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Abstract. After a brief review of the thermodynamics of isoiropic elastic materials, this paper presents a constitutive
equation for no-tension materials in the presence of thermal expansion that accounts for the temperature-dependence
of their material's constants. Specifically, under the hypothesis of infinitesimal strains, an explicit expression is
given for free energy from which the internal energy, entropy and stress are obtained. Then, the basic equations of
the thermo-mechanical equilibrium of a no-tension solid are presented, and we observe thar, under the further
hypothesis of an infinitesimal strain rate, thermo-mechanical uncoupling occurs. Finally, a study is performed of a
circular ring made of a no-tension material subjected to a plane stress under the action of both two uniform radial
pressures exerted on the inner and outer boundary and a temperature distribution varying linearly with the radius: all
material constants are assumed temperature-independent, except for Young's modulus, which depends linearfy on
the temperature. The stress field, displacement field, fractures, free energy and entropy are explicitly calculated and
compared with these same quantities for a circular ring made of a linear elastic material.

L INTRODUCTION

With the aim of modelling the behaviour of masonry structures, the constitutive equation of
materials not withstanding tension has been studied by many authors under isothermal conditions
(Del Piero, 1989, Panzeca er al., 1988). The infinitesimal strain is assumed to be the sum of a
positive semi-definite inelastic part and an elastic part on which the stress, negative semi-
definite, depends linearly. Moreover, the stress and the inelastic strain, which can be interpreted
as fracture strain, are orthogonal. Thus, one obtains a non-linear hyperelastic material, called
masonry-like or no-tension material.

The existence and the uniqueness of the solution to this equation have been proven and the
solution itself calculated explicitly in the isotropic case. More recently, suitable numerical
techniques have been studied which allow application of the constitutive equation to solution of
the equilibrium problem of masonry solids through the finite element method (Lucchesi et al. ,
1994, 1995, 1996a). These techniques have yielded sound results mainly in the study of arches
and vaults.

However, there are many engineering problems in which the presence of thermal dilatation
must be accounted for; consider for example the influence of thermal variations on stress fields
in masonry bridges (Guidi, 1906), or the thermo-mechanical behaviour of the refractory
materials used in the iron and steel industry (Kienow er al., 1966), and finally, geological
problems connected with the presence of volcanic calderas such as that of Pozzuoli (Como ez al.,
1989). In many such cases the thermal variation during the thermo-mechanical process under
examination is so high that the dependence of the material constants on temperature cannot be
ignored.

In what follows we set forth a constitutive equation for isotropic no-tension materials under
non-isothermal conditions. The theory presented here has allowed study of numerical techniques
for solution to the equilibrium problem of masonry-like solids in the presence of thermal loads
via the finite element method (Lucchesi ez al., 1996b),



Section 2 is dedicated to a brief review of the thermodynamic theory of isotropic elastic
materials (Truesdell et al., 1965, Carlson, 1972). In Section 3 we present the assumptions
underlying the procedure, i.e., that the thermal expansion is a spherical tensor of type B(8)I,
where 3(0) is a material function of the temperature 6 and I the identity tensor, and then
explicitly define the free energy as a function of both 8 and the measure of strain A = V - I, with
V the left stretch tensor. In view of the target applications, we assume that the displacement
gradient H is small. Moreover, although no limitations are placed on the range of temperature
variation, we do assume that B(8), B'(6) and p"(8) are also small. These hypotheses allow us to
express free energy as function of the infinitesimal strain E = 2 (H + HT). Once the free energy
has been thus approximated, we can then deduce the internal energy, entropy and stress. We
thereby obtain a non-linear elastic material that in the absence of thermal variation, conforms to
the definition of masonry-like materials presented in Del Piero (1989) and Panzeca ez al. (1988).
We then define the specific heat at constant strain and prove that (by virtue of our assumtions
regarding E, function [ and its first and second derivatives) its value coincides with the specific
heat at constant stress, within a second-order error with respect to {IHIl. By assuming the classical
Fourier hypothesis for heat flux, the material presented in this paper is completely characterized
by five functions of the temperature: Young's modulus, the Poisson ratio, coefficient of thermal
expansion B(8), conductivity and specific heat. In fact, when these material functions are known,
the thermodynamic potentials (and consequently the thermo-mechanical behaviour) of the
material is determined. At this point, once the energy equation has been obtained, we are in a
position to write the basic equations of the thermoelastic theory for no-tension materials. Just as
in the linear elastic case, these equations are: the strain-displacement relation, the equation of
equilibrium, the constitutive equations for the stress and the heat flux and the equilibrium energy
equation. The system we obtain is coupled because the coefficient of the temperature in the
energy equation depends on strain and strain rate. In particular, if we assume that the strain rate
is small, then the thermoelastic equilibrium equations are uncoupled and can be integrated
separately.

Treatment of the theory is fully three-dimensional; as the example presented in Section 3
deals with plane stress, the Appendix provides relative expressions of the free energy, entropy
and stress.

In Section 4, by limiting ourselves to the case of thermo-mechanical uncoupling, we consider
the equilibrium problem of no-tension solids in the presence of thermal variations and under
suitable hypotheses of regularity, we prove that the solution to the boundary-value problem is
unique in terms of stress, a well-established result for no-tension materials under isothermal
conditions (Lucchesi et al., 1996a).

Finally, in Section 5, still under the hypothesis of thermo-mechanical uncoupling, we
consider a circular ring made of a no-tension material subjected to a plane stress consequent to
the action of both two uniform radial pressures acting on the inner and outer boundary and a
temperature distribution varying linearly with the radius. We assume that the coefficient of



thermal expansion B(8) and Young's modulus are linear functions of the temperature and the
Poisson ratio is constant. Once the stress field and corresponding fractures in the circular ring
have been explicitly- determined, free energy and entropy are calculated as functions of the
radius. The quantities obtained are compared with those relative to a circular ring made of a
linear elastic material.

2. BACKGROUND THERMODYNAMICS

This section outlines some concepts of thermodynamics and thermoelasticity (Truesdell er
al., 1965, Carlson, 1972) necessary for treatment of the theory developed in the next section.
Let V7 be a three-dimension linear space and Lin be the space of second order tensors,

equipped with the inner product A-B = tr (ATB), A, BeLin, with AT the transpose of A. Let us
indicate as Sym, Sym* and Sym- the subsets of Lin constituted by symmetric, symmetric positive

semi-definite and symmetric negative semi-definite tensors, respectively.
Let (3¢ be the reference configuration of a body and 33, the configuration at time t, during a

motion. Furthermore, let T be the Cauchy stress tensor and b the body force. We assume that the
kinetic energy is nil and then the following balance laws,

f TndA+[ bdv=0, [ (x-0) xTndA +j (x-0) xbdV =0 2.1)
o © off ®

hold for every time t and every part ® of (3,, with o a point of the Euclidean space and n the unit
outward normal to the boundary 9@ of ®. Under suitable hypotheses on b and T, from relations
(2.1) we deduce '

divT+b=0, T=TT, (2.2)

where div T is the divergence of T. Now let
w(P) = ] (Tn)-vdA + J bvdV (2.3)
@ e

be the power of external loads acting on (°, where v is the velocity. Since we have supposed that
the kinetic energy is nil, from the theorem of power expended we obtain



w(@)=f T-D 4V , (2.9)
e

with D the symmetric part of the velocity gradient and T-D the stress power.
The first law of thermodynamics postulates the existence of a real function €, defined on (3,
called internal energy per unit mass, such that for each part ® of (3, we have

E%f edm=w(@)-f q-ndA +[ sdm, (2.5)
P P e

where q is the heat flux vector per unit surface area, s the heat supply per unit mass, ] edm the
P

internal energy of & and - [
d

Let p be the density in the current configuration, from (2.5), in view of the divergence

qndA +] sdm the hear flux into .
P P

theorem we deduce

jépdV=w(@)-[diquV +[ spdV, (2.6)
® ® P

to which corresponds the local form of the first law of thermodynamics
ep=TD-divg+ps. 2.7

The second law of thermodynamics postulates the existence of a real function 7, defined on
(3, called the entropy per unit mass, such that for each part ® of (3, we have

di[ndmz-[ LT +[ S dm, (28)

e w O 0

where 8 € [8,, 02}, with 8 > 0, is the absolute temperature, f N dm is the entropy of # and
‘ ®

[ N A +j 3. dm is the entropic flux of .
w» © e 0



For g = grad® the spatial gradient of temperature, in view of (2.7), from (2.8), by applying
the localization theorem we obtain

pn82l qg+pe-TD. (2.9)
8
By introducing the free energy per unit mass ¥ =¢ -1 0, from (2.9) we deduce the
dissipation inequality
py+pn6-TD+L qgs<o. (2.10)
3]
An elastic material is defined by constitutive equations providing functions y, T, 1 and q
whenever the deformation gradient F € Lin*, temperature 8 and the temperature gradient g are

known. A well-known consequence (Truesdell er al., 1965) of the second law of
thermodynamics is that v, T and 1 do not depend on g. Thus, for elastic materials, the following

constitutive relations hold:
v =y(F,6),
T ="T(F, 0),
2.1
n=nF,9,

q=q(F,0,g).

Moreover, from the second law it is possible to deduce the relations (Truesdell ez al., 1963)

ppWF-T-D=0, (2.12)
n=-3V, (2.13)
qg<0. (2.14)

From (2.12) we obtain
T=p@rWFT=pF@ry)T. (2.15)

Moreover, in view of (2.12), from (2.7) we arrive at the energy equation



pNe =-divg+sp. (2.16)
In view of (2.11), the internal energy € has constitutive equation

g(F, ) = y(F, 6) + 9 (F, 0). (2.17)
The specific heat at constant strain per unit mass is defined by the relation

Ck(F, 8) = 3 &(F, 6) (2.18)
and therefore, by accounting for (2.17) and (2.13), we have

Ce(F, 8) = 0 9o (F, 6) . (2.19)

If the elastic material is isotropic, then in place of (2.11); we can write
¥ =y(B,6), (2.20)

where B = FFT is the left Cauchy-Green tensor, and y depends on principal invariants of B. Now
we whish to prove that

T="T(B,0)= 2pogy@®,0)B. (2.21)
To this end, we observe that for H e.Lin, we have

(3 W(F, 6))H = 35y, 8)-(3r (FFT)[H]) = 9pw(B, 0)(FHT + HFT) =

w(3pW(B, 8) HFT + dgy(B, 0) FHT) = tr(FT opy(B, 6) H + dpy(B, §) FHT) =

(3sv(B, O)T F + 35y(B, 6) F)-H,
and then deduce

(3 V(F, 6)) = (3py(B, )T + 9gy(B, 0)) F =2 3py(B, O) F , (2.22)
where the last step is justified by the fact that BB{EI(B, ) is symmetric, as the derivatives of the

principal invariants of B are symmetric and commute. The desired result follows from (2.15);.
ForA =V - I, with V = (B) the left stretch tensor, from (2.21), using the equality dAW(A,



0)-H =2 dgw(B, 6)(I + A)-H, for cach H € Lin, we get
T =T(A, 6) = paay(A, 0) A +A). (2.23)

From the preceding relations it is easy to arrive at

N(A, 8) =- dg W(A, 6), (2.24)
e(A, 9) = (A, 0) + B N(A, 6), (2.25)
Ce(A.8) =0 dg (A, 8). (2.26)

3. ELASTIC MATERIALS THAT DO NOT WITHSTAND TENSION

The aim of this section is to formulate a thermoelastic constitutive theory of isotropic no-
tension materials. We assume that the thermal expansion is the spherical tensor $(8)I, where B(6)
is a material function of the temperature 8 called coefficient of thermal expansion. Firstly, we set
forth the explicit expression of the free energy as a function of A € Sym and temperature 8 €
[01, 63]. Subsequently, under the hypothesis of infinitesimal strain, we deduce approximate
expressions for the thermodynamic potentials and stress as functions of the symmetric part of the
displacement gradient E and 6.

Let E(8), v(B) and B(8) be temperature-dependent material functions, such that

E@®) >0, 0<v@®<'2, foreachfOe [61,02], P®Gp)=0, 3.1
with 8g € [6;, 62] as the reference temperature, and let us set

2 v(8)

. (3.2)
1-2v(0)

¥0) =

For a;, a3, a3 with a; < ap < a3 the eigenvalues of A, let us consider the following subsets of
Sym x [81, 62]

Ry = {(A, 8)12(a; - B(8)) +¥(6) (A -3 B(8)) <0}, (3.3)

Ra = {(A,9) 1 a; - B(6) >0}, (3.4)



R3={(A,8)1a;-B@) <0, ¥0) (a1 - B(®) +2(1+%8)) (ar- B(®) 20}, (3.5
Ra={(A,8)1v8) (a1 - B(®) +2(1+v(8)) (a2- P(®) <0,

2(a3 - B(®)) +v(8) (wrA - 3 B(8)) 20} . (3.6)

Now we are in a position to define the free energy function y{A, 6) that in the four regions
R, has the following expressions

E(6) { v(0)

(trA -3 B(8))%+
201 +v(®)p 1-2v(0)

W(A, 0)=50) +

(ay - B(O))2 + (a2 - BB 2+ (a3- B(8) 2}, for (A, 0) e Ry, (3.7

W(A, 8) =&(0), for (A,0) e R,, (3.8)
_ E(8) 2
(A, 8) = &(6) +—25— (a1 - P(6))%, for (A, 0) e R3, (3.9)
E(8)

WA, 8)=£(0)+ ((a1-B(®) 2+ (a2-B(®) 2 +

2(1-vHO)p
2v (a; - B(®) (a2 - BN}, for (A, ) € Rq4, (3.10)

where £(0) is a material function which will be specified in the following.
Since we are interested in considering infinitesimal strain, we suppose that there exists § €
[0, 1) such that

HI<3, RO <3, IBOI<H, IP"(0)<d, foreachd e [0y, 07}, (3.11)

where H = F - I is the displacement gradient and 1l Il is the norm induced by the scalar product -
in Lin, IHIl = (H-H)V2, By designating

E="(H+HT) (3.12)
the infinitesimal strain, from the relation

(I+A)2=I+H+HT+HHT, (3.13)



from (3.11)y and (3.12), we immediately deduce that
E=01, A=0®), A-E=0(8). (3.14)

Thus, for ), €2, €3 the eigenvalues of E with e; < e, <€ e3, within an error of order 0(32)(2), we
have

E(6) { v(8)
200+v@®)p 1-2Vv(O)

WE, 8) = £(0) + («E -3B(6))2 +

(e1- BO))2 + (e2 - B(®)) 2+ (e3-B(B) 2}, for (E, 8) € Ry, (3.15)
w(E, 8) =&(6), for (E,) e Rz,  (3.16)
E(0)
W(E, 8) =§(9)+-2—B— (e1 - B(8))?, for (E,0) € R3, (3.17)
E(6)

W(E, 8) =50) + ((e1-B@) 2+ (e2-P(E) 2+

2(1-vX®)p
2v (e1 - B(®) (e2 - B(OY)} , for(E,0) e Ry, (3.18)

where, within an error of order O(82), regions R, R2, R3, R4 can be considered defined in terms

of the eigenvalues of E, instead of those of A.
From relation (3.4), within an error of order o(8), we can write

T=T(E, )= pdgy(E,0); (3.19)

then, in view of expressions (3.15) - (3.18), by indicating the normalized eigenvectors of E as q,
42, 43, accounting for the following relations

Dge1=qi1®4q;, Dger=q2®qz, Dpe3;=q3®q3, (3.20)
1 Given a mapping B from a neighborhood of 0 in R into a vector space with norm Il « il, we write B{(&) = O(8) if
there exist k > 0 and k' > 0 such that IB(@@)Il < k I8l whenever 18 < k'.
2 Given a mapping B from a neighborhood of 0 in R into a vector space with norm Ii - Il, we write B(8) = o(8) if for

each k > 0 there is k' > 0 such that IB(5)Il < k 18I whenever I8l < k',



{Lucchesi er al., 1996a) and ignoring terms of order o(3), we get

T(E, 8) =—2 _(E-3@0)1+—O  wE-pODI)}, for (E.0)e®, (321)
1+ v(6) 1-2v(8)
T(E. 8) =0, for (E,8)e Ry,  (322)
T(E, 8) = E(9) (e; - B(®)) q1 ®q; , for (E,8)e R3,  (3.23)
T(E, )=~ {[e, - B@)+v(®) (e2 - BO)]ar @ qy +
1 - v4(8)
[e2 - BO)+ v(O) (e1 - B(6))]4z2®qz } for (E,8)e Ry, (3.29)

where 0 is the null tensor.
It immediately follows from relations (3.21)-(3.24) that T and E are coaxial; moreover, from
the definition of regions ®; we deduce that T is negative semi-definite. For each 8 € [81, 6;], let

[D(B) be the definite positive fourth order tensor

1+v®) ;_vO) yor, (3.25)
E(®) E(8)

D®) =

where I is the fourth order identity tensor and I&1 is the fourth order tensor defined by I&1 [B}
=(tr B) I, B € Lin; let us now put

ES(E, 8) = D(©) [T(E, 0)], _ (3.26)

E¥E,0)=E-pB® I-E«E,6). (3.27)
We purpose to prove that E2(E, 9) is positive semi-definite and orthogonal to T(E, 6),

E«E, 08) € SymT™, E(E, 6)T(E,8)=0. (3.28)

To this end, we consider the four regions R; separately. If (E, 8) € R, we have D(0)[T] =E -
B(8) I, then

EXE, §) = 0 (3.29)

10



and it is trivial to verify (3.28). For (E, 8) € R, it holds that
E«E,0)=E -B(B6) I (3.30)
which is positive semi-definite by virtue of (3.4). If (E, 8) € R3, we have
E(E, 0) = [ez - B(0)+ v(8) (e1 - B(®))]a2®q2 +
[e3 - B(O)+v(®) (1 - B®))q3®qs3 (3.31)

which results positive semi-definite in view of (3.2) and (3.5). Also, by comparing (3.31) and
(3.23) we can state that T and E2 are orthogonal. Finally, if (E, 8) € R4 we have

EXE, ) =—L — [e3 - B(B)+ v(B) (e1 + €2 - &3 - BO)] a3 ®q3 (3.32)
1-v(8)

and from (3.2), (3.6) and (3.24), conditions (3.28) must follow.

It is easy to verify that in absence of temperature variations, the materials characterized by
the free energy given in (3,15)-(3.18) conforms to the isothermal no-tension material studied by
Del Piero (1989) and Panzeca er al. (1988).

Let

= vE -_E __E
* (1+v)(1-2v)’ W 2(1 +v) and 3% 1-2v '’ (3.33)

be the Lamé moduli and the coefficient of volumetric expansion of the material, respectively.
From (3.15)-(3.18), by taking into account of (3.7)-(3.10), we can deduce the expression of the
entropy M and the internal energy € within an error of order 0(32).

For(E,8) e Ry,

A(8)

S (WE-3B@) ¢

N(E, 8) =-&'(0) -

A (o1 @) 2+ (e2- B@) 2+ (e5-BO) ) +

11



M_ (trE -3 B(e)) ,

8 - 6A'(6
e(E, 8) = &) - BE6) + 5%—{)& (WE - 3B@)2 +

+ E@—-Sﬂﬂ {(e1-B©)2 + (e- BO) 2+ (e3- PO} +

36 xO) B®) (E - 38(8)) ,
Y

for (E,8)e R4,
n(E: e) =- é’(e) >
e(E,8)=§(B) -05'(9),

for (E,0) e R,

N(E, 8) =- £©) - =

33 (e1- B@)+

E@BO . . pay,
p _

8)-B6E (0
o(E, 0) = £(6) - 85'(9) + S0 (er - BO+

BEO PO (. ),

for(E,8) e Ry,

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

N(E, 8) =- 8) - EOLVO) + BOVEN®) (0 @) 2+ (e, - B6)?) +

2p (1-v(®))

2
. EOVOX1-vO)) r EOVOU+VE) (o, - 5gy) (e, - B(®)) +

p (1-v(8)")

12



E(8)B'(6)

——— (e1+e2-2[B(8)), (3.40)
p (1-v(8))

1 - 2 - :
(E(6) - GE'(0))(1 - v(8)") iE(G)V(G)V ©®  ((e,-pon2+
2p(1-v(8))

e(E, 8) = £(0) - BE'(0) +

BE(8)B'(6)
p (1-v(8))

(e2-p(8))2} + (e1 +e2-2P(8) +

) 2 A 2
(E(e>-eE(e))v<e>(1-:(e))—g;i(e)v(e)(lw(e)) (61~ BO) (e2- B8, (341)
p(1-v(B)

where ' denotes the derivative with respect to 6.

Since the example considered in Section 5 deals with the equilibrium problem of a circular
ring made of a no-tension material subjected to a plane stress, the corresponding expressions for
free energy, stress and entropy are reported in the Appendix.

From (3.21)-(3.24) and (3.34), (3.36), (3.38), (3.40) we obtain the Maxwell relation
dp T(E,0) =- pdg N, 0). (3.42)

Moreover, from (2.26), disregarding terms of order O(82), we get the specific heat Cg at constant

strain
Ci(E, 6) =6 dgn(E, 8)=-0£"(9) . (3.43)

Since the thermodynamic potentials are defined within an arbitrary constant, we assume that they
vanish for E = 0 and 8 = 8g; in other words, we suppose that the equalities

E(Bo) = §'(B0) =0 (3.44)
hold. From (3.43), in view of (3.44), we deduce the following relation
8

g
£(0) = [ Cg(0, 8') d6' -ef 1 cg0,0)46' (3.45)
8 8

13



which allows to determine the function £(8), once the specific heat is known.
Let

(T, 0) = e(E(T, 9), 8) - é T E(T, 6) (3.46)

be the enrhalpy per unit mass. We shall denote by
Cr(T, 8) = dg A(T, 8) (3.47)

the specific heat at constant stress per unit mass. We intend to verify that Cg and Cr coincide,
within an error of order O(&?). Setting

n(T, ) =n(E(T, 8),8) , (3.48)
by analogy to (2.26), let us start by supposing that

Cr(T, 8) =0 dg N(T, 6) (3.49)

holds true. In fact, in virtue of (2.13) and (3.19), we get
C(T, 8) = g e(E, 8) + g e(E, 0)-95 E(T, 0) - éT'ag E(T, 8) =
=g W(E, 8) +N(E, 8) + 8 g (E, 6) + (0 W(E, 6) + 8 g N(E, 6))d¢ E(T, 8) +

. é:r-ag E(T, 6) =

0 9 N\(E, 8) + 8 3 (E, 8)-09 E(T, 8) =0 I A(T, 9) . (3.50)

By using the preceding relation we shall prove that, for (E, 8) belonging to ®q and for T given in
(3.21) we have

C(T, 0) - C(E, 8) =——2 —— {2u(8) m'(6) + 4 u(8) m'(8) x'(6) wE +
2p W) x(8)

- 23 MO 2 (0)” + 3N(6)” + 4w (B) '(8)) +

14



u(8) 8 {3N®) + 41'®) )] (rE)? + 4 1(8) w(®)2 IEI2Y, (3.51)

where m(8) =- 3 x(6)B(0). To this end we observe that, in view of (3.50), (3.43) and (3.42) we
can write,

Cr(T, 6) - Ce(E, 8) = {0 (E(T, 8), 8) - dg N(E, 8)} =8 dg N(E, 8)-9p E(T, 6) =

-% 36 T(E, 8)-9g E(T, 0) . (3.52)

On the other hand, using the <chain rule and the relation
E=_L T. A(9)
2u(0) 6u(0)x(6)

(tr T) I + B(B) obtained from (3.21), we get

de E(T, 6) = - a7E(T, 8) [dg T(E, 0)] =

(1M e p,T(E, 0)] =
2u0) 6B x(O)
el 3 TE, 0) +—O (3, T(E, 0) 1. (3.53)
210 6 1L(8) x(8)
Since, in view of (3.21) we have
9 TE,0)=m®@I+20O)E+AO)rEI, (3.54)

from (3.52) and (3.53) we obtain (3.51).
From relations (3.52), (3.11) and the fact that m(8) = O(8) and m'(8) = O(3), we arrive at the
desired result

Cx(T, 9) = Cg(E, 0), | (3.55)

within an error of order O(82). It can be proved that equality (3.55) also holds for (E, ©)
belonging to the other regions R, R3 and R4.

In order to complete the system of constitutive equations, we assume the usual relation for
heat flux:

q=-x0g, (3.56)
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where x(0) 2 0 is the conductivity coefficient.

The material having constitutive relations (3.15)-(3.18), (3.34)-(3.41), (3.44), (3.21)-(3.24),
{3.43) and (3.56) is wholly characterized by five temperature-dependent functions E(8), v(6),
B(8), k(6) and Cg(8). Moreover, from relations (3.42), (3.43); and (3.19), we can deduce within
an error of order o(8) that

N(E, 8) = 3 N(E, 6)E + 3 n(E, )8 = -pl 3o T(E, 0)E + é Ce(E, )6 . (3.57)

By then accounting for (3.21)-(3.24), (3.43) and (2.16), we can write the energy equation in the
four regions R;:
for (E,8) e R,

_divg+0 [20@ EE+ A\ ®) rE k- 3By vk} +ps=-po £'(@) 8, (3.58)
for (E,8) e Ry,

~divg+ps=-poE0)8, (3.59)
for (E,8) e Rs,

-div q + 9 {E(8) (e1 - B(6)) q1®q; 'E - E(0)B'(0)q1®q; ‘E} +ps=-pBE(®) 6, (3.60)

for(E,B8)e Ry,

. 2 . _
aivq+o ( ZOU "’(?) Lt Tf;?"“”" ® (e +v®) e2- (1 +v(®) BO) ai®ay - +
1-v(0)

(2 +v(B) eq - (1 +v(8)) B(®)) ©x®qz E ] +

== —[(v(®) e2- B'(6) - V(®)B®) - v(OB'®) 01®q: E +
1-v(B)

(V(8) &1 - B'(8) - V(B)BE) - vOB'®) 420 E ]} +ps=-pBE'®) 6 . (3.61)

Thus, the basic equations of the thermoelastic theory are the strain-displacement relation
(3.12), the equation of equilibrium (2.2);, constitutive relations (3.21)-(3.24) and (3.56) for stress
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and heat flux, respectively, and finally, the equilibrium energy equation (3.58)-(3.61). The
system of equations obtained is coupled because the coefficient of temperature on the left-hand
side of the energy equation (3.58)-(3.61) depends on the strain and strain rate. In particular, if we
assume

E=0(5), (3.62)

the energy equation (3.58)-(3.61) can be simplified. In fact, disregarding terms of order O(82),
we obtain

~divq+ps=-pBE"(0)H (3.63)

for all regions and the thermoelastic equilibrium is therefore governed by the following
equations

E="(H+HD,

divT+b=0,
T = T(E, 9), (3.64)
q=-x® g,

~divq+ps=-poE(0)H,

and thermo-mechanical uncoupling occurs.
Finally, if for temperature we have

8 =08y + o), (3.65)
with B¢ as the reference temperature, it holds that

B(8) = B(Bo) + P'(Bo) (8 - Bo) + o(d) , (3.66)
and then accounting for (3.1), we have within an error of order o(8)

B(8) = B'(Bo) (8 - B0) (3.67)

in a neighbourhood of 8 = 8p. The quantity
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o = [3'(0g) (3.68)

is the linear coeﬁiciehr of thermal expansion. Moreover, in this case functions E(9), v(0), 3(8),
k(0) and Cg(®) can be supposed temperature-independent and coincident with their value at 8.

4. THE BOUNDARY-VALUE PROBLEM

The equilibrium problem for no-tension solids has been studied in recent years and the
existence of a solution has been proven solely for a rather restricted class of load conditions
(Anzellotti, 1985, Giaquinta et al. , 1985). However, the uniqueness of the solution is guaranteed
only in terms of stress, in the sense that different displacement and strain fields can correspond to
the same stress field. Similar considerations can be made for a no-tension material having the
constitutive equation T = T(E, 8) given in Section 3, which associaes the stress T to each (E, 6)
e Sym x [81, 6,], such that

T =D(8) - [E - B(6) [ - EXE, 0)], (4.1)

T e Sym-, (4.1)2
E2e Sym™, (4.1)3
T-E2=0, (4.1)4

where the fourth order tensor D(8) is given in (3.25).
In this section we prove that the stress field satisfying the uncoupled equilibrium equations

(3.64);, (3.64); and (3.64); for no-tension solids subjected to thermal load is unique. To this end,
let ® be a body made of a masonry-like material and let 3, and 3¢ be two subsets of the

boundary 963 of (3, such that their union covers 003 and their interiors are disjoint.
A load (b, 0, fo) defined in (3 x 3 x R;with valuesin UV x {81, 8] x VU is admissible, if
the corresponding boundary-value problem has a solution, i. e. if there exists a triple {u, E, T],

constituted by stress field T, strain field E and displacement field u defined on the closure 63 of
(3, piece-wise C2, such that the equations (3.64);, (3.64)2 and (3.64)3 are satisfied on (3 and the

boundary conditions
u=0 on 3, (4.2)1

Tn =f; on 2, (4.2)2
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. hold, where n is the unit outward normal to &¢.

It is easy to prove that if (b, 8, fo) is an admissible load and [uy, Eq, T1] and [uz, E4, T7} are
two solutions to (3.64)1, (3.64),, (3.64)3 and (4.2), then T1(x) = T2(x) for every xe (3. In fact,
the triple [u, E, T] withd = u; - ug, E=E; - Ep and T = T; - Ty satisfies (3.64)1 and (4.2);; in
addition, it satisfies (4.2); and (3.64); with fy = 0 and b = 0. Thus, in conformity with the
hypothesis on the smoothness of the solutions, a simple application of the principle of virtual
work proves that

f T-Edv=0. 4.3)
03

On the other hand,

E=E;-BOI +pOI-E; =ES + E3 - ES - K3, (4.4)

where Ef, E} and ES, EJ are the elastic and the inelastic strain corresponding to E; and E,,
respectively. From (4.3), by using (4.4) we obtain

IT-(ET- 3_)dV=jT-(E"{-E§)dV; (4.5)
® ®

the first member in (4.5) is equal to j T - D(8) {T] dV and is therefore non-negative because
03
D(O) is positive definite. By virtue of (4.1)4, the second member of (4.5) results equal to

] (T - Ef + T2 E5)dV,
03
which is non-positive because of (4.1); and (4.1)3. Then, we have

j T.D@® '[T]dV =0,
3

from which we obtain T - D(8) "Ti=0 everywhere in (3 and thereby T = 0, that is the sought

after result.
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5. AN EXAMPLE

Let us consider a circular ring with inner radius r; and outer radius r = 2r; made of a no-
tension material and subjected to a plane stress under the action of two uniform radial pressures
p; and p, acting on the internal and external boundary, respectively. Moreover, the ring is
subjected to a temperature distribution 8 depending linearly on the radius r

- G- 6 1261 - 116,
6(r) = P T+ S (5.1)
where 6; and 6, are the temperature of the internal boundary and external boundary,

respectively.
We assume that $(8) = & (8 - 8g), with 89 as the reference temperature, and that the Poisson ratio

v does not depend on 8. With regard to Young's modulus E, we assume it to be a linear function

of temperature varying from E; for@ =010 E; = %Ez for 6 = 6,

E(0) =——E2 (8 +0,-20)) . (52)
2(02-6¢)

From (5.1) and (5.2) we get

__ Ep
B0 =55 257 - (5.3)

The choice of quantitites r, ry, Eq, E2 such that %:%— = % is linked to the fact that, if
2

condition r» E; = r; E; holds true, then the equilibrium equation of the ring is easily integrable;

the procedure set forth here for calculating the solution is independent of the value of %1-
2

We start by determining the solution for a linear elastic material. Let us indicate by Oy, Gg, &

€, the radial and circumferential components of the stress and strain; by virtue of the constitutive

equation for plane stress we have

o) = 1E(1)2 (e0() + v () - 0(1 + V) (8(r) - 80)} . (5.4)
Golt) = IE(?Z (eg(r) +V &5(1) - 0(1 +V)(B(T) - 80) ) . (5.5)

G- 0O
- By imposing the equilibrium equation %gri + —r—r—q’ =0, and accounting for (5.1) and (5.3) we
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get

(% .y q’)+(:z Vi, - (1- 2v)eg = (1 +v) (2 82 o r+r29r*2‘_r;192 -80) (5.6)

In turn, in view of relations linking radial displacement u to strains € = c_cllrg and g¢ = %, (5.6) is

equivalent to the linear ordinary differential equation

2d% opdu (1 _vyu= B2-01 o, (1201-16
r dl_2+2rdr (1-viu=a(l+v) {2 ol + ( T 8g) 1) . (5.7)

By performing the substitution r = ef, we obtain the equation with constant coefficients

dlu, du (. = 82-01 2y, (1281-110; :
dtz+ s viu=a(l +v) {2 e + ( oy Bp) '} (5.8)

whose general solution is

W) = CreMt+ Cpetet+ ol +v){ 20281 avy (21-19 _ghey (59

S5+v I2-n 1+v Iy -1y
where
11=_I+jg-§v, Ay = -1+2*4V (5.10)

and C; and C, are two integration constants. Now, starting with the radial displacement (5.9),
and recalling that r = €%, by using (5.4) and (5.5) we get the stress components

- Ex Ay a1 - v2) 0:-0,

o.(r) -0 {[CilMm +VITM + Co(Ag + V)T eV Tl re}, (5.11)
= 2 JLE 7\2 - 3 (1 V ) 92 91 2

Cg(r) Py rlE)(l RS {CHA+VvA) v + Cy(1 + VA T STV T T 12} . (5.12)

Quantities C; and C; are determined by imposing the boundary conditions Gy(r;) = - p; and O((r2)
= - pp and take the form
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Az((“i 0,-0; 2 P1 lz ars 9,-0; P2
Iy - F) ) (-—= -2ty -r) &)
Ci =0 +V) S+vna-n S+v n2-n Ez

r;.-i.{.;;-l (1'15 -dv rES -4v)

Ao 0 Td 62-61 P2y A o rf 62-01 P
it (7= -2(rp - 1‘1) ) A (—L -2rp-T) )
Cy=(hy +V) S+v -1 S+v -1 E,

r5 r%’ (1']/5‘T - rﬂ)

For the sake of simplicity we shall limit ourselves to consider v = 0, in this case we have

, (3.13)

. (3.14)

M=o 1215, M= LS (5.15)
SO 2 BY - ED 28 gy n) R B
_ 17-1 -1
Ci=72 (5.16)
r11(rr - r{)
l‘(a rz T?’_ 2(rz-11) pz) A‘(a 8001 2ry-11) Rl—)
_ 2-T -0
Ca=A; . (5.17)
i(rl rg_)
and the elastic solution has the following components
-_ B A e . 82-01 o
Gr(r)_Z(z'rl) {C1 7\.1r 1+C2 7\.2[‘2 5 -1 } (5.18)
mE__ A 308281 5.19
edr) = Cr Ayt~ 1+ CyAg rhe-1 %eri %91y (9;; ?11 e+ 2OLI% gg)r, (520)
— O A ha-1.3082-61 82 - 61 6 -10y o
Ee(r) =CyM-1+ Cyrha-l o (r2 o S fg)r, (5.21)
W) =Cim+ Cprka+ o {%— %'_?11 (rzerl2 1;1192 Bo) 1} . (5.22)

It is possible to prove that for some values of the constants, the stress field (5.18) - (5.19) is
negative semi-definite, and that the elastic solution is then the solution corresponding to an
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elastic no-tension material. On the other hand, there exist values of the constants such that the
radial stress is purely compressive, and circumferential stress is negative starting at r = ry,
vanishes at a point internal to the circular ring and becomes positive up to r = rp. Thus, if the
material does not withstand tension, the stress field (5.18) - (5.19) does not represent a solution
to the equilibrium problem. With a procedure similar to that used in Padovani (1995) it is
possible, by beginning with the elastic solution, to calculate a negative semi-definite stress field
equilibrated with the loads which is therefore the solution to the equilibrium problem of the
circular ring made of a material with constitutive equation (4.1). Such a stress field has

components
—E— [Cl ;\-1 ™ 4+ CZA'ZT?“--— 2 e] r } re [r I'()]
2(1'2 rl) 5 I'2-1n ! B »
o) = (5.23)
) rzrpz ’ re [ro, 2],
_E‘.z_..._.. Al Az 3 o 92 81
2(ry - 1) [Clr +Cpr 5 I3-Iy 2}, re [n, 1],
%60 = (5.24)
O ' r E [r()’ r2] y
where !
= M(arl eri ?11 i rl)pl) r%z(ocro er; - rl)%){)
Ci=he , (5.25)
r(?)nl{n (1'1 - fg_)
7\.1 (U. 1'0 92 91 -2ra-11) pO) I'é'l ((1. 1'1 92 61 -2ty - rl) )
=k 20 r-T] (5.26)
ot (rf - rg—)
po= %2, | (5.27)

Ip

and 1o is the unique root belonging to the interval [r;, rz] of the equation
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Ciry+Corp- 22823 =0, (5.28)

The circular region £y, with inner radius r; and outer radius ry, is entirely compressed and does
not contain fractures; in the remaining region {2, with inner radius rp and outer radius 1y, the
inelastic radial strain is null and the elastic radial strain is

Amen)npy (5.29)

&r(r) =
E; r?

The inelastic circumferential strain is a function £%(r), which needs to be determined and the

inelastic radial strain is null. From the relation

" (82 -0, m81-116 | 8g) - 2Arp-rrapy , (5.30)

£(T) =
«(0) r-I -1 E, 12

we get the radial displacement in £y,

an=o (2201 oy (@B gy (H2-TORP (1 1y,

2(rp - 1)) Ty -1y E» r Ip
AL 8, - O)rd
Cirh+Cyre- 950—%2—_-%0—. (5.31)

Finally, from

92 - 91 I+ rgel - rlez

Fa T o Bp) + ¢ () (5.32)

Epll) = (

and (5.31) we obtain the inelastic circumferential strain in 2

Ay — 9, - 01 2ra-1)T2 P2 1 1
eh(r) =- o Ty r+ E, (r2 rro) +
= AL A 8- 0D 1 533

It is a simple matter to verify that e§(ro) = 0 and €4(r) > 0 forr & (1o, r2].
The frec energy and entropy for the circular ring can be calculated by using formulae (A.4),
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(A.5), (A7), (A.8), (A.10) and (A.11) which have been included in Appendix for plane stress. In
particular if we assume that the specific heat Cg is constant, then we have £(8(r)) = Ce(®(r) - 8¢)
- Cg 6(r) In[0(r)/B¢]. The free energy has the expression

2 2
S0 + 20 (0 + 90) re [n, ol
ym= (5.34)
2
g0 + L S re [t 2]

and the entropy is

2 2 2
_ Cg In[0(r)/8g) - — 2= (6d(r)? + Gy(r)?)
EEP(92 -9 r?

+% (6:(r) + 6¢(n) , 1€ [, 10,

nm= ¢ (5.35)

2 2
- Cg In[B(r)/8g] - — 210 cr(;)
Ezp(BZ -8y) T

+%— o (1), re [rg, 2.

Figures 1-4 show the behaviour of the radial and circumferential stresses, circumferential
inelastic strain and radial displacement as r varies in the interval [ry, r2]. Figures 5 and 6 plot the
difference between the free energy and function &(8(r)), and the sum of the entropy and the
function Cg In[0(r)/0p] as functions of r € [ry, ry], respectively. The following parameters values
have been used

ry =1m,
rp=2m,

Ep =6. 10° Pa,
E1 =3.10° Pa,
v =40,

8o = 30° C,

0; =1200° C,
6, =20"C,

p1 = 1. 106 Pa,

p2 = 1. 106 Pa,
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a=1.105¢C0) -1,
Cr= 1046 J/Kg ° C,
p = 2000 Kg/m3.

The dotted [ine is the solution for a linear elastic material calculated according to (5.18), (5.19),
(5.22), (A4) and (A.10), while the continuous line represents the solution for a no-tension

material. The value of the radius separating the compressed region and the cracked region,
deduced from (5.28),isrg = 1.226 m.
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Figure 1. Radial stress oy vs. 1.
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6. CONCLUSIONS

In this paper a constitutive equation for no-tension isotropic materials in the presence of
thermal expansion is presented and the basic coupled equations of the thermoelastic equilibrium |
set forth while accounting for the temperature dependence of material constants. In the absence
of thermal variations, this constitutive model coincides to the model for no-tension materials.

By limiting ourselves to consider thermo-mechanical uncoupling, we prove the uniqueness of
the stress that solves the equilibrium problem of masonry-like solids subjected to thermal loads.

Since this kind of constitutive equation allows one to explicitly calculate not only the stress
as function of temperature and strain, but also the derivative of the stress with respect to the
strain, it is particularly suited for use in a finite element code for solving equilibrium problems of
no-tension solids subjected to thermal loads via the Newton Raphson method, in a manner
analogous to that performed in Lucchesi et al. (1994, 1995, 1996a).
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APPENDIX

Let us consider a plane stress and suppose t3 = q1+T q3 = 0. Denoting by E, the
restriction of the strain tensor to the two-dimensional space orthogonal to 3 and by e; < e3, the
eigenvalues of E, we define the following subsets of Sym x {8y, 6;]:

Q1= {(E,0)1'70)(e1 - B(8)) +2(1 + ¥(8))(e2 - B(9)) <0} (A1)
Q2= {(E, 0) 1 7(®)(e1 - B(®)) + 2(1 + ¥(®))(e2- B(6)) >0, e1-P(O) <0}, (A2)
Q3= {(E, 6)1e;-B(0) >0} . (A.3)

The expression of the free energy in the three regions is

E(6)

= {2+ ed+2v(B)eie, +
A1-vor)p

W(E, 8) =E(0) +

2(1 + v(©®)BO)B®)-¢1 - ¢2) } , for (E.0)e ©1,  (Ad)

_ E(6) V2
VE. 8) =560+ 5 (e~ O, for (E,0) 91, (A5
y(E, )= &(9) s for (E,8)e Q5. (A.6)

Accounting for relations Dg €; = q;®q1, Dg € = q2®q3, where q; and g3 are the eigenvectors
of E corresponding to eigenvalues e; and e; (Lucchesi er al., 1996 a), for the stress we obtain
if (E, 6) € Q1, then

TE, ) =—20 (£ - o) 1+ o(E - Bo) 1) 1}; A7)

1+v(®) L-v(8)
if (E, 8) € 93, then
T(E, 6) =E(®) (e1 - B(®) 11 ®q; (A.8)
if (E, 8) € 93, then

T(E,0)=0. (A.9)
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Finally, the entropy is

E'(0)(1 - v(8)) + 2v(0)v'(B)E(D) (&2

N(E, 8) =-£'(9) - : 2 +e7+2v(B)eres +
2p(1 - v4(®))’

E(0)

__E®  ou@ye; ep+
2A1-v®?)p

2(1 + v(0)BO)(B(B)-e1-€2) } -

2vI(OYBO)(P(O) - e1 - e2) +2 (1 + v(O)P(OXNP(®) - €1 - €2) +

2(1 +v(®)BOP'®)} , for(E, ) e 94, (A.10)

N(E, 8) =-£'(0) -—E—z'—(gl(el - B(@)“@ B'(B)(e; - B(O)), for(E,6)e @, (A.11)

NnE, 8) =-£'0), for (E,0) e ©5. (A.12)
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