	2013	ACM	international	joint	conference	on	Pervasive	and	ubiquitous	computing.	

Ferreira,	D.,	Goncalves,	J.,	Kostakos,	V.,	Barkhuus,	L.,	&	Dey,	A.	K.	(2014).	Contextual	experience	
sampling	of	mobile	application	micro-usage.	Paper	presented	at	the	Proceedings	of	the	16th	
international	conference	on	Human-computer	interaction	with	mobile	devices	&	services.	

Ferrer,	A.	J.,	&	i	Montanera,	E.	P.	(2015,	May).	The	Role	of	SLAs	in	Building	a	Trusted	Cloud	for	
Europe.	 In	 IFIP	 International	 Conference	 on	 Trust	 Management	 (pp.	 262-275).	 Springer	
International	Publishing.	

Ferrer,	A.	J.,	HernáNdez,	F.,	Tordsson,	J.,	Elmroth,	E.,	Ali-Eldin,	A.,	Zsigri,	C.	&	Ziegler,	W.	(2012).	
OPTIMIS:	 A	 holistic	 approach	 to	 cloud	 service	 provisioning.	 Future	 Generation	 Computer	
Systems,	28(1),	66-77.	

Ferrer,	A.	J.,	HernáNdez,	F.,	Tordsson,	J.,	Elmroth,	E.,	Ali-Eldin,	A.,	Zsigri,	C.,	&	Ziegler,	W.	(2012).	
OPTIMIS:	 A	 holistic	 approach	 to	 cloud	 service	 provisioning.	 Future	 Generation	 Computer	
Systems,	28(1),	66-77.	

Flinn,	 J.,	Park,	S.,	&	Satyanarayanan,	M.	 (2002).	Balancing	performance,	energy,	and	quality	 in	
pervasive	 computing.	 In	 Distributed	 Computing	 Systems,	 2002.	 Proceedings.	 22nd	
International	Conference	on	(pp.	217-226).	IEEE.	

Flora,	H.	K.,	Wang,	X.,	&	Chande,	S.	V.	(2014).	An	investigation	on	the	characteristics	of	mobile	
applications:	A	survey	study.	 International	 Journal	of	 Information	Technology	and	Computer	
Science	(IJITCS),	6(11),	21.	

Forrester	 (2012)	Cloud	Brokers	Will	 Reshape	The	Cloud	 -	Getting	Ready	 For	 The	 Future	Cloud	
Business	Models.	A	Forrester	Consulting	Thought	Leadership	Paper.	

Friedman,	J.	H.	(2001).	Greedy	function	approximation:	a	gradient	boosting	machine.	Annals	of	
statistics,	1189-1232.	

Froehlich,	 J.,	 Chen,	M.	 Y.,	 Consolvo,	 S.,	 Harrison,	 B.,	 &	 Landay,	 J.	 A.	 (2007).	MyExperience:	 a	
system	for	in	situ	tracing	and	capturing	of	user	feedback	on	mobile	phones.	Paper	presented	
at	 the	Proceedings	of	 the	5th	 international	 conference	on	Mobile	 systems,	applications	and	
services.	

Furletti,	B.,	Gabrielli,	L.,	Renso,	C.,	&	Rinzivillo,	S.	(2012,	August).	Identifying	users	profiles	from	
mobile	 calls	 habits.	 In	 Proceedings	 of	 the	 ACM	 SIGKDD	 International	 Workshop	 on	 Urban	
Computing	(pp.	17-24).	ACM.	

Furletti,	B.,	Gabrielli,	L.,	Renso,	C.,	&	Rinzivillo,	S.	(2013,	October).	Analysis	of	GSM	calls	data	for	
understanding	user	mobility	behavior.	In	Big	Data,	2013	IEEE	International	Conference	on	(pp.	
550-555).	IEEE.	

Garg,	S.,	K.,	Versteeg,	S.,	Buyya,	R.	(2013).	A	framework	for	ranking	of	cloud	computing	services.	
Future	Generation	Computer	Systems,	Elsevier,	Vol.	29,	pp.	1012–1023.	

Gebregiorgis,	S.,	&	Altmann,	J.	(2015).	IT	Service	Platforms:	Their	Value	Creation	Model	and	the	
Impact	 of	 their	 Level	 of	Openness	 on	 their	 Adoption.	 Procedia	 Computer	 Science,	 V.68,	 pp	
173-187.	

Georgiev,	 P.,	 Noulas,	 A.,	 &	 Mascolo,	 C.	 (2014).	 The	 call	 of	 the	 crowd:	 Event	 participation	 in	
location-based	social	services.	arXiv	preprint	arXiv:1403.7657.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	105	of	115	
	

Ghasemi-Falavarjani,	 S.,	 Nematbakhsh,	M.,	 &	 Ghahfarokhi,	 B.	 S.	 (2015).	 Context-aware	multi-
objective	 resource	 allocation	 in	mobile	 cloud.	 Computers	&	 Electrical	 Engineering,	 44,	 218-
240.	

Giannotti,	 F.,	Nanni,	M.,	Pedreschi,	D.,	Pinelli,	 F.,	Renso,	C.,	Rinzivillo,	 S.,	&	Trasarti,	R.	 (2011).	
Unveiling	the	complexity	of	human	mobility	by	querying	and	mining	massive	trajectory	data.	
The	VLDB	Journal-The	International	Journal	on	Very	Large	Data	Bases,	20(5),	695-719.	

Girdhar,	 R.,	 Fouhey,	 D.	 F.,	 Rodriguez,	 M.,	 &	 Gupta,	 A.	 (2016).	 Learning	 a	 Predictable	 and	
Generative	Vector	Representation	for	Objects.	arXiv	preprint	arXiv:1603.08637.	

Giurgiu,	I.,	Riva,	O.,	Juric,	D.,	Krivulev,	I.,	&	Alonso,	G.	(2009).	Calling	the	cloud:	enabling	mobile	
phones	as	interfaces	to	cloud	applications	Middleware	2009	(pp.	83-102):	Springer.	

Goiri,	 Í.,	 Guitart,	 J.,	 &	 Torres,	 J.	 (2012).	 Economic	 model	 of	 a	 Cloud	 provider	 operating	 in	 a	
federated	Cloud.	Information	Systems	Frontiers,	14(4),	827-843.	

Gonzalez,	 M.	 C.,	 Hidalgo,	 C.	 A.,	 &	 Barabasi,	 A.	 L.	 (2008).	 Understanding	 individual	 human	
mobility	patterns.	Nature,	453(7196),	779-782.	

Google	 Data	 Centers.	 (2016).	 Data	 center	 locations.	 Retrieved	 from:	
https://www.google.com/about/datacenters/inside/locations/index.html	

Google	App	Engine	(2017)	Google.	Retrieved	from:	http://cloude.google.com/appengine/	
Grozev,	N.	&	 Buyya,	 R.	 (2014).	 Inter-Cloud	 architectures	 and	 application	 brokering:	 taxonomy	
and	survey.	Software:	Practice	and	Experience,	44(3),	369-390.	

Gu,	 B.,	 Sheng,	 V.	 S.,	Wang,	 Z.,	 Ho,	 D.,	 Osman,	 S.,	 &	 Li,	 S.	 (2015).	 Incremental	 learning	 for	 ν-
support	vector	regression.	Neural	Networks,	67,	140-150.	

Gui,	F.,	Adjouadi,	M.,	&	Rishe,	N.	(2009,	May).	A	contextualized	and	personalized	approach	for	
mobile	 search.	 In	 Advanced	 Information	 Networking	 and	 Applications	 Workshops,	 2009.	
WAINA'09.	International	Conference	on	(pp.	966-971).	IEEE.	

Gupta,	A.,	&	Mohapatra,	P.	(2007).	Energy	consumption	and	conservation	in	wifi	based	phones:	
A	measurement-based	study.	Paper	presented	at	the	2007	4th	Annual	IEEE	Communications	
Society	Conference	on	Sensor,	Mesh	and	Ad	Hoc	Communications	and	Networks.	

Haile,	 N.,	 &	 Altmann,	 J.	 (2017).	 Evaluating	 investments	 in	 portability	 and	 interoperability	
between	software	service	platforms,	Future	Generation	Computer	Systems.	

Haile,	N.,	&	Altmann,	J.	(2016).	Value	creation	in	software	service	platforms.	Future	Generation	
Computer	Systems,	55,	495-509.	

Haile,	 N.,	 &	 Altmann,	 J.	 (2015a).	 Structural	 Analysis	 of	 Value	 Creation	 in	 Software	 Service	
Platforms.	Electronic	Markets,	26(2),	129-142.	

Haile,	N.,	&	Altmann,	J.	(2015b).	Risk-benefit-mediated	impact	of	determinants	on	the	adoption	
of	cloud	federation.	In	19th	Pacific	Asia	Conf	on	Information	Systems.	

Hamsanandhini,	 S.,	 &	 Mohana,	 R.	 S.	 (2015,	 January).	 Maximizing	 the	 revenue	 with	 client	
classification	 in	 Cloud	 Computing	 market.	 In	 Computer	 Communication	 and	 Informatics	
(ICCCI),	2015	International	Conference	on	(pp.	1-7).	IEEE.	

Harnik,	 Ron	 (2016,	 February).	 How	 Can	 an	 Enterprise	 Benefit	 from	 a	 Cloud	 Management	
Platform	 [Blog].	 Retrieved	 from:	 http://www.scalr.com/blog/how-can-an-enterprise-benefit-
from-a-cloud-management-platform.		

Heikkinen,	 M.	 V.,	 Nurminen,	 J.	 K.,	 Smura,	 T.,	 &	 Hämmäinen,	 H.	 (2012).	 Energy	 efficiency	 of	
mobile	handsets:	Measuring	user	attitudes	and	behavior.	Telematics	and	 Informatics,	29(4),	
387-399.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	106	of	115	
	

Hopkins,	 M.,	 &	May,	 J.	 (2011,	 July).	 Tuning	 as	 ranking.	 In	 Proceedings	 of	 the	 Conference	 on	
Empirical	 Methods	 in	 Natural	 Language	 Processing	 (pp.	 1352-1362).	 Association	 for	
Computational	Linguistics.	

Huerta-Canepa,	 G.,	 &	 Lee,	 D.	 (2010,	 June).	 A	 virtual	 cloud	 computing	 provider	 for	 mobile	
devices.	 In	 Proceedings	 of	 the	 1st	 ACM	Workshop	 on	Mobile	 Cloud	 Computing	&	 Services:	
Social	Networks	and	Beyond	(p.	6).	ACM.	

Jesdabodi,	 C.,	 &	 Maalej,	 W.	 (2015).	 Understanding	 usage	 states	 on	 mobile	 devices.	 Paper	
presented	at	 the	Proceedings	of	 the	2015	ACM	 International	 Joint	Conference	on	Pervasive	
and	Ubiquitous	Computing.	

Joachims,	 T.	 (2002).	 Learning	 to	 classify	 text	 using	 support	 vector	machines:	Methods,	 theory	
and	algorithms.	Kluwer	Academic	Publishers.	

Jones,	S.	L.,	Ferreira,	D.,	Hosio,	S.,	Goncalves,	 J.,	&	Kostakos,	V.	 (2015).	Revisitation	analysis	of	
smartphone	app	use.	Paper	presented	at	the	Proceedings	of	the	2015	ACM	International	Joint	
Conference	on	Pervasive	and	Ubiquitous	Computing.	

Kang,	 J.M.,	Park,	C.K.,	 Seo,	 S.S.,	 Choi,	M.J.,	&	Hong,	 J.	W.K.	 (2008).	User-centric	prediction	 for	
battery	 lifetime	of	mobile	 devices	 Challenges	 for	Next	Generation	Network	Operations	 and	
Service	Management	(pp.	531-534):	Springer.	

Kang,	 J.-M.,	 Seo,	 S.-s.,	 &	 Hong,	 J.	W.K.	 (2011).	 Usage	 pattern	 analysis	 of	 smartphones.	 Paper	
presented	 at	 the	 Network	 Operations	 and	Management	 Symposium	 (APNOMS),	 2011	 13th	
Asia-Pacific.	

Karamshuk,	 D.,	 Boldrini,	 C.,	 Conti,	 M.,	 &	 Passarella,	 A.	 (2011).	 Human	 mobility	 models	 for	
opportunistic	networks.	Communications	Magazine,	IEEE,	49(12),	157-165.	

Kashef,	 M.M.,	 Altmann,	 J.	 (2011).	 A	 Cost	 Model	 for	 Hybrid	 Clouds.	 GECON2011,	 8th	
International	Workshop	on	Economics	of	Grids,	Clouds,	Systems,	and	Services,	Springer	LNCS,	
Paphos,	Cyprus.	

Kashef,	M.	M.,	Uzbekov,	A.,	Altmann,	J.,	&	Hovestadt,	M.	(2013,	May).	Comparison	of	two	yield	
management	strategies	 for	cloud	service	providers.	 In	 International	Conference	on	Grid	and	
Pervasive	Computing	(pp.	170-180).	Springer	Berlin	Heidelberg.	

Kemp,	R.,	Palmer,	N.,	Kielmann,	T.,	&	Bal,	H.	(2010,	October).	Cuckoo:	a	computation	offloading	
framework	for	smartphones.	In	International	Conference	on	Mobile	Computing,	Applications,	
and	Services	(pp.	59-79).	Springer	Berlin	Heidelberg.	

Khanna,	P.,	&	Jain,	S.	(2015).	Cloud	Broker	Definition	Differential:	Gartner	Versus	NIST	and	New	
Models	

Kim,	H.,	Parashar,	M.,	Foran,	D.	J.,	&	Yang,	L.	(2009,	October).	Investigating	the	use	of	autonomic	
cloudbursts	 for	 high-throughput	 medical	 image	 registration.	 In	 2009	 10th	 IEEE/ACM	
International	Conference	on	Grid	Computing	(pp.	34-41).	IEEE.	

Kim,	J.,	Ilon,	L.,	&	Altmann,	J.	(2013).	Adapting	smartphones	as	learning	technology	in	a	Korean	
university.	Journal	of	Integrated	Design	and	Process	Science,	17(1),	5-16.	

Kim,	K.,	Kang,	S.,	&	Altmann,	 J.	 (2014,	September).	Cloud	Goliath	versus	a	 federation	of	 cloud	
Davids.	 In	 International	 Conference	 on	 Grid	 Economics	 and	 Business	 Models	 (pp.	 55-66).	
Springer	International	Publishing.		

Kim,	 K.,	&	 Altmann,	 J.	 (2017).	 Effect	 of	 homophily	 on	 network	 formation.	 Communications	 in	
Nonlinear	Science	and	Numerical	Simulation,	44,	482-494.	

Klymash,	 M.,	 Beshley,	 M.,	 Strykhalyuk,	 B.,	 &	 Maksymyuk,	 T.	 (2014,	 May).	 Research	 and	
development	 the	 methods	 of	 quality	 of	 service	 provision	 in	 Mobile	 Cloud	 systems.	 In	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	107	of	115	
	

Communications	 and	 Networking	 (BlackSeaCom),	 2014	 IEEE	 International	 Black	 Sea	
Conference	on	(pp.	160-164).	IEEE.	

Kolev,	 B.,	 Valduriez,	 P.,	 Bondiombouy,	 C.,	 Jiménez-Peris,	 R.,	 Pau,	 R.,	 &	 Pereira,	 J.	 (2015).	
CloudMdsQL:	 Querying	 heterogeneous	 cloud	 data	 stores	 with	 a	 common	 language.	
Distributed	and	Parallel	Databases,	1-41.	

Kosta,	S.,	Aucinas,	A.,	Hui,	P.,	Mortier,	R.,	&	Zhang,	X.	(2012,	March).	Thinkair:	Dynamic	resource	
allocation	and	parallel	execution	in	the	cloud	for	mobile	code	offloading.	 In	INFOCOM,	2012	
Proceedings	IEEE	(pp.	945-953).	IEEE.	

Kousiouris,	G.,	Kyriazis,	D.,	Gogouvitis,	S.,	Menychtas,	A.,	Konstanteli,	K.,	&	Varvarigou,	T.	(2011,	
June).	 Translation	 of	 application-level	 terms	 to	 resource-level	 attributes	 across	 the	 Cloud	
stack	 layers.	 In	 Computers	 and	 Communications	 (ISCC),	 2011	 IEEE	 Symposium	 on	 (pp.	 153-
160).	IEEE.	

Kousiouris,	 G.,	 Menychtas,	 A.,	 Kyriazis,	 D.,	 Gogouvitis,	 S.,	 &	 Varvarigou,	 T.	 (2014).	 Dynamic,	
behavioral-based	estimation	of	resource	provisioning	based	on	high-level	application	terms	in	
Cloud	platforms.	Future	Generation	Computer	Systems,	32,	27-40.	

Kousiouris,	 G.,	 Vafiadis,	 G.,	 &	 Varvarigou,	 T.	 (2013,	 October).	 Enabling	 proactive	 data	
management	in	virtualized	hadoop	clusters	based	on	predicted	data	activity	patterns.	In	P2P,	
Parallel,	Grid,	Cloud	and	Internet	Computing	(3PGCIC),	2013	Eighth	International	Conference	
on	(pp.	1-8).	IEEE.	

Kovachev,	D.,	Yu,	T.,	&	Klamma,	R.	(2012).	Adaptive	computation	offloading	from	mobile	devices	
into	 the	cloud.	Paper	presented	at	 the	Parallel	and	Distributed	Processing	with	Applications	
(ISPA),	2012	IEEE	10th	International	Symposium	on.	

Kujala,	R.,	Aledavood,	T.,	&	Saramäki,	J.	(2016).	Estimation	and	monitoring	of	city-to-city	travel	
times	using	call	detail	records.	EPJ	Data	Science,	5(1),	1.	

Kumar,	 K.,	 &	 Lu,	 Y.H.	 (2010).	 Cloud	 computing	 for	mobile	 users:	 Can	 offloading	 computation	
save	energy?	Computer	(4),	51-56.	

Kumar,	K.,	Liu,	J.,	Lu,	Y.-H.,	&	Bhargava,	B.	(2013).	A	survey	of	computation	offloading	for	mobile	
systems.	Mobile	Networks	and	Applications,	18(1),	129-140.	

Kurze,	 T.,	 Klems,	 M.,	 Bermbach,	 D.,	 Lenk,	 A.,	 Tai,	 S.,	 &	 Kunze,	 M.	 (2011).	 Cloud	 federation.	
CLOUD	COMPUTING,	2011,	32–38.	JOUR.	

Kyriazis,	D.	 (2013).	Cloud	computing	service	 level	agreements:	exploitation	of	research	results.	
European	 Commission	 Directorate	 General	 Communications	 Networks	 Content	 and	
Technology	Unit,	Tech.	Rep,	5.	

Li,	 H.	 (2014).	 Learning	 to	 rank	 for	 information	 retrieval	 and	 natural	 language	 processing.	
Synthesis	Lectures	on	Human	Language	Technologies,	7(3),	1-121.	

Li,	W.,	Tordsson,	J.,	&	Elmroth,	E.	(2011,	November).	Modeling	for	dynamic	cloud	scheduling	via	
migration	of	virtual	machines.	In	Cloud	Computing	Technology	and	Science	(CloudCom),	2011	
IEEE	Third	International	Conference	on	(pp.	163-171).	IEEE.	

Libvirt	project	(2017)	libvirt	Virtualization	API.	Retrieved	from:	https://libvirt.org/	
Lim,	S.	L.,	Bentley,	P.	 J.,	Kanakam,	N.,	 Ishikawa,	F.,	&	Honiden,	S.	 (2015).	 Investigating	country	
differences	 in	mobile	 app	 user	 behavior	 and	 challenges	 for	 software	 engineering.	 Software	
Engineering,	IEEE	Transactions	on,	41(1),	40-64.	

Lin,	T.Y.,	Lin,	T.A.,	Hsu,	C.H.,	&	King,	C.T.	(2013).	Context-aware	decision	engine	for	mobile	cloud	
offloading.	 Paper	 presented	 at	 the	 Wireless	 Communications	 and	 Networking	 Conference	
Workshops	(WCNCW),	2013	IEEE.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	108	of	115	
	

Liu,	 T.	 Y.	 (2009).	 Learning	 to	 rank	 for	 information	 retrieval.	 Foundations	 and	 Trends	 in	
Information	Retrieval,	3(3),	225-331.	

López,	 L.,	 Nieto,	 F.	 J.,	 Velivassaki,	 T.	 H.,	 Kosta,	 S.,	 Hong,	 C.	 H.,	Montella,	 R.,	 &	 Fernández,	 C.	
(2016).	 Heterogeneous	 Secure	 Multi-level	 Remote	 Acceleration	 Service	 for	 Low-power	
Integrated	Systems	and	Devices.	Procedia	Computer	Science,	97,	118-121.	

Lou,	H.	D.,	Li,	W.	G.,	Hou,	Y.	E.,	Yao,	Q.	H.,	Ye,	G.	Q.,	&	Wan,	H.	(2015).	Feature	selection	tracking	
algorithm	based	on	sparse	representation.	Mathematical	Problems	in	Engineering,	2015.	

Lu,	 X.,	 Wetter,	 E.,	 Bharti,	 N.,	 Tatem,	 A.	 J.,	 &	 Bengtsson,	 L.	 (2013).	 Approaching	 the	 limit	 of	
predictability	in	human	mobility.	Scientific	reports,	3.	

Lucchese,	 C.,	 Nardini,	 F.	 M.,	 Orlando,	 S.,	 Perego,	 R.,	 Tonellotto,	 N.,	 &	 Venturini,	 R.	 (2015,	
August).	 Quickscorer:	 A	 fast	 algorithm	 to	 rank	 documents	 with	 additive	 ensembles	 of	
regression	trees.	In	Proceedings	of	the	38th	International	ACM	SIGIR	Conference	on	Research	
and	Development	in	Information	Retrieval	(pp.	73-82).	ACM.	

Ludwig,	 H.,	 Keller,	 A.,	 Dan,	 A.,	 King,	 R.	 P.,	 &	 Franck,	 R.	 (2003).	Web	 service	 level	 agreement	
(WSLA)	language	specification.	IBM	Corporation,	815-824.	

Ma,	R.	K.,	Lam,	K.	T.,	&	Wang,	C.	L.	(2011,	December).	exCloud:	Transparent	runtime	support	for	
scaling	mobile	applications	in	cloud.	In	Cloud	and	Service	Computing	(CSC),	2011	International	
Conference	on	(pp.	103-110).	IEEE.	

Macedo,	 A.	 Q.,	 Marinho,	 L.	 B.,	 &	 Santos,	 R.	 L.	 (2015,	 September).	 Context-aware	 event	
recommendation	in	event-based	social	networks.	In	Proceedings	of	the	9th	ACM	Conference	
on	Recommender	Systems	(pp.	123-130).	ACM.	

Machado,	 G.	 S.,	 Hausheer,	 D.,	 &	 Stiller,	 B.	 (2009,	 October).	 Considerations	 on	 the	
Interoperability	 of	 and	 between	 Cloud	 Computing	 Standards.	 In	 27th	 Open	 Grid	 Forum	
(OGF27),	G2C-Net	Workshop:	From	Grid	to	Cloud	Networks.	

Magurawalage,	C.	M.	S.,	Yang,	K.,	Hu,	L.,	&	Zhang,	J.	(2014).	Energy-efficient	and	network-aware	
offloading	algorithm	for	mobile	cloud	computing.	Computer	Networks,	74,	22-33.	

Majhi,	S.	K.,	&	Bera,	P.	(2014,	December).	VM	migration	auction:	Business	oriented	federation	of	
cloud	providers	for	scaling	of	application	services.	In	Parallel,	Distributed	and	Grid	Computing	
(PDGC),	2014	International	Conference	on	(pp.	196-201).	IEEE.	

Malet,	 B.,	 &	 Pietzuch,	 P.	 (2010,	 November).	 Resource	 allocation	 across	 multiple	 cloud	 data	
centres.	 In	Proceedings	of	 the	8th	 International	Workshop	on	Middleware	 for	Grids,	Clouds	
and	e-Science	(p.	5).	ACM.	

March,	V.,	Gu,	Y.,	Leonardi,	E.,	Goh,	G.,	Kirchberg,	M.,	&	Lee,	B.	S.	(2011).	μcloud:	towards	a	new	
paradigm	of	rich	mobile	applications.	Procedia	Computer	Science,	5,	618-624.	

Marinelli,	E.	E.	(2009).	Hyrax:	cloud	computing	on	mobile	devices	using	MapReduce	(No.	CMU-
CS-09-164).	Carnegie-mellon	univ	Pittsburgh	PA	School	of	computer	science.	

Marler,	 R.	 T.,	 &	 Arora,	 J.	 S.	 (2004).	 Survey	 of	 multi-objective	 optimization	 methods	 for	
engineering.	Structural	and	multidisciplinary	optimization,	26(6),	369-395.	

Marosi,	A.,	Kecskemeti,	G.,	Kertesz,	A.	&	Kacsuk,	P.	(2011).	FCM:	an	architecture	for	integrating	
IaaS	cloud	systems.		

Massie,	M.	 L.,	 Chun,	 B.	 N.,	 &	 Culler,	 D.	 E.	 (2004).	 The	 ganglia	 distributed	monitoring	 system:	
design,	implementation,	and	experience.	Parallel	Computing,	30(7),	817-840.	

Massuthe,	P.,	Reisig,	W.,	&	Schmidt,	K.	(2005).	An	operating	guideline	approach	to	the	SOA.	
Masucci,	A.	P.,	Serras,	J.,	Johansson,	A.,	&	Batty,	M.	(2013).	Gravity	versus	radiation	models:	On	
the	 importance	 of	 scale	 and	 heterogeneity	 in	 commuting	 flows.	 Physical	 Review	 E,	 88(2),	
022812.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	109	of	115	
	

McMillan,	D.,	Morrison,	A.,	Brown,	O.,	Hall,	M.,	&	Chalmers,	M.	 (2010).	 Further	 into	 the	wild:	
Running	worldwide	trials	of	mobile	systems	Pervasive	Computing	(pp.	210-227):	Springer.	

Monreale,	 A.,	 Pinelli,	 F.,	 Trasarti,	 R.,	 &	 Giannotti,	 F.	 (2009,	 June).	 Wherenext:	 a	 location	
predictor	on	trajectory	pattern	mining.	In	Proceedings	of	the	15th	ACM	SIGKDD	international	
conference	on	Knowledge	discovery	and	data	mining	(pp.	637-646).	ACM.	

Moreno-Vozmediano,	R.,	Montero,	R.	S.,	&	Llorente,	I.	M.	(2012).	Iaas	cloud	architecture:	From	
virtualized	datacenters	to	federated	cloud	infrastructures.	Computer,	45(12),	65-72.	

Nagel,	 K.,	 Kidd,	 C.	 D.,	 O’Connell,	 T.,	 Dey,	 A.,	 &	 Abowd,	 G.	 D.	 (2001,	 September).	 The	 family	
intercom:	 Developing	 a	 context-aware	 audio	 communication	 system.	 In	 International	
Conference	on	Ubiquitous	Computing	(pp.	176-183).	Springer	Berlin	Heidelberg.	

Nagios	(2009)	IT	Infrastructure	Monitoring.	Retrieved	from:	http://www.nagios.org	
Navarro,	 Ted	 (2015)	What	 is	 the	 Relationship	 Between	Hybrid	 Clouds	 And	 Federated	 Clouds?	
Retrieved	 from:	 https://www.computenext.com/blog/what-is-the-relationship-between-
hybrid-clouds-and-federated-clouds/	

Neary,	D.	&	Mark,	J.	(2016).	ManageIQ	Overview	at	Management	and	Orchestration	Developer	
Meet-up	 (MODM).	 Retrieved	 from:	 http://www.slideshare.net/JeromeMarc2/manageiq-
overview-at-management-and-orchestration-developer-modm-meetup		

Newson,	P.,	&	Krumm,	 J.	 (2009,	November).	Hidden	Markov	map	matching	 through	noise	and	
sparseness.	In	Proceedings	of	the	17th	ACM	SIGSPATIAL	international	conference	on	advances	
in	geographic	information	systems	(pp.	336-343).	ACM.	

NIST	 (2011).	 Cloud	 Compouting	 Reference	 Architecture,	 National	 Institute	 of	 Standrds	 and	
Technology,	Special	Publication	500-292.	

OCCI	&	 CompatibleOne	 (2012).	Open	 Cloud	 Computing	 Interface.	 Retrieved	 from:	 http://occi-
wg.org/2012/07/15/occi-compatibleone/		

OGF	(n.d)	Open	Grid	Forum.	Retrieved	from:	https://www.ogf.org/ogf/doku.php	
Oliner,	 A.	 J.,	 Iyer,	 A.	 P.,	 Stoica,	 I.,	 Lagerspetz,	 E.,	 &	 Tarkoma,	 S.	 (2013).	 Carat:	 Collaborative	
energy	 diagnosis	 for	mobile	 devices.	 Paper	 presented	 at	 the	 Proceedings	 of	 the	 11th	 ACM	
Conference	on	Embedded	Networked	Sensor	Systems.	

Oliver,	E.	(2010).	The	challenges	in	large-scale	smartphone	user	studies.	Paper	presented	at	the	
Proceedings	 of	 the	 2nd	 ACM	 International	 Workshop	 on	 Hot	 Topics	 in	 Planet-scale	
Measurement.	

Oliver,	E.	A.,	&	Keshav,	S.	(2011).	An	empirical	approach	to	smartphone	energy	level	prediction.	
Paper	 presented	 at	 the	 Proceedings	 of	 the	 13th	 international	 conference	 on	 Ubiquitous	
computing.	

OPTIMIS	(2013)	Retrieved	from:	http://optimistoolkit.com	
OpenNebula	Project	(2017)	OpenNebula.	Retrieved	from:	https://opennebula.org/	
OpenTSDB	(2017)The	Scalable	Time	Series	Database.		
Retrieved	from:	http://opentsdb.net/index.html	
Ortiz,	S.	(2011).	The	problem	with	cloud-computing	standardization.	Computer,	44(7),	13-16.	
OSGi	 Alliance	 (2007).	 Osgi	 service	 platform,	 core	 specification,	 release	 4,	 version	 4.1.	 OSGi	
Specification.	

Othman,	M.,	Madani,	S.	A.,	&	Khan,	S.	U.	(2014).	A	survey	of	mobile	cloud	computing	application	
models.	IEEE	Communications	Surveys	&	Tutorials,	16(1),	393-413.	

Ou,	S.,	Yang,	K.,	&	Hu,	L.	(2007).	Cross:	a	combined	routing	and	surrogate	selection	algorithm	for	
pervasive	 service	 offloading	 in	mobile	 ad	 hoc	 environments.	 Paper	 presented	 at	 the	Global	
Telecommunications	Conference,	2007.	GLOBECOM'07.	IEEE.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	110	of	115	
	

Pasricha,	S.,	Donohoo,	B.	K.,	&	Ohlsen,	C.	(2015).	A	middleware	framework	for	application-aware	
and	 user-specific	 energy	 optimization	 in	 smart	 mobile	 devices.	 Pervasive	 and	 Mobile	
Computing,	20,	47-63.	

Pathak,	A.,	Hu,	Y.	C.,	&	Zhang,	M.	(2012).	Where	is	the	energy	spent	inside	my	app?:	fine	grained	
energy	accounting	on	smartphones	with	eprof.	Paper	presented	at	the	Proceedings	of	the	7th	
ACM	european	conference	on	Computer	Systems.	

Patiniotakis,	 I.,	 Verginadis,	 Y.,	 &	 Mentzas,	 G.	 (2014).	 Preference-based	 cloud	 service	
recommendation	as	a	brokerage	 service.	 In	Proceedings	of	 the	2nd	 International	Workshop	
on	CrossCloud	Systems	(p.	5).	ACM.	

Pecher,	P.,	Hunter,	M.,	&	Fujimoto,	R.	 (2014,	December).	Past	and	 future	 trees:	 structures	 for	
predicting	 vehicle	 trajectories	 in	 real-time.	 In	 Proceedings	 of	 the	 Winter	 Simulation	
Conference	2014	(pp.	2884-2895).	IEEE.	

Pecher,	P.,	Hunter,	M.,	&	Fujimoto,	R.	(2016,	May).	Data-Driven	Vehicle	Trajectory	Prediction.	In	
Proceedings	of	the	2016	annual	ACM	Conference	on	SIGSIM	Principles	of	Advanced	Discrete	
Simulation	(pp.	13-22).	ACM.	

Peltonen,	E.,	Lagerspetz,	E.,	Nurmi,	P.,	&	Tarkoma,	S.	 (2016).	Where	Has	My	Battery	Gone?:	A	
Novel	Crowdsourced	Solution	 for	Characterizing	Energy	Consumption.	Pervasive	Computing,	
IEEE,	15(1),	6-9.	

Petri,	 I.,	 Beach,	 T.,	 Zou,	M.,	Montes,	 J.	 D.,	 Rana,	 O.,	 &	 Parashar,	M.	 (2014,	March).	 Exploring	
models	and	mechanisms	for	exchanging	resources	in	a	federated	cloud.	In	Cloud	Engineering	
(IC2E),	2014	IEEE	International	Conference	on	(pp.	215-224).	IEEE.	

Plummer,	 D.	 C.,	 Lheureux,	 B.	 J.,	 &	 Karamouzis,	 F.	 (2010).	 Defining	 cloud	 services	 brokerage:	
taking	intermediation	to	the	next	level.	Gartner	Research	Note,	(G00206187).		

Plummer,	 D.	 C.,	 Lheureux,	 B.	 J.,	 Cantara,	 M.,	 &	 Bova,	 T.	 (2011).	 Cloud	 Services	 Brokerage	 is	
dominated	by	Three	Primary	Roles.	Gartner	Research	Note	G,	226509.		

Prevost,	J.	J.,	Nagothu,	K.,	Kelley,	B.,	&	Jamshidi,	M.	(2011,	June).	Prediction	of	cloud	data	center	
networks	loads	using	stochastic	and	neural	models.	In	System	of	Systems	Engineering	(SoSE),	
2011	6th	International	Conference	on	(pp.	276-281).	IEEE.	

Project	Jellyfish	(2016)	Project	Jellyfish.	Retrieved	from:	http://projectjellyfish.org/	
Pu,	L.,	Chen,	X.,	Xu,	J.,	&	Fu,	X.	(2016).	D2D	fogging:	An	energy-efficient	and	incentive-aware	task	
offloading	framework	via	network-assisted	D2D	collaboration.	IEEE	Journal	on	Selected	Areas	
in	Communications,	34(12),	3887-3901.	

Quan,	D.M.	&	Altmann,	 J.	 (2009).	Resource	Allocation	Algorithm	 for	 the	 Light	Communication	
Grid-Based	Workflows	within	an	SLA	Context.	International	Journal	of	Parallel,	Emergent	and	
Distributed	Systems,	24(1).	

Quercia,	 D.,	 Lathia,	 N.,	 Calabrese,	 F.,	 Di	 Lorenzo,	 G.,	 &	 Crowcroft,	 J.	 (2010,	 December).	
Recommending	 social	 events	 from	mobile	 phone	 location	 data.	 In	 2010	 IEEE	 International	
Conference	on	Data	Mining	(pp.	971-976).	IEEE.	

Qureshi,	S.	S.,	Ahmad,	T.,	&	Rafique,	K.	(2011,	September).	Mobile	cloud	computing	as	future	for	
mobile	 applications-Implementation	 methods	 and	 challenging	 issues.	 In	 2011	 IEEE	
International	Conference	on	Cloud	Computing	and	Intelligence	Systems	(pp.	467-471).	IEEE.	

Rahmati,	A.,	&	Zhong,	 L.	 (2013).	 Studying	 smartphone	usage:	 Lessons	 from	a	 four-month	 field	
study.	Mobile	Computing,	IEEE	Transactions	on,	12(7),	1417-1427.	

Rahmati,	A.,	Qian,	A.,	&	Zhong,	L.	(2007,	September).	Understanding	human-battery	interaction	
on	mobile	phones.	 In	Proceedings	of	 the	9th	 international	 conference	on	Human	computer	
interaction	with	mobile	devices	and	services	(pp.	265-272).	ACM.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	111	of	115	
	

Rahmati,	A.,	Tossell,	C.,	Shepard,	C.,	Kortum,	P.,	&	Zhong,	L.	(2012).	Exploring	iPhone	usage:	the	
influence	of	 socioeconomic	differences	on	smartphone	adoption,	usage	and	usability.	Paper	
presented	 at	 the	 Proceedings	 of	 the	 14th	 international	 conference	 on	 Human-computer	
interaction	with	mobile	devices	and	services.	

Rai,	 B.	 K.	 and	 Srivastava,	 Dr.	 A.	 K.	 Pseudonymization	 Techniques	 for	 Providing	 Privacy	 and	
Security	 in	 HER.	 In	 International	 Journal	 of	 Emerging	 Trends	 &	 Technology	 in	 Computer	
Science	(IJETTCS),	Vol.	5,	Issue	4,	July	-	August	2016	

Ranjan,	R.,	Benatallah,	B.,	Dustdar,	S.,	&	Papazoglou,	M.	P.	(2015).	Cloud	resource	orchestration	
programming:	overview,	issues,	and	directions.	IEEE	Internet	Computing,	19(5),	46-56.	

Ravi,	N.,	 Scott,	 J.,	 Han,	 L.,	&	 Iftode,	 L.	 (2008).	 Context-aware	 battery	management	 for	mobile	
phones.	 Paper	 presented	 at	 the	 Pervasive	 Computing	 and	 Communications,	 2008.	 PerCom	
2008.	Sixth	Annual	IEEE	International	Conference	on.	

Rehman,	Z.,	Hussain,	O.	K.,	Chang,	E.,	&	Dillon,	T.	(2015).	Decision-making	framework	for	user-
based	 inter-cloud	 service	migration.	 Electronic	Commerce	Research	and	Applications,	 14(6),	
523-531.	

Renso,	C.,	Spaccapietra,	S.,	&	Zimányi,	E.	(2013).	Mobility	Data.	Cambridge	University	Press.	
Rezaei,	R.,	Chiew,	T.	K.,	Lee,	S.	P.,	&	Aliee,	Z.	S.	(2014).	A	semantic	interoperability	framework	for	
software	 as	 a	 service	 systems	 in	 cloud	 computing	 environments.	 Expert	 Systems	 with	
Applications,	41(13),	5751-5770.	

Risch,	 M.	 &	 Altmann,	 J.	 (2009a).	 Enabling	 Open	 Cloud	 Markets	 Through	 WS-Agreement	
Extensions.	 Service	 Level	 Agreements	 in	 Grids	 Workshop,	 in	 conjunction	 with	 GRID2009,	
CoreGRID	Springer	Series,	Banff,	Canada.	

Risch,	M.	&	Altmann,	 J.	 (2009b)	 Capacity	 Planning	 in	 Economic	Grid	Markets,"	GPC	 2009,	 4th	
International	 Conference	 on	 Grid	 and	 Pervasive	 Computing,	 Lecture	 Notes	 in	 Computer	
Science	(LNCS)	5529,	Geneva,	Switzerland,	May	2009.	

Risch,	 M.,	 Brandic,	 I.,	 Altmann,	 J.	 (2009).	 Using	 SLA	 Mapping	 to	 Increase	 Market	 Liquidity.	
NFPSLAM-SOC	 2009,	 3rd	Workshop	 on	 Non-Functional	 Properties	 and	 SLA	Management	 in	
Service-Oriented	Computing,	in	conjunction	with	ICSOC	2009,	7th	International	Conference	on	
Service-Oriented	Computing,	Springer	LNCS	6275,	Stockholm,	Sweden,	November	2009.	

Rodero-Merino,	L.,	Vaquero,	L.	M.,	Gil,	V.,	Galán,	F.,	Fontán,	J.,	Montero,	R.	S.,	&	Llorente,	I.	M.	
(2010).	 From	 infrastructure	 delivery	 to	 service	 management	 in	 clouds.	 Future	 Generation	
Computer	Systems,	26(8),	1226-1240.	

Roy,	 N.,	 Dubey,	 A.,	 &	 Gokhale,	 A.	 (2011).	 Efficient	 autoscaling	 in	 the	 cloud	 using	 predictive	
models	 for	 workload	 forecasting.	 In	 Cloud	 Computing	 (CLOUD),	 2011	 IEEE	 International	
Conference	on	(pp.	500-507).	

Salmre,	 I.	 (2004).	 Characteristics	 of	 Mobile	 Applications.	 Retrieved	 from:	
http://ptgmedia.pearsoncmg.com/images/0321269314/samplechapter/salmre_ch02.pdf	

Samimi,	 P.,	 Teimouri,	 Y.,	 &	 Mukhtar,	 M.	 (2014).	 A	 combinatorial	 double	 auction	 resource	
allocation	model	in	cloud	computing.	Information	Sciences.	

Saripalli,	 P.,	 Kiran,	 G.	 V.	 R.,	 Shankar,	 R.	 R.,	 Narware,	 H.,	 &	 Bindal,	 N.	 (2011,	 December).	 Load	
prediction	and	hot	spot	detection	models	for	autonomic	cloud	computing.	In	Utility	and	Cloud	
Computing	(UCC),	2011	Fourth	IEEE	International	Conference	on	(pp.	397-402).	IEEE.	

Satyanarayanan,	M.,	Bahl,	P.,	Caceres,	R.,	&	Davies,	N.	(2009).	The	case	for	vm-based	cloudlets	
in	mobile	computing.	IEEE	pervasive	Computing,	8(4),	14-23.	

Scalr	 (2016)	 Enterprise-Grade	 Cloud	 Management	 Platform.	 Retrieved	 from:	
http://www.scalr.com/	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	112	of	115	
	

Schilit,	B.,	Adams,	N.,	&	Want,	R.	 (1994,	December).	Context-aware	computing	applications.	 In	
Mobile	Computing	Systems	and	Applications,	1994.	WMCSA	1994.	First	Workshop	on	(pp.	85-
90).	IEEE.	

Schneider,	C.	M.,	Belik,	V.,	Couronné,	T.,	Smoreda,	Z.,	&	González,	M.	C.	(2013).	Unravelling	daily	
human	mobility	motifs.	Journal	of	The	Royal	Society	Interface,	10(84),	20130246.	

Schork,	 S.	 Kontext-sensitive	 Berechtigungen	 für	 Cloud-Plattformen	 zur	 Erhöhung	 der	
Datensicherheit.	Masterthesis	an	der	Fakultät	IWI	der	Hochschule	Karlsruhe,	2016	

SeaClouds	(n.d).	D4.4	Dynamic	QoS	verification	and	SLA	management	approach.	Retrieved	from:	
http://www.seaclouds-project.eu/sites/default/files/seaclouds/public/content-
files/deliverables/SEACLOUDS-D4.4-
Dynamic_QoS_verification_and_SLA_management_approach.pdf	

Shiraz,	 M.,	 Gani,	 A.,	 Khokhar,	 R.	 H.,	 &	 Buyya,	 R.	 (2013).	 A	 review	 on	 distributed	 application	
processing	frameworks	in	smart	mobile	devices	for	mobile	cloud	computing.	Communications	
Surveys	&	Tutorials,	IEEE,	15(3),	1294-1313.	

Shiraz,	M.,	 Sookhak,	M.,	 Gani,	 A.,	 &	 Shah,	 S.	 A.	 A.	 (2015).	 A	 Study	 on	 the	 Critical	 Analysis	 of	
Computational	Offloading	Frameworks	for	Mobile	Cloud	Computing.	Journal	of	Network	and	
Computer	Applications,	47,	47-60.	

Shvachko,	 K.,	 Kuang,	 H.,	 Radia,	 S.,	 &	 Chansler,	 R.	 (2010,	 May).	 The	 hadoop	 distributed	 file	
system.	In	2010	IEEE	26th	symposium	on	mass	storage	systems	and	technologies	(MSST)	(pp.	
1-10).	IEEE.	

Shye,	A.,	Scholbrock,	B.,	&	Memik,	G.	(2009).	Into	the	wild:	studying	real	user	activity	patterns	to	
guide	power	optimizations	 for	mobile	 architectures.	 Paper	 presented	 at	 the	Proceedings	 of	
the	42nd	Annual	IEEE/ACM	International	Symposium	on	Microarchitecture.	

Silva,	G.	C.,	Rose,	L.	M.,	&	Calinescu,	R.	(2013,	December).	Towards	a	model-driven	solution	to	
the	vendor	lock-in	problem	in	cloud	computing.	In	Cloud	Computing	Technology	and	Science	
(CloudCom),	2013	IEEE	5th	International	Conference	on	(Vol.	1,	pp.	711-716).	IEEE.	

Simmons,	 R.,	 Browning,	 B.,	 Zhang,	 Y.,	 &	 Sadekar,	 V.	 (2006,	 September).	 Learning	 to	 predict	
driver	 route	 and	 destination	 intent.	 In	 2006	 IEEE	 Intelligent	 Transportation	 Systems	
Conference	(pp.	127-132).	IEEE.	

SLA@SOI	(n.d)	SLA@SOI.	Retrieved	from:	http://sla-at-soi.eu/		
Smith,	 Math	 (2013)	 Hybrid	 Cloud	 vs	 Federated	 Cloud.	 Retrieved	 from:	
http://stackoverflow.com/questions/12988988/hybrid-cloud-vs-federated-
cloud/14568002#14568002			

Song,	C.,	Koren,	T.,	Wang,	P.,	&	Barabási,	A.	L.	(2010).	Modelling	the	scaling	properties	of	human	
mobility.	Nature	Physics,	6(10),	818-823.	

Statista	(2015).	Number	of	apps	available	in	leading	app	stores	as	of	July	2015.	Retrieved	from:	
from	 http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-
stores/	

SUNFISH	Project	(2017).	Retrieved	from:	http://www.sunfishproject.eu/	
Taleb,	T.,	&	Ksentini,	A.	(2013).	Follow	me	cloud:	interworking	federated	clouds	and	distributed	
mobile	networks.	IEEE	Network,	27(5),	12-19.	

Taravat,	A.,	Del	Frate,	F.,	Cornaro,	C.,	&	Vergari,	S.	(2015).	Neural	networks	and	support	vector	
machine	algorithms	for	automatic	cloud	classification	of	whole-sky	ground-based	images.	IEEE	
Geoscience	and	remote	sensing	letters,	12(3),	666-670.	

Tarkoma,	S.,	Siekkinen,	M.,	Lagerspetz,	E.,	&	Xiao,	Y.	 (2014).	Smartphone	energy	consumption:	
modeling	and	optimization:	Cambridge	University	Press.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	113	of	115	
	

TechTarget	 (2011)	 Federated	 Cloud	 (Cloud	 Federation).	 Retrieved	 from:	
http://whatis.techtarget.com/definition/federated-cloud-cloud-federation	

Toosi,	A.	N.,	Calheiros,	R.	N.,	&	Buyya,	R.	(2014).	Interconnected	cloud	computing	environments:	
Challenges,	taxonomy,	and	survey.	ACM	Computing	Surveys	(CSUR),	47(1),	7.	

Universität	 Berkeley	 (2006)	 CTK	 -	 Context	 Toolkit.	 Retrieved	 from:	
http://www.cs.cmu.edu/~anind/context.html#sampleapplication.	

Unuvar,	 M.,	 Tosi,	 S.,	 Doganata,	 Y.	 N.,	 Steinder,	 M.	 G.,	 &	 Tantawi,	 A.	 N.	 (2015).	 Selecting	
Optimum	Cloud	Availability	Zones	by	Learning	User	Satisfaction	Levels.	 IEEE	Transactions	on	
Services	Computing,	8(2),	199-211.	

Vallerio,	K.	S.,	Zhong,	L.,	&	Jha,	N.	K.	(2006).	Energy-efficient	graphical	user	interface	design.	IEEE	
Transactions	on	Mobile	Computing,	5(7),	846-859.	

Vallina-Rodriguez,	 N.,	 Hui,	 P.,	 Crowcroft,	 J.,	 &	 Rice,	 A.	 (2010).	 Exhausting	 battery	 statistics:	
understanding	the	energy	demands	on	mobile	handsets.	Paper	presented	at	the	Proceedings	
of	the	second	ACM	SIGCOMM	workshop	on	Networking,	systems,	and	applications	on	mobile	
handhelds.	

Vardhan,	V.,	 Yuan,	W.,	Harris,	 A.	 F.,	 Adve,	 S.	 V.,	 Kravets,	 R.,	Nahrstedt,	 K.	&	 Jones,	D.	 (2009).	
GRACE-2:	 integrating	 fine-grained	 application	 adaptation	 with	 global	 adaptation	 for	 saving	
energy.	international	Journal	of	embedded	Systems,	4(2),	152-169.	

Veloudis,	 S.,	 Friesen,	 A.,	 Paraskakis,	 I.,	 Verginadis,	 Y.,	 &	 Patiniotakis,	 I.	 (2014,	 December).	
Underpinning	a	cloud	brokerage	service	framework	for	quality	assurance	and	optimization.	In	
Cloud	 Computing	 Technology	 and	 Science	 (CloudCom),	 2014	 IEEE	 6th	 International	
Conference	on	(pp.	660-663).	IEEE.	

Verginadis,	Y.,	Patiniotakis,	I.,	Mentzas,	G.	(2013).	D20.1	-	State	of	the	art	and	Research	Baseline,	
Deliverable	of	the	EU	FP7	project	Broker@Cloud.	

Wang,	H.,	Tianfield,	H.,	&	Mair,	Q.	(2014).	Auction	based	resource	allocation	in	cloud	computing.	
Multiagent	and	Grid	Systems,	10(1),	51-66.	

Wang,	S.,	Wang,	Z.,	Li,	C.,	Zhao,	K.,	&	Chen,	H.	 (2016,	September).	Learn	to	Recommend	Local	
Event	Using	Heterogeneous	 Social	Networks.	 In	Asia-Pacific	Web	Conference	 (pp.	 169-182).	
Springer	International	Publishing.	

Wang,	W.,	Niu,	D.,	Li,	B.,	&	Liang,	B.	(2013,	July).	Dynamic	cloud	resource	reservation	via	cloud	
brokerage.	 In	 Distributed	 Computing	 Systems	 (ICDCS),	 2013	 IEEE	 33rd	 International	
Conference	on	(pp.	400-409).	IEEE.	

Weinhardt,	C.,	Anandasivam,	D.	I.	W.	A.,	Blau,	B.,	Borissov,	D.	I.	N.,	Meinl,	D.	M.	T.,	Michalk,	D.	I.	
W.	W.,	&	Stößer,	 J.	 (2009).	Cloud	computing–a	classification,	business	models,	and	research	
directions.	Business	&	Information	Systems	Engineering,	1(5),	391-399.	

Weiss,	A.	(2007).	Computing	in	the	clouds.	Computing,	16.	
Wen,	 Y.,	 Zhang,	 W.,	 &	 Luo,	 H.	 (2012).	 Energy-optimal	 mobile	 application	 execution:	 Taming	
resource-poor	 mobile	 devices	 with	 cloud	 clones.	 Paper	 presented	 at	 the	 INFOCOM,	 2012	
Proceedings	IEEE.	

Windows	Azure	(2017)	Microsoft.	Retrieved	from:	https://azure.microsoft.com	
Wolski,	R.,	Gurun,	S.,	Krintz,	C.,	&	Nurmi,	D.	(2008).	Using	bandwidth	data	to	make	computation	
offloading	decisions.	Paper	presented	at	the	Parallel	and	Distributed	Processing,	2008.	IPDPS	
2008.	IEEE	International	Symposium	on.	

Wu,	H.,	Huang,	D.,	&	Bouzefrane,	 S.	 (2013,	October).	Making	offloading	decisions	 resistant	 to	
network	 unavailability	 for	 mobile	 cloud	 collaboration.	 In	 Collaborative	 Computing:	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	114	of	115	
	

Networking,	 Applications	 and	 Worksharing	 (Collaboratecom),	 2013	 9th	 International	
Conference	Conference	on	(pp.	168-177).	IEEE.	

Xiao,	 Y.,	 Kalyanaraman,	 R.	 S.,	&	 Yla-Jaaski,	 A.	 (2008).	 Energy	 consumption	of	mobile	 youtube:	
Quantitative	 measurement	 and	 analysis.	 Paper	 presented	 at	 the	 Second	 International	
Conference	on	Next	Generation	Mobile	Applications,	Services,	and	Technologies.	

Xing,	T.,	Huang,	D.,	Ata,	S.,	&	Medhi,	D.	 (2012,	October).	MobiCloud:	a	geo-distributed	mobile	
cloud	 computing	 platform.	 In	 Proceedings	 of	 the	 8th	 International	 Conference	 on	 Network	
and	Service	Management	(pp.	164-168).	International	Federation	for	Information	Processing.	

Xu,	 D.,	 Song,	 G.,	 Gao,	 P.,	 Cao,	 R.,	 Nie,	 X.,	 &	 Xie,	 K.	 (2011,	 December).	 Transportation	modes	
identification	from	mobile	phone	data	using	probabilistic	models.	In	International	Conference	
on	Advanced	Data	Mining	and	Applications	(pp.	359-371).	Springer	Berlin	Heidelberg.	

Ye,	H.,	&	Sugihara,	G.	 (2016).	 Information	 leverage	 in	 interconnected	ecosystems:	Overcoming	
the	curse	of	dimensionality.	Science,	353(6302),	922-925.	

Ye,	Y.,	Xiao,	L.,	Yen,	I.	L.,	&	Bastani,	F.	(2011,	July).	Leveraging	service	clouds	for	power	and	qos	
management	 for	 mobile	 devices.	 In	 Cloud	 Computing	 (CLOUD),	 2011	 IEEE	 International	
Conference	on	(pp.	235-242).	IEEE.	

Yin,	B.,	Shen,	W.,	Cai,	L.	X.,	&	Cheng,	Y.	(2015,	June).	A	Mobile	Cloud	Computing	Middleware	for	
Low	Latency	Offloading	of	Big	Data.	In	Proceedings	of	the	2015	Workshop	on	Mobile	Big	Data	
(pp.	31-35).	ACM.	

Yoshimura,	Y.,	Sobolevsky,	S.,	Ratti,	C.,	Girardin,	F.,	Carrascal,	J.	P.,	Blat,	J.,	&	Sinatra,	R.	(2014).	
An	 analysis	 of	 visitors'	 behavior	 in	 the	 Louvre	 Museum:	 A	 study	 using	 Bluetooth	 data.	
Environment	and	Planning	B:	Planning	and	Design,	41(6),	1113-1131.	

ZABBIX	 (2001).	 Zabbix	 -	 enterprise-class	 open	 source	 monitoring	 solution.	 Retrieved	 from:	
www.zabbix.com		

Zare	 Mehrjerdi,	 Y.,	 &	 Nadizadeh,	 A.	 (2016).	 Using	 Greedy	 Clustering	 Method	 to	 Solve	
Capacitated	Location-Routing	Problem	with	Fuzzy	Demands.	International	Journal	of	Industrial	
Engineering	&	Production	Research,	27(1),	1-19.	

Zenoss	(n.d).	Retrieved	from:	http://www.zenoss.org		
Zhang,	G.	P.	 (2003).	 Time	 series	 forecasting	using	a	hybrid	ARIMA	and	neural	network	model.	
Neurocomputing,	50,	159-175.	

Zhang,	 L.,	 Tiwana,	 B.,	 Qian,	 Z.,	Wang,	 Z.,	 Dick,	 R.	 P.,	Mao,	 Z.	M.,	 &	 Yang,	 L.	 (2010).	 Accurate	
online	power	estimation	and	automatic	battery	behavior	based	power	model	generation	for	
smartphones.	Paper	presented	at	the	Proceedings	of	the	eighth	IEEE/ACM/IFIP	 international	
conference	on	Hardware/software	codesign	and	system	synthesis.	

Zhang,	 P.,	 &	 Yan,	 Z.	 (2011,	 September).	 A	 QoS-aware	 system	 for	mobile	 cloud	 computing.	 In	
2011	 IEEE	 International	Conference	on	Cloud	Computing	and	 Intelligence	Systems	 (pp.	518-
522).	IEEE.	

Zhang,	 X.,	 Kunjithapatham,	 A.,	 Jeong,	 S.,	 &	 Gibbs,	 S.	 (2011).	 Towards	 an	 elastic	 application	
model	 for	 augmenting	 the	 computing	 capabilities	 of	mobile	 devices	with	 cloud	 computing.	
Mobile	Networks	and	Applications,	16(3),	270-284.	

Zhou,	B.,	Dastjerdi,	A.	V.,	Calheiros,	R.	N.,	Srirama,	S.	N.,	&	Buyya,	R.	(2015a).	A	context	sensitive	
offloading	 scheme	 for	 mobile	 cloud	 computing	 service.	 Paper	 presented	 at	 the	 Cloud	
Computing	(CLOUD),	2015	IEEE	8th	International	Conference	on.	

Zhou,	 B.,	 Dastjerdi,	 A.V.,	 Calheiros,	 R.,	 Srirama,	 S.,	 &	 Buyya,	 R.	 (2015b).	 mCloud:	 A	 Context-
aware	Offloading	Framework	for	Heterogeneous	Mobile	Cloud.	IEEE.	

Public
© All Rights Reserved

BASMATI	Deliverable	D2.1	 Page	115	of	115	
	

Ziebart,	B.	D.,	Maas,	A.	L.,	Dey,	A.	K.,	&	Bagnell,	J.	A.	(2008,	September).	Navigate	like	a	cabbie:	
Probabilistic	 reasoning	 from	 observed	 context-aware	 behavior.	 In	 Proceedings	 of	 the	 10th	
international	conference	on	Ubiquitous	computing	(pp.	322-331).	ACM.	

Ziegler,	W.,	 Jiang,	M.,	&	Konstanteli,	K.	 (2011).	Optimis	 sla	 framework	and	 term	 languages	 for	
slas	in	cloud	environment.	OPTIMIS	Project	Deliverable	D,	2.	

	

