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Abstract—Real-time monitoring of lube oil plays a
crucial role in ensuring optimal machinery performance,
preventing failures, and facilitating timely maintenance
strategies. The approach proposed in this work, based on
impedance spectroscopy and supervised machine learning
(ML), addresses this need by a novel solution to a multiclass
classification problem of cross-contaminations in aviation
lubricant. Impedance measurements were performed at room
temperature by immersing a microfabricated sensor in
16 aged oil samples containing increasing concentrations
of water and aviation fuel. Two datasets were constructed:
the first based on impedance components spectra and the
second based on dissipation factor spectra. A data pre-
processing and augmentation method was proposed for
generating synthetic examples from the measured data. Both
datasets were independently used to train three supervised
classifiers, whose performance was evaluated based on three
different approaches of dataset split ratio and k -fold cross-validation. The 1-nearest neighbors (NN) classifier proved to
be the most effective in reducing false positives (FPs), false negatives (FNs), and computational running time. The
best results were obtained by employing a split ratio of 60:40 and threefold cross-validation scheme on the impedance
components-based dataset, yielding an accuracy of 99.8%.

Index Terms— Contamination, data augmentation, impedance spectroscopy, lubricant, machine learning, monitoring.

I. INTRODUCTION

LUBRICANTS in motor vehicles and industrial machinery
are mainly used to reduce friction and wear due to

heating and mechanical contact between interfaces of moving
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components. In addition to lubrication, oil also performs
other functions, such as cooling and cleaning. A lubricant
is a balanced mixture of base oils and additives, whose
combination impacts the overall performance and lifetime
of the equipment. Base oil, generally mineral or synthetic,
constitutes the highest percent of the lubricant composition,
while the rest comprises chemical additives (detergents,
dispersants, anti-wear agents, oxidation inhibitors, viscosity
index improvers, etc.), with different formulations designed
for specific applications [1].

During its operation, lubricant tends to degrade its chemo-
physical properties and its lubricity, due to several problems,
including thermal stress, external contamination, oxidation,
and depletion of additives. Contamination is a primary cause
of oil deterioration, which can cause corrosion and excessive
wear of moving parts, culminating in failure [2]. Fuel and
water are among the most dangerous contaminants; the former
can derive by blow-by processes or incomplete burning
of exhaust gases [3], [4], the latter from condensation in
combustion processes, from seal losses of defective head
gaskets, or cracks in the block [5], [6].
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Continuous and reliable monitoring of oil condition
represents a desirable and effective control strategy to
provide an early warning of impending problems. The most
common methods used to diagnose oil condition are offline
and require time-consuming and often expensive procedures,
both for collecting and handling samples for accredited
laboratory analysis, and for adopting safety precautions for
use of solvents and chemicals (crackle-test, calcium hydrate
test, distillation, Karl Fischer titration, flash point, gas
chromatography, and Fourier transform infrared spectroscopy)
[7], [8], [9], [10], [11].

Great interest of industry and scientific community is
currently directed toward the development of online and inline
approaches to monitor in a continuous manner the lubricant
quality and machine health condition, while overcoming
the drawbacks of offline methods. Various commercial
solutions for direct and indirect measurements of oil condition
are available, including Hydac AS2000 by Aqua Sensor,
WSPS 05 by EATON, WS10 Series Water Sensor by Pall
Corporation, WIO200 sensor by PAJ Group, OQSx-G2 by Tan
Delta, and Trident DM4500-DM4600 by Poseidon Systems.
However, these systems typically lack the capability to identify
the type and concentration of contaminating fluid, providing
only a general quality score.

The dielectric permittivity is an important quality index of
oil that can be easily measured online. Several products present
in the market allow to measure the dielectric constant and
the dielectric dissipation factor over a very narrow frequency
range, in compliance with operative procedures indicated
by international standards, including IEC and ASTM [12],
[13]. However, several works published in the literature
show that broadening the spectrum of frequencies under
investigation can be more effective for analysis purposes
[14], [15], [16], [17].

Impedance spectroscopy (IS) is non-destructive charac-
terization technique able to evaluate the electrical and
dielectric properties of solid materials and liquids at various
frequencies. It is effective in the in-line monitoring of
lubricants because it can measure several properties related to
the oil condition [18]. In recent years, even machine learning
(ML) has had a significant impact on condition monitoring
and predictive maintenance tasks, for which proactive and
data-driven strategies can be effective to foresee potential
failures. An interesting survey on condition monitoring
using ML methods reviewed recent developments in this
field [19].

The success of a predictive maintenance strategy using an IS
data-driven ML model depends not only on the performance
of the sensing technology employed to monitor physical and
environmental conditions, but also on the data processing and
ML methods employed. The performance of an ML algorithm
is frequently tied to the quality and quantity of data used
to train the model. Even though impedance measurements
offer access to a large amount of information and a variety
of frequency-dependent data patterns [20], employing highly
correlated variables to train an ML algorithm may lead
to problems of redundancy and multicollinearity that can
complicate the classification task [21]. On the other hand,

collecting a great amount of data for the model training can
be challenging in certain real-world scenarios, such as the oil
condition monitoring in (near) real-time. In this context, it is
reasonable to expect that an optimized timing of the sensor’s
readings can be crucial to promptly executing monitoring
actions devoted to detect potentially dangerous changes in the
oil condition, such as those deriving from contamination.

Achieving excellent performance in training models using
a limited number of labeled samples is the aim of few-
shot learning. This ML technique attempts to replicate the
cognitive process of humans, who can efficiently learn a new
object by exploiting the knowledge accumulated through a
few examples. Nowadays, few-shot learning is used to solve
different tasks in various fields, including fault diagnosis
and structural health monitoring [22], [23], medical image
recognition [24], defective products detection [25], and so on.

Inspired by these examples, this article presents a novel and
effective approach for classifying impedance measurements
related to cross-contamination of water and fuel in aged
oil. The combined use of ML and IS has been already
proposed in the literature by other authors for regression
purposes, specifically to identify the equivalent circuit and
the circuit parameters that fit the impedance data. In such
an approach, the traditional human-assisted data analysis is
replaced with artificial intelligence-based methods [26], [27],
[28], [29]. In this work, IS and ML were used for classification
purpose. Few steady-state impedance measurements were
gathered by a proprietary capacitive sensor immersed in the
oil sample under test. These measurements were then pre-
processed and augmented to create two datasets for training
three ML models independently. The first dataset employed
the spectral distribution of the real and imaginary components
of impedance, and the second one utilized the spectral
variation of their ratio, known as dissipation factor or tan δ.
The most relevant features extracted from the two datasets
were selected to train the models. This strategy allowed
to reduce redundant information, simplifying the model and
reducing computational cost and training time. In this work,
a classification-based approach was adopted for the following
reasons: 1) regression models are more complex and require
larger amounts of labeled data; 2) regression models tend to
be more sensitive to noise, making data augmentation more
challenging to apply; and 3) a classification-based approach
allowed for a more immediate and robust assessment of the
effectiveness of the proposed data augmentation method.

The comparison of the results obtained using the two
datasets (impedance components- and tan δ-based) aimed to
determine which properties of the oil (electrical, dielectric,
or both) are most significantly affected by the contamination,
and which contributions (resistive, reactive, or both, in terms
of dissipation factor) best emphasize such an effect.

The data augmentation method proposed in this work
prevented overfitting and improved model accuracy, addressing
the challenge of having few but significant measured data.
This advantage can be particularly beneficial in applications
where gathering large datasets to predict oil condition is
time-consuming and costly, posing a significant limitation,
especially for onsite monitoring applications.
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Fig. 1. Photograph of the microfabricated sensors, and the
experimental setup used for the IS measurements.

Three schemes of dataset split ratio and K -fold cross-
validation were evaluated for each of three investigated
models. The comparative analysis of performance between
models and datasets demonstrated that the three evaluated
algorithms can effectively discriminate different oil conditions
even with a small dataset and a limited number of features. The
comparison between the two investigated datasets suggests
that the spectral content of real and imaginary impedance
components can be more informative and useful than tan δ for
monitoring oil condition. This result stimulates greater interest
in the development of impedance-based monitoring systems
for industrial applications. The successful identification of
16 aged oil samples cross-contaminated with water and fuel
was demonstrated.

II. SENSOR DESIGN AND FABRICATION

Fig. 1 shows a photograph of the microfabricated
sensors, and the experimental setup used for the impedance
spectroscopy measurements, with the sensor immersed in the
aged oil sample under test.

The sensor was designed by using finite element analysis to
maximize the sensitivity to changes in the dielectric constant
of oil due to oxidation and contamination. The simulation
results were discussed in a previous work, showing how the
sensitivity varies as a function of the finger width and gap
size in the range from 20 to 80 µm, for increasing values
of dielectric constant [30]. The sensor has an active area of
24.3 mm2 and comprises a pair of interdigitated electrodes of
46 fingers per electrode, with width and gap size of 20 µm and
length of 6.56 mm. It was realized on 500-µm-thick (100)-
silicon substrate, with 0.5 µm of thermal oxide, by using
365-nm UV optical lithography, RF sputtering deposition,
and lift-off processes. The electrodes comprise 20-nm-thick
titanium adhesion layer and 200-nm-thick gold layer.

III. IMPEDANCE SPECTROSCOPY: BASIC CONCEPTS

Interdigitated electrodes are attractive transduction plat-
forms for capacitive sensor devices, whose impedance can
provide an insight into the dielectric properties of the medium

in which the sensor operates. Lubricating oil is a non-ideal
dielectric that exhibits resistive and reactive losses when
exposed to an alternating electrical field. When immersed
in a lossy dielectric medium and excited by an alternating
voltage at frequency ω, an interdigitated electrodes sensor has
an impedance that can be expressed as the sum of resistive
(ZR) and reactive (ZI) contributions

Z(ω) = ZR + j Z I (1)

where ZR and ZI are the real and imaginary components of the
impedance. The measured impedance is the result of bulk and
interfacial processes related to the interaction of the lubricant
with the electric field generated between the electrodes. The
main mechanisms, such as bulk relaxations, adsorption on
the electrode interface, mass transport from the bulk solution,
and charge transfer at the electrode, are typically represented
by equivalent circuits constituted by simple parallel/series
combinations of resistances, capacitors, and constant phase
elements [31]. The major effect of lubricant contamination
with fuel is on the reactive impedance at low frequencies
associated with the electrode–solution interface [15]. The
contamination with water affects both the resistive and reactive
components of impedance, with a marked increase of electrical
conductivity at low frequencies and permittivity at medium
and high frequencies [32].

Generally, the resistive impedance is associated with the
lubricant capacity to dissipate electrical energy as heat; the
reactive impedance is associated with the lubricant ability
to store electrical energy. The contamination modifies the
capacity of energy dissipation and storage of the lubricant, and
such an effect is overall evaluated by the dissipation factor.
Tanδ represents the ratio between the energy dissipated and
stored in the lubricant. It is a frequency-dependent parameter
that can be calculated by the complex impedance, as the
ratio of the resistive (real) and reactive (imaginary) impedance
components

tan δ = ZR/ZI. (2)

IV. MATERIALS AND METHODS

The first part of this section presents the main properties of
the aviation lubricant and contaminants used and describes the
experimental procedures for thermal aging and contamination
of the lube oil. In the second part, the proposed supervised
ML-based classification model is explained in detail, from
the impedance data acquisition to the model implementation,
including data pre-processing, augmentation, features extrac-
tion, and selection.

A. Main Properties of Lubricant and Contaminants
The aviation lubricant used in this work is AeroShell

Turbine Oil 500, produced by Shell for aviation; the aviation
fuel is AeroShell Calibrating Fluid 2. Their main properties are
reported in Table I [33], [34]. It is expected that the dielectric
constant and the dissipation factor of the oil change in the
presence of contaminants. These are two important parameters
that several international standards, including IEC and ASTM,
recommend to consider as indicators of oil quality [12], [13].
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TABLE I
MAIN PROPERTIES OF OIL AND FUEL USED IN THIS WORK

The greater the difference in dielectric constant between oil
and the contaminant, the easier it is to detect contamination
by observing changes in the dielectric properties of the oil.
However, a multidimensional data analysis, possibly based
on ML techniques, may be necessary to distinguish between
different types and amounts of contaminants. Water dilution
in oil causes an increase in the dielectric constant of the
mixture, since water has a much higher dielectric constant
than oil (78.8 at 25 ◦C). Most lubricants containing non-polar
hydrocarbons have dielectric constant in the range between
2 and 4 [35], [36], [37], while for most fuels it is in the range
1.7–2.8 [38], [39], [40]. The dielectric similarity of oil and
fuel makes difficult to detect small amounts of fuel in oil using
capacitive sensors. Such difficulty may be more prominent in
aged oil, since some of the effects of the fuel dilution in oil
can be blended with others deriving from aging processes
of the oil (e.g., additive depletion, oxidation, changes in
viscosity). These considerations motivated the interest to face
the detection and classification of fuel and water contamination
in aged oil by using capacitive sensors.

B. Thermal Aging and Contamination of Oil
The cooling temperature is 20 ◦C (twenty Celsius degree)

of AeroShell Turbine Oil 500 was done in laboratory,
by subjecting the fresh oil sample to repeated cycles of heating
(up to a maximum temperature of 140 ◦C for 14 h) and cooling
in air (up to 20 ◦C for 10 h), for a duration of 200 h at high
temperature.

The levels of contamination investigated in this work fall
within a range of values considered alarming or dangerous.
The impact of lubricant dilution with water and fuel varies
significantly depending on the application. To the best of
our knowledge, there are no specific thresholds related to the
maximum admissible amount of fuel in lubricating turbine
oils. A fuel content exceeding 3%–5% is considered excessive
in various scenarios [3], [41]. As regards the content of water
in lubricating oils, ASTM D4378 sets 1000 ppm or 0.1%
as a warning level, while some gas and steam turbines
original equipment manufacturer (OEMs), such as solar1

turbines, consider 2000 ppm of water in oil as the maximum
limit before requiring an oil change or reconditioning.
Nevertheless, a water content of 3% is still tolerable in wind
turbines applications [42].

Based on the above, in this work, the aged oil was
contaminated with distilled water and fuel, with weight
concentrations comprised between 0.2% and 2% for water, and

1Registered trademark.

TABLE II
SAMPLES OF OIL CONTAMINATED WITH WATER AND FUEL

1% and 5% for fuel, with the intent to detect the most critical
contamination thresholds (low, moderate, and high) within the
range of interest for each contaminant. The mass of oil was
fixed equal to 5 g for all samples. An analytical balance (ABT
120-5DNM, manufactured by KERN and SOHN GmbH)
was used to weight the aliquots of each substance, with
an uncertainty of ±0.0001 g. Fuel was gently mixed with
oil by a magnetic stirrer for 2 min at low speed. Water
was emulsified with oil by direct probe ultrasound sonication
(SONICATOR 700 W by Fisher Scientific) at 70 W power and
12 consecutive ON/OFF cycles with a ratio 5:30 for a duration
of 60 s, for minimizing the excessive heating of the emulsions.
Table II lists the 16 classes of cross-contamination prepared
and investigated in this work.

C. Supervised ML-Based Classification Model
Supervised classification is a learning technique that uses

statistical methods to categorize a set of labeled data in
distinct classes, by predictions based on learned patterns
and features. Typically, a supervised classification approach
involves the following steps: 1) data acquisition and pre-
processing, followed by features extraction and human-assisted
data labeling, for assigning the correct target to each feature;
2) dataset splitting into training set, validation set, and test
set, based on the training strategy; 3) model training on the
training set, by which the model understands the patterns
and relationships within data and learns to make predictions
on new inputs; 4) model validation, in order to identify and
prevent important issues, such as overfitting or underfitting;
5) evaluation of the model’s performance by several metrics,
often averaged over multiple cross-validation rounds; and
6) model testing on the test set (unseen data) to evaluate
the predictive performance of prediction and generalization
to new data. Fig. 2 depicts a schematic representation of
the impedance-driven ML model developed in MATLAB and
proposed in this work. Each step of the algorithm is discussed
in detail as follows.

1) Impedance Data-Acquisition: For identifying contamina-
tion rapidly, impedance measurements were recorded in a
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Fig. 2. Schematic representation of the impedance-driven ML algorithm developed to classify fuel and water cross-contaminations in aged oil
(color in print).

short time after the contamination of oil. Impedance spectra
were measured at room temperature using MFIA impedance
analyzer by Zurich Instruments. The sensor was immersed in
a beaker containing the oil sample under test and excited
by an AC voltage of amplitude 2 V and frequency in the
range between 5 Hz and 1 MHz (see Fig. 1). Impedance
spectra were acquired after immersing the sensor in the oil
sample under test, at intervals t = 1, 2, 5, 10, and 15 min
to assess the measurement repeatability and obtain steady-
state data readings for classification purposes. For aged oil
(class 1) and fuel-in-oil samples (classes 2-3-4), four steady-
state spectra were recorded at t = 2, 5, 10, and 15 min.
In water-in-oil samples, water affected the time needed for
the sensor to achieve steady-state conditions, probably due to
the heterogeneous structure of the emulsion. Therefore, three
steady-state spectra were recorded at t = 5, 10, and 15 min
for the remaining classes. Only steady-state measurements
were utilized to populate the training dataset (four spectra
for each of the classes 1-2-3-4, and three spectra for each
of the remaining classes). The mean coefficient of variation
(percentage ratio of standard deviation to mean) of steady-
state impedance spectra in the investigated frequency range
was lower than 4%.

2) Impedance Data Pre-Processing and Augmentation:
When the amount of labeled data is limited (e.g., due
to expensive or time-limited experimental conditions), data
augmentation becomes an efficient method for increasing
the dataset size. A possible approach consists in generating
synthetic data by utilizing the statistical characteristics of the
real data [43], [44]. This allows to enhance the existing dataset,
improves the model generalization to unseen data, and reduces
the risk of overfitting. In this work, a statistical-based method
was proposed for the generation of synthetic spectra to be
added to the measured ones.

a) Data pre-processing: The steady-state impedance data
were interpolated on evenly spaced frequency points and
normalized on a common range [0, 1] to make them scale-
invariant, while preserving the relationships between data
points. Then, two distinct training datasets were constructed

from the impedance data: the first dataset included, for each
class, a set of measured and synthetic spectra of the real and
imaginary parts of the impedance (ZR, ZI) defined as in (1).
The second dataset included, for each class, a set of measured
and synthetic spectra of tan δ defined as in (2).

All the normalized data were truncated to the more
spectrally significant frequency range, between 5 and 103 Hz.
Fig. 3 depicts the normalized mean impedance components
and tan δ for some classes of contamination. The graphs
illustrate the effect of increasing fuel content in oil samples
containing 2% water on the spectral variation of the impedance
components [Fig. 3(a)] and dissipation factor [Fig. 3(b)].

b) Data augmentation: The proposed method of data
augmentation not only prevented overfitting and improved
model accuracy, but also addressed the challenge of having
few but significant measured data needed for model training.
This advantage can be particularly beneficial in applications
where gathering large datasets to predict oil condition is
time-consuming and costly, posing a significant limitation,
especially for onsite monitoring applications where timely
detection of hazardous conditions is crucial. For the impedance
components-based dataset, the following procedure was
adopted for each class of contamination. The mean values of
the two components, ẐR(ω) and ẐI(ω), and their standard
deviations, σR(ω) and σI(ω), calculated in each frequency
point, were used to generate n synthetic examples per class,
as follows:[

Z S j
R (ωi ), Z S j

I (ωi )
]

=

[
c j

i · σR(ωi ) · ẐR(ωi ), c j
i · σ I(ωi ) · ẐI(ωi )

]
. (3)

The term in the left side of the previous equation represents
the couple of impedance components at the i-frequency point
and for the j-synthetic example S j . The term c j

i is a random
value comprised in the range [−1, 1] that was used for
perturbing the i-couple of components of the mean impedance
[ẐR(ωi ), ẐI(ωi )], within the range defined by the respective
standard deviation.
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Fig. 3. Normalized spectral variation of the mean impedance
components (a) and tanδ (b) of oil samples contaminated with 2% water
and increasing fuel content (color in print).

For the tan δ-based dataset, the synthetic examples were
generated using the same approach, as follows:[

tan δS j (ωi )
]

=

[
c j

i · σtan δ(ωi ) · t̂an δ(ωi )
]
. (4)

The term at the left side in (4) represents the value of tan δ

at the i-frequency point and for the j-synthetic example S j .
Again, for each j-synthetic example, in each i-frequency
point, the random value c j

i is in the range [−1, 1] and
modulates the mean dissipation factor t̂an δ, within the range
defined by the respective standard deviation σtan δ .

The augmented dataset included 160 labeled instances, with
10 instances per class, 52 steady-state real measurements, and
112 synthetic examples. Each instance is represented by a
matrix of 2000 rows, with each row containing the i-frequency
point and the respective real and imaginary impedance
components (for the first dataset), or the i-frequency point
and the respective tan δ value (for the second dataset). Fig. 4
propones a comparison between normalized mean real data
(black lines) and synthetic examples (colored lines) generated
using (3) and (4), for aged oil contaminated with minimum
cross-contamination (class 15). For better visualization, the
frequency range was limited between 100 Hz and 1 kHz.

The statistical similarity of the real and synthetic data was
evaluated using the Frequency Response Assurance Criterion
(FRAC), that is, a representative metric in the frequency

Fig. 4. Mean real data (black lines) and synthetic examples (colored
lines) generated using (3) and (4) of aged oil contaminated with 0.2%
water and 1% fuel (color in print).

TABLE III
STATISTICAL SIMILARITY OF REAL AND SYNTHETIC

DATA, EVALUATED BY THE FRAC SCORE (%)

domain defined as [45]

FRAC

=

∣∣∣∑N
i=1 χ augm(ωi )

Hχmeas(ωi )

∣∣∣2

[∑N
i=1χ augm(ωi )

Hχ augm(ωi )
][∑N

i=1χmeas(ωi )
Hχmeas(ωi )

]
(5)

where χ augn and χmeas are the synthetic and measured
frequency functions, respectively. The superscript H refers to
the Hermitian, that is, the transpose of complex conjugate.
Table III reports the statistical similarity score calculated
by (5) for each class of contamination in the two datasets.
The high score indicates that the synthetic data preserve the
essential patterns and relationships of the real ones.

3) Feature Extraction and Selection: The Python library
tsfresh [46] was used to identify and extract relevant features
from the dataset. Tsfresh is typically used for features
extraction from evenly spaced time series data; however, under
some conditions, it can be also used with frequency series
data [29]. In particular, the latter has to be stationary, and
have an adequate sampling rate, with evenly spaced data
points. In this work, both these conditions were satisfied,
as documented in the two previous subparagraphs dedicated
to the acquisition and pre-processing of impedance data.
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TABLE IV
BRIEF DESCRIPTION OF THE TOP-N FEATURES RANKED BY CHI-SQUARE SCORE FOR THE TWO INVESTIGATED DATASETS [50]

Feature selection was performed based on importance to
reduce the number of extracted features used in training,
avoiding overfitting, and enhancing model accuracy and
generalizability. To this aim, the extracted features were
normalized by Z -score to achieve a normal distribution (a
mean of 0 and a standard deviation of 1) [47]. Then, feature
ranking was performed by assigning a weight to each feature
based on its inherent predictive capability, aside from the
chosen classification model. The MATLAB function “fscchi2”
was used to rank features by increasing importance using Chi-
square test. This method neglects the interactions between
features and ranks them according to their correlation strength
based on the following statistical value [48], [49]:

χ2
=

n∑
i=1

(Ei − Oi )
2/Ei (6)

where Ei represents the expectation value of the i-feature
appearance in a certain class, and Oi is the actual appearance
value of the i-feature in a certain class. Continuous predictors
were binned into 10 categories, and the Chi-square statistic
was computed for each feature using (6). The resulting
score helps to evaluate the statistical significance of these
associations: a higher Chi-square value indicates a strong
correlation with the target variable and a potentially great
predictive capability.

Table IV reports a brief description of the top-N
features selected by decreasing Chi-square score, for the two
investigated datasets. Regarding the impedance components-
based dataset, it is worth noting that the three most relevant
features refer to the imaginary part of impedance. The latter
represents a capacitive reactance, as described in (1), since
the sensor forms a capacitor with the oil acting as dielectric.
This suggests that the contamination affects mainly the
dielectric properties of the lubricant, rather than the electrical
ones. Among the top-5 features selected from the second
dataset, the most important one evaluates the mean variation
of tan δ beyond the 20th percentile, while the remaining
features calculate the energy ratio of the segmented series
or extract frequency components from data transformations.
By comparing the results in Table IV, it can be noticed that
the highest Chi-square scores were obtained for the impedance
components-based dataset.

4) Model Implementation: The performance of three super-
vised classifiers was evaluated as a function of the training
dataset, using different dataset split ratios and K -fold cross-
validation approaches: k-nearest neighbors (k-NN), support
vector machine (SVM), and ensemble bagged tree (EBT).
The choice was made by considering previous results
obtained using these models in combination with impedance
spectroscopy measurements for classification purposes [51],
[52], [53], [54], [55].
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TABLE V
MAIN HYPERPARAMETERS OF THE ML MODELS USED IN THIS WORK

The k-NN algorithm can be used for both classification
and regression of small or moderately sized dataset. The
predictions are based on the distance that each data point has
from the k-nearest data points in the set. In this work, the
number of k-NN was set to 1. The SVM algorithm can be used
for both classification and regression of not linearly separable
data in a multidimensional space. It works for finding the best
hyperplanes that separate data points into different classes
while maximizing the distance between them. The EBT
reaches a final decision by combining the predictions obtained
by multiple decision trees trained on randomly selected subsets
of the original dataset (bootstrap samples). This algorithm
reduces the overfitting problem and reaches better performance
than individual decision trees, exploiting the diversity existing
among the trees in the ensemble. Table V summarizes the main
hyperparameters of the ML models used in this work.

Two different ratios were considered to split the dataset in
training, validation, and test sets. K -fold cross-validation was
used to assess the generalization performance of the model
with respect to unseen data. The training set was divided
into K -folds, K − 1 folds were used for training, while the
remaining fold was used for validation. This process was
repeated K times, until every fold was used for the validation
once. The performance of each model was calculated as the
mean of K iterations. Table VI summarizes the different cases
of dataset splitting and K -fold cross-validation investigated in
this work.

V. RESULTS AND DISCUSSION

A. Contamination Sensing Performance
The sensing performance of the proposed capacitive sensor

was evaluated by analyzing the steady-state spectra of
the dissipation factor and calculating the mean value of
tan δ at 60 Hz, as suggested by the standard test method
for dissipation factor and relative permittivity of insulating
liquids [13]. The limit of detection (LOD) of fuel and water
in aged oil was derived by using the equation in [56]

LOD =

∣∣∣∣3σoilcmin

t̂an δmin

∣∣∣∣. (7)

TABLE VI
SCHEMES USED IN THIS WORK FOR DATASET SPLIT

RATIO AND K -CROSS-VALIDATION

σoil is the standard deviation of the mean tan δ measured for
the blank solution, intended as the aged oil (class 1); cmin is
the smallest measured analyte concentration; and t̂an δmin is the
mean tan δ measured at cmin. A LOD of 0.16% was obtained
for fuel with σoil = 0.00136, cmin = 0.01, and t̂an δmin =

0.0242. A LOD of 0.003% was obtained for water, with
cmin = 0.002 and t̂an δmin = 0.238.

B. Performance of the Supervised Models
The performance of the supervised algorithms was com-

pared using four metrics derived from the confusion matrices
for cross-validation and test results: accuracy (percentage
of the total and correctly classified instances), sensitivity
or recall (percentage of the correctly classified positive
instances), precision (proportion of the correctly classified
positive instances to the total number of positive predicted
observations), and F1-score. The latter is the harmonic mean
between precision and recall, and takes into account both the
false positive (FP) and false negative (FN) observations. These
metrics were calculated as a function of the true positive (TP),
true negative (TN), FP, and FN observations, as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN) (8)
Sensitivity = TP/(TP + FN) (9)

Precision = TP/(TP + FP) (10)
F1 = 2 × (Precision × Sensitivity)

/(Precision + Sensitivity). (11)

Table VII reports a comparison between the cross-validation
and test performance achieved by the three classifiers for
each case listed in Table VI, using the two datasets with the
respective top-N features ranked in Table III. All classifiers
achieved high performance, demonstrating their ability to
effectively discriminate 16 different oil conditions even with
a small dataset and a limited number of features. In all
the cases, misclassifications have never involved the class 1
(aged oil), ensuring that contamination conditions were always
detectable.



DE PASCALI et al.: RAPID CLASSIFICATION OF CROSS-CONTAMINATIONS IN AVIATION OIL 38217

TABLE VII
MACRO-AVERAGED PERFORMANCE METRICS (ACCURACY, SENSITIVITY, PRECISION, F 1-SCORE, AND RUNNING TIME)

CALCULATED ON THE VALIDATION AND TESTING SET, FOR THE TWO DATASETS

The best classification using the impedance components-
based dataset was obtained by the 1-NN classifier with a three-
cross-validation (accuracy of 99.8%, recall of 98.4%, precision
of 98.8%, F1 of 98.4%, running time of 2.14 s). The algorithm
classified 15 contaminations correctly, except for the class 10
(containing 0.5% water mixed to 3% fuel) that was confused
with the class 13 (containing 0.2% water mixed to 5% fuel)
with a chance of 25%, as shown by the confusion matrix
in Fig. 5(a).

The best classification using the tan δ-based dataset was
performed by the 1-NN classifier using a four-cross-validation
(accuracy of 99.6%, recall of 96.9%, precision of 97.9%,
F1 of 96.8%, and running time of 1.36 s). In this case, the
algorithm classified 15 contaminations correctly, except for
the class 8 (containing 2% water) that was confused with
the class 12 (containing 0.5% water) with a chance of 50%,
as shown by the confusion matrix in Fig. 5(b). By comparing
the performance of the best cases for both datasets, it is worth
noting that, even though the two algorithms provided very
similar accuracy values, the first one (1-NN with threefolds)
achieved higher values of recall and precision, demonstrating
a superior ability to reduce FP and FN rates.

Overall, the results in Table VII suggest that the spectral
content of the real and imaginary impedance components may
be more informative and useful than tan δ for monitoring
oil condition, thereby stimulating greater interest in the
development of impedance-based monitoring systems for
industrial applications. Nevertheless, it is important to remind
that the classification results presented in the article are
referred to specific brands of lubricating oil and fuel, namely
AeroShell Turbine Oil 500 and AeroShell Calibrating Fluid 2.
However, the approach proposed in this study remains valid
and can be adapted to different types of oils and fuels by
appropriately retraining the ML models to account for the

Fig. 5. Confusion matrix on the test results obtained by the
1-NN classifier trained by (a) three-cross-validation using the impedance
components-based dataset and (b) four-cross-validation using the tanδ-
based dataset (color in print).

unique physical and chemical characteristics of the involved
fluids.

Monitoring the oil condition using complex impedance
signals from interdigitated capacitive sensors is a promising
approach currently absent on the market. However, integrating
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TABLE VIII
COMPARISON OF THIS WORK WITH RECENT LITERATURE WHERE IMPEDANCE SPECTROSCOPY-DRIVEN ML MODELS

WERE USED IN OIL MONITORING APPLICATIONS

the sensor into existing industrial components requires
to address some technical and operational challenges to
maximize performance and preserve sensor functionality in
hazardous environments. Proper implementation, supported by
ML algorithms for data analysis, can promote enabling tech-
nology for enhancing equipment maintenance and lifespan.
Table VIII reports a list of recent works published in the
literature, in which impedance spectroscopy was used with
ML for oil monitoring and classification purposes. To the
best of our knowledge, these represent state-of-the-art results
on the prediction and classification with high performance
of oil condition across multiple lubricant monitoring tasks.
All the prediction models developed in such works were
trained by using large dataset. The main novelties of our
work are as follows: 1) use of few but significant impedance
measurements measured in a short time from the onset of
the contamination condition to classify cross-contamination of

water and fuel in aged oil by a proprietary capacitive sensor;
2) use of an effective method of data augmentation to address
the challenge of having few measured data for model training;
and 3) rapid and effective identification of various cross-
contamination conditions of lube oil. The promising results
obtained in this work suggest that the proposed approach
can be extended to other contexts where rapid recognition of
anomalies may enhance the effectiveness of timely predictive
and preventive maintenance strategies.

Future work aims to refine our approach to include non-
steady-state spectra measured shortly after the onset of
anomalies, for extracting valuable features from the transient
regime that could be related to the nature of the anomalies.

VI. CONCLUSION

This work presented a solution to a multiclass classification
problem of cross-contaminations in aviation lubricant by an
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effective approach of impedance spectroscopy and data-driven
supervised ML. The successful classification of 16 aged
oil samples cross-contaminated with water and fuel was
demonstrated. This opportunity is in line with the industrial
need to perform an effective (near) real-time monitoring of oil
condition that allows to foresee potential failures and improves
the effectiveness of timely maintenance plans.

Impedance measurements were performed at room temper-
ature by immersing a microfabricated sensor in 16 samples
of aged aviation oil containing increasing concentrations
of water and aviation fuel. Few steady-state spectra were
used for creating two datasets for training separately three
supervised ML models. The first dataset included real and
imaginary impedance components spectra; the second dataset
included tan δ spectra. A data pre-processing and augmentation
method was proposed for generating synthetic examples
from the measured data. Three schemes of dataset split
ratio and K -fold cross-validation were evaluated for each
of three investigated models. The comparative performance
analysis between models and datasets allowed to evaluate
which properties of the oil (electrical, dielectric, or both)
were most significantly affected by the contamination, and
which contributions (resistive, reactive, or both, in terms
of dissipation factor) best emphasized such an effect. The
successful identification of 16 aged oil samples cross-
contaminated with water and fuel was demonstrated. In all
the cases, misclassifications have never involved the class
related to uncontaminated oil, allowing always to detect
contamination conditions. The 1-NN classifier demonstrated to
be the most effective to reduce FPs, FNs, and computational
running time. The best results were obtained by employing
a dataset split ratio of 60:40 and threefold cross-validation
scheme on the impedance components-based dataset, yielding
an accuracy of 99.8%.

Based on the obtained results, the following conclusions
can be drawn for the proposed approach: 1) it allowed for
an effective model learning using few training data, with a
good generalization capability to new data; 2) its effectiveness
and robustness were confirmed on different configurations and
subsets of data; and 3) it allowed to develop a balanced
classification model that could be successfully applied to
the contamination monitoring in lubrication systems in real-
world scenarios, and expanded to other contexts where timely
predictive and preventive maintenance strategies are crucial.
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