H
i
{
i
|
{
q

=
" A

L ARer1Y

The Draft Formal Definition of Ada ®

The Extent of the Trial Dynamic Semantics Definition

DATE . Pisa, 29 Jonuary , 1985
AUTHOR : Clsus Benaix Mielsen, 000
Alessanaro Fantechi, L.E.L - CNR

Franco Mazzants, CRA/
Jan Storbank Pegersen, POC

REPORT No :
 WORKPACKAGE : £(7rial Definition)

DISTRIBUTION : /inlernal Use Oniy

This wark s partially funded by the Commission o the Furapesn Communities unaer e
Multi-Annual Pragramme in the field of Dats-Processing, praj. No. 762 “The Dréfi
Formal Definition of ANSI/MIL-STD 18154 Ads”.

® rdaisa registered trademark of the U.S. Government, Ada Joint Program Office

1

Dyn Sem Ext

TABLE OF CONTENTS

Page

1 THE EXTENT OF THE ADA DYNAMIC SEMANTICS
IN THE Ada FD PROJECT ..ottt 2
2 THE TRIAL DEFINITION DYNAMIC SEMANTICS SUBSET 5
3 CONCLUSION - oo e e 6
4 REFERENCES - et et 6

2

Dyn Sem Ext

! THE EXTENT OF THE ADA DYNAMIC SEMANTICS IN THE Ada FD PROJECT

in the Formal Definition of the Ada language, we are interested in giving the semantics of a
syntactic object which is built followingan Ada grammar (i.e. it is syntactically correct) which
does not contain any error that an implementation conforming to the standard is required to
detect (i.e. it is legal); we will call this syntactic object an Ada user-program.

However, this statement requires some clarification because the definitions of legality and
executability of & program may in general be implementation dependent concepts; in particuler,
we have found two large classes of restrictions to be imposed on Ada user-programs in order to
ensure their legality and executability in every implementation:

a) Restrictions on legality imposed by implementation dependent parts 'of the predefined
environment.

The first class of restrictions is related to the following dependences of the legality on the
particular predefined environment of the implementation:

1) When a program makes use of some additional (implementation defined) numeric types
defined within the package STANDARD:

Es. -~ the definition of the type SHORT_INTEGER
X: SHORT_INTEGER := 27283; -~ isneither provided by the user, nor part
-- of the "standard" part of the package
-~ STANDARD

in this case the legality of a program depends on the structure of the package STANDARD.
2) When a program makes use of the internal structure of the type ADDRESS defined

within the predefined package SYSTEM:

A: constant ADDRESS := (12333,33473) -- it might be a pair (segment, offset)

In this case the legality of a prograr depends on the structure of the package SYSTEM.

3

Dyn Sem Ext

3) When a program makes use of the types defined in the package LOW_LEVEL_IO :

Dev : LOW_LEVEL_10.DEVICE := 37; -- some deyice information
Inf :LOW_LEVEL_iO.DATA = (561,934894); -~ some data kind

LOW_LEVEL_10.SEND_CONTROL (Dev,Inf); -~ some interaction with the device

In this case the legality of a program depends on the structure of the package
LOW_LEVEL_IO. |

4) When a program makes use of the types defined in-the package MACHINE_CODE:

procedure SE;r_MASK is
use MACHINE__CODE;
begin
SI_FORMAT'(CODE => SSM, B => BaseReg, D => Display);

-~ the type SI_FORMAT is defined in the MACHINE_CODE package
end;

In this case the legality of a program depends on the structure of the package MACHINE
CODE.

5) When a program makes use of some implementation defined attribute (1o be specified in
the appendix “F" of the manual): .

M: MASK;
BaseReg : INTEGER := M'BASE_REG;
Display : INTEGER := M'DISP;

In this case the legality of a program depends on the existence of implementation defined
attributes.

b) Semantic restrictions imposed by an implementation.

The second class is related with the semantic restrictions (on the implementation of some
features) that an implementation is allowed to impose. ‘
This occurs in three cases:

5

Dun Sem Ext

2 THE TRIAL DEFINITION DYNAMIC SEMANTICS SUBSET

Prior to carrying out the Trial Definition, a subset of the Ada language to be formally described

had to be identified. The purpose of the subset is to enable the Trial Definition to demonstrate the

feasibility of the models and techniques to be employed in the full formal definition.

The choice of Ada constructs has been made with the above purpose of the subset in mind; this in

particular meansv that: ' |

- the resulting language is not intended as a "programming language”, i.e. a language intended
for programming.

- the constructs included must be suitable to serve as a basis for an assessment of the model
and technigues used. |

The dynamic semantics éubset is described in the report "Dynamic Semantics Example Ada
Subset” [Christensen et al. 85].

The primary general principle behind the choice of the subset language is that it should contain
all difficult - and/or interesting Ada concepts. Hence, a major part of the simplifications
introduced involve the removal of simple aspects related to constructs which are otherwise
considered important. Moreover, simple aspects are removed if they would require a lot of
tedious work, while simple aspects that are simple to model are often included - also to give to

the subset a minimal flavour of a programming language.

Summarizing, the main features of the subset, divided by manual chapters, are the following:

- predefined integer tupes, subtypes, one-dimensional array types, record tupes with (one)
discriminant and variant part, access types are included;

- very limited sets of operators and attributes are included;

- all statements (except cese and code statements) are included, with some limitation on if and
loop statements;

- both procedures and functions are included, but only in and inout parameters and positional
parameter association are permitted;

- packages are included, with private types;

- all of tasking is included, except that task objects are not allowed as subcompongnts, there
are no entry families and no when conditions; ’

- subunits are not included;

- all of exceptions is included:

- the only form of generic units are generic packages with priva’;e type parameters;

- restricted representation clauses and representation attributes, a simplified package

6
Dun Sem Ext
SYSTEM and unchecked programming are included;

- asimplified package DIRECT__IO is included;
- asimplified package STANDARD is included.

3 CONCLUSION

“In the end, the dynamic semantics Trial Definition formally defines the language which is the
| intersection of what is defined by the two largely independent sections above: the general aspects
of modeling Ada dynamic semantics and the selected subset.

Moreover’, the fact that certain Ada constructs are absent in the subset has introduced two (later

discovered) inconsistencies in the subset itself: ‘

- - since enumeration types are not in the subset, the type BOOLEAN, defined in the package
STANDARD as an enumeration type, causes some problems. The solution adopted in the Trial
Definition involves not having the Ada type BOOLEAN, but using the booleans of the
metalanguage whenever boolean values are needed.

© - the lack of enumeration types also implies that the type STRING cannot be defined as an

array of characters. However, STRINGs are still needed to express the NAME and FORM

parameters for input-output. In [Christensen et al. 85] an attempt to solve this problem

was proposed, but a more straightforward approach has been chosen for the Trial Definition:
to define STRING as a subtype of INTEGER.

4 REREFERNCES

[Christensen et al. 85] P. Christensen, J.Storbank Pedersen, A.Fantechi, AGiovini, G.Reggio,
F.Mazzanti, "Dynamic Semantics Example Ada Subset”, Deliverable 6B of The Draft Formal
Definition of ANSI/MIL-STD 18154 Ada, 6 Aug 1985.

