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Abstract: The main goal of this study was to evaluate the potential of the Fisher-Shannon statistical
method applied to the MODIS satellite time series to search for and explore any small multiyear
trends and changes (herein also denoted as inner anomalies) in vegetation cover. For the purpose
of our investigation, we focused on the vegetation cover of three peri-urban parks close to Rome
and Naples (Italy). For each of these three areas, we analyzed the 2000–2020 time variation of four
MODIS-based vegetation indices: evapotranspiration (ET), normalized difference vegetation index
(NDVI), leaf area index (LAI), and enhanced vegetation index (EVI). These data sets are available
in the Google Earth Engine (GEE) and were selected because they are related to the interactions
between soil, water, atmosphere, and plants. To account for the great variability exhibited by the
seasonal variations while identifying small multiyear trends and changes, we devised a procedure
composed of two steps: (i) application of the Singular Spectrum Analysis (SSA) to each satellite-based
time series to detect and remove the annual cycle including the seasonality and then (ii) analysis
of the detrended signals using the Fisher-Shannon method, which combines the Shannon entropy
and the Fisher Information Measure (FIM). Our results indicate that among all the three pilot test
areas, Castel Volturno is characterized by the highest Shannon entropy and the lowest FIM that
indicate a low level of order and organization of vegetation time series. This behaviour can be linked
to the degradation phenomena induced by the parasite (Toumeyella parvicornis) that has affected
dramatically the area in recent years. Our results were nicely confirmed by the comparison with in
situ analyzed and independent data sets revealing the existence of subtle, small multiyear trends and
changes in MODIS-based vegetation indices.

Keywords: Fisher-Shannon method; satellite time series; vegetation

1. Introduction

Natural capital (NC) through the ecosystem process provides ecosystem services
that are vital and critical to the functioning of the Earth’s life-support system, such as
(but not only) air, water, fertile soil, pollination, and hazard protection. The concept of
NC and associated ecosystem services reflects a recognition that environmental systems
are fundamental not only for providing resources and services but also contributing to
economic outputs and social well-being. The biophysical evaluation of the ecosystem
then leads directly to the ecological and monetary evaluation, since it depends on its
state of conservation. Nevertheless, if any form of vegetation cover (cropland, grassland,
forest, etc.) provides numerous ecosystem services the estimation of the status and trends of
natural capital poses critical challenges due to the diversity of environmental assets, stocks,
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and flows. Moreover, it is widely recognized that today climate change and anthropogenic
pressures do alter major geophysical conditions and adversely affect NC and ecosystem
services, accelerating their depletion. NC assets are limited and vulnerable, and irreversible
environmental changes may render impossible the replacing of NC assets that must be
preserved, and this requires its constant assessment and systematic monitoring.

A recent report by the European Environmental Agency (EEA) underlined the impor-
tance of Earth Observation (EO) data for the monitoring and accounting of the natural capi-
tal to support political decisions, especially for the most critical environmental conditions.

The use of EO-based indicators is particularly relevant for environmental monitoring
because RS (remote sensing)-derived data have been shown to be useful across many
fields, at different temporal and spatial scales from global to local levels using open data
and tools from NASA (MODIS, TM) and ESA (Sentinel 1–5), acquired systematically and
available for the whole globe. Moreover, the rapidly increasing developments of the EO
and Information and Communication Technologies (ICT), including cloud-based resources,
strongly facilitate and support the massive increase of the use of satellite data for change
detection and vegetation monitoring, including risk analyses. Recently, the availability
of big and open data from a cloud source tool, such as Google Earth Engine, strongly
facilitates the use of satellite data such as those available from NASA (MODIS, Landsat
satellites etc.) and ESA (Sentinels) for risk monitoring and hazard mitigation. Cloud-based
computing systems provide ready-to-use and up-to-date datasets along with impressive
computing power without the need to download and locally store large amounts of data.

The EO-based indicators, as the well-known vegetation indices, range from spectral
indices such as the Normalized Difference Vegetation Index (NDVI), to biophysical variable
estimates such as the Leaf Area Index (LAI), fraction of absorbed photosynthetically active
radiation (absorbed by the photosynthesizing tissue in a canopy) (FAPAR), and fraction of
green vegetation cover (FCover) [1].

Many studies [2–5] suggest that evapotranspiration (ET), in combination with other
vegetation indices, is an important variable to monitor and estimate crop yield and biomass.
ET is the process of transferring water vapor from the Earth’s surface to the atmosphere
through evaporation and plant transpiration from wet surfaces. ET plays an important
role in the earth-atmosphere interactions, since it connects the energy, water, and carbon
cycles [4]. The potential and reference ET are influenced through prevailing weather
conditions such as radiation, temperature, wind, and relative humidity [3]. The status of
actual evapotranspiration (ETa), in comparison with its long historical records (e.g., the
ETa anomaly for a given period), has the potential to identify vegetation stress in time and
space [6]; therefore, ETa is an essential element in the design, development, and monitoring
of agricultural and environmental systems [4].

By advancing the remote sensing technologies, ET has been consistently estimated
at multiple spatiotemporal scales using models that can be grouped into: (I) vegetation
index (VI)-based models which rely on vegetation indices (e.g., leaf area index (LAI) or the
Normalized Difference Vegetation Index (NDVI)) as well as meteorological inputs (mainly
net radiation (Rn), air temperature (Tair), and vapor pressure deficit (VPD)) following the
Penman-Monteith logic; and (II) land surface temperature (LST)-based models which rely
on LST as an effective proxy for soil moisture following the surface energy balance (SEB) [7].
Some of the well-known VI-based models are the Priestley-Taylor Jet Propulsion Laboratory
(PT-JPL) [8], the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface
Evapotranspiration (MOD16) [9], and the Global Land-Surface Evaporation Amsterdam
Methodology (GLEAM) [10]. LST-based models are the Surface Energy Balance Algorithm
for Land model (SEBAL) [11], the Mapping Evapotranspiration at High Resolution with
Internalized Calibration (METRIC) [12], and the Surface Energy Balance System (SEBS) [13].

Another important means of quantifying drought in a spatially comparable way across
different regions is the Palmer Drought Severity Index (PDSI), originally developed by
Palmer [14]. Various studies show that PDSI is very effective in determining long-term
drought, considering the basic effects of global warming through potential evapotran-



Entropy 2022, 24, 1784 3 of 17

spiration, and taking precedent (prior month) conditions into account [15–18]. For the
calculation of the PDSI, four inputs are needed: precipitation, temperature, latitude, and
the soil’s available water capacity (AWC) of the study area, which is a constant also known
as the field capacity [19]. These four inputs are used to compute a water balance for the
study area, which then serves as the basis for the calculation of the PDSI. For a detailed
explanation of the calculation of the PDSI, refer to [20].

The main goal of this study was to evaluate the potential of the Fisher-Shannon
statistical method to explore any anomalies happening for the vegetation cover around
large urban areas using soil-water-atmosphere-plant-related satellite products available
in the Google Earth Engine cloud database (i.e., LAI, NDVI, EVI, and ET from MODIS).
Periurban parks were selected for our investigations as particularly significant areas because
they play a key role not only in improving environmental quality and life but also in facing
climatic change and mitigating climate change effects.

2. Study Areas and Dataset

For the purpose of this study, the following three study areas in Italy were selected:
Appia Park and Castel Porziano in the center, and Castel Volturno in the south (Figure 1).
These areas were selected because they are representative of diverse vegetation covers, as
detailed in the following Sections 2.1–2.3.
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Figure 1. Locations of the investigated areas: Castel Porziano (1, green shaded area); Parco Appia
Antica (2, yellow shaded area); and Castel Volturno (3).

The characteristics of the study areas (including longitude, latitude, area, annual
precipitation, annual mean temperature, vegetation description, and climate system) are
presented in Table 1.
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Table 1. Meteoclimatic and vegetational characteristics of the investigated sites.

Study Area Castel Volturno Castel Porziano Appia Park

Longitude 14◦1′45′′ E 12◦23′36′′ E 12◦31′55′′ E
Latitude 40◦56′1′′ N 41◦42′35′′ N 41◦49′40′′ N
Area [km2] 19 85 96
Annual precipitation [mm] 1078 878 878
Annual mean temp. [◦C] 15.5 15.8 15.8
Climate system by the
Köppen-Geiger climate
classification

Hot-summer Mediterranean
climate, Csa Csa Csa

Vegetation description

268 hectares
The site is mainly characterized
by the presence of
woods holm oak, pine forests
with Pinus pinea, and a nucleus
of retro-dunal
hygrophilous vegetation.

2300 hectares The site is mainly
characterized by the presence of
holm oak (261 hectares), cork
oak wood (460 hectares), and
stone pine forest (750 hectares)
The woods alternate with
clearings and
natural grasslands.

4580 hectares: It is a mosaic of different
environments: large spaces intended for
cultivation and extensive grazing are
interrupted by uncultivated areas;
residual wooded strips, where
agricultural exploitation has not arrived
or has long since ceased; ditches with
the presence of riparian vegetation and
some wet areas.

2.1. Castel Volturno

Castel Volturno is a natural reserve which occupies a total area of 268 hectares; it
extends along the sandy coast of the municipality of Castel Volturno (CE), in a strip
between the mouth of the Regi Lagni to the north and the mouth of Lago Patria to the South
(Figure 2). The site includes the protected area named ZSC IT8010021 “Pineta di Patria”
and the Regional Nature Reserve “Foce Volturno-Costa di Licola” made up of pines.
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Figure 2. The Castel Volturno site occupies an area of around 268 hectares, mainly characterized
by the presence of woods holm oak, pine forests with Pinus pinea, and a nucleus of retrodunal
hygrophilous vegetation. The land use classes are from the Corine land cover.

2.2. Castel Porziano

The Presidential Estate of Castelporziano is about 25 km from the center of Rome
(Figure 3) and covers an area of 60 km2 (6039 hectares), consisting of humid areas behind the
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dunes and areas with low and high scrub with the typical evergreen and aromatic species.
Most of the extension is occupied by lowland hygrophilous wood (lowland wood linked to
humid environments), characterized by the presence of evergreen and deciduous oaks and
by more purely hygrophilous species, near the wetlands. The peculiarity of Castelporziano
is above all linked to the interpenetration of the oak grove typical of the Mediterranean
climate and the oak grove typical of the continental climate. Among the evergreen oaks,
the holm oak, the cork oak, and the crenata oak, a hybrid between turkey oak and cork
oak, are widely diffused. Among the deciduous oaks we note the turkey oak, the English
oak, and the farnetto, while in the cooler wetlands we can find poplar, ossifillo ash, maple,
hornbeam, and Oriental hornbeam typical of Mediterranean coastal environments. The
wood (mixed plain), one of the most delicate ecosystems to be protected, extends for about
2300 hectares; the Mediterranean scrub environments, low and high, cover an area of about
500 hectares; the holm oak occupies an area of 261 hectares above all in the back dune area;
and the cork oak wood covers an area of about 460 hectares. The woods alternate between
clearings and natural grasslands, forming plant associations of great environmental variety.
The stone pine forests, created with artificial reforestation, extend for about 750 hectares
with the purpose of consolidating the sandy dunes and protecting the rear dunes from sea
winds.
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Figure 3. The Castel Porziano site occupies an area of around 268 hectares, mainly characterized
by the presence of holm oak (261 hectares), cork oak wood (460 hectares), and stone pine forest
(750 hectares). The woods alternate between clearings and natural grasslands. The land use classes
are from the Corine land cover.

2.3. The Appia Antica Regional Park

The Appia Antica Regional Park, with its 4580 hectares, is the largest urban protected
area in Europe. A green wedge runs from the city center towards the Castelli Romani
(Figure 4). This green wedge, a vast 4580 hectares (following the last extension in October
2018), is characterized by various areas of interest: the Via Appia Antica and its adjacencies;
the Caffarella Valley; the archaeological area of the Via Latina and of the Aqueducts; the
Tenuta di Tormarancia; the Tenuta Farnesiana; and the areas of Divino Amore, Falcog-
nana and Mugilla. The park is so vast that it affects three municipalities: those of Rome,
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Ciampino, and Marino. The Park today looks like a mosaic of different environments:
large spaces intended for cultivation and extensive grazing are interrupted by uncultivated
areas; residual wooded strips, where agricultural exploitation has not arrived or has long
since ceased; ditches with the presence of riparian vegetation; and some wet areas. These
seminatural environments and the agricultural contexts now represent the agroecosystem
of the Roman countryside. It is a system of considerable naturalistic and scientific interest,
due to the presence of wildlife communities and plant associations, consistent with the
ecological potential of the area. The Appia Antica Park is a substantial part of the Ecological
Network of the city of Rome and is the most important protected periurban area of the
Lazio Region.
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Figure 4. The Appia Park is around 4580 hectares in size. It is a mosaic of various environments:
large spaces intended for cultivation and extensive grazing are interrupted by uncultivated areas;
residual wooded strips, where agricultural exploitation has not arrived or has long since ceased;
ditches with the presence of riparian vegetation; and some wet areas. The land use classes are from
the Corine land cover.

2.4. Data Sets

Four different satellite products available in the cloud storage of Google Earth Engine
were selected because they are related to the interactions between soil, water, atmosphere,
and plants. For the purpose of this study, MODIS products were chosen due to their global
coverage and long duration of data acquisition. The Supplementary File summarizes the
characteristics of the studied datasets. The area-averaged time-series of studied parameters
were extracted for the polygons representing the study regions (see Figures 1–4) using the
GEE JavaScript API for the common period of 2001–2020.

3. Methods
3.1. The Singular Spectrum Analysis

There are several techniques for decomposing a time series into a certain number of
independent components; among these, Singular Spectrum Analysis (SSA) [21] represents
an efficient and well-known decompositional method that is based on phase-lagged copies
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of the series. The independent components obtained by applying the SSA can be easily
recognizable as slowly changing trend, oscillatory components, and structureless noise [22].

Let us consider a time series yi (i = 1, . . . , N) and a lag M; then the Toeplitz lagged
correlation matrix can be constructed:

cij =
1

N − |i− j|∑
N−|i−j|
k=1 ykyk+|i−j|, 1 ≤ i, j ≤ M (1)

Sorting its eigenvalues λk in decreasing order, the corresponding eigenvectors Ek,j
where j and k vary from 1 to M are used to calculate the k-th principal component i

aik =
M

∑
j=1

yi+jEjk, 0 ≤ i ≤ N −M, (2)

and the k-th reconstructed component of the time series:

Rk =
1
M

M

∑
j=1

ai−j,kEjk, M ≤ i ≤ N–M + 1 (3)

Since the eigenvalue λk represents the fraction of the total variance of the original series
explained in the k-th reconstructed component Rk, the decreasing order of the eigenvalues
also reflects the decreasing order of the reconstructed components by the fraction of the
total variance of the series [23]. SSA requires that the lag M is properly selected. Khan and
Poskitt [24] calculated the maximum M = (log N)c, 1.5 ≤ c ≤ 2.5.

The minimum description length (MDL) criterion [25]:

MDL(k) = − log


p
Π

i=k+1
˘

1
p−k

i

1
p−k

p
∑

i=k+1
λi


(p−k)N

+
1
2

k(2p− k) log N (4)

is used to separate the series into two parts that we can define as trend and detrended
series; λk are the eigenvalues, p is the number of eigenvalues, identical to M, and N is the
length of the original series. The separation occurs at the value of k ∈ {0, 1, 2, . . . , p − 1} for
which the MDL is minimized.

3.2. The Fisher-Shannon Method

By the Fisher-Shannon method, the informational properties of a time series can be
investigated, namely the Fisher Information Measure (FIM) and Shannon entropy (SE),
which are used to quantify the local and global smoothness of the distribution of a series.
The FIM and SE can be employed to characterize the complexity of non-stationary time
series described in terms of order and organization [26]. The FIM measures the order and
organization of the series, and the SE its uncertainty or disorder [27]. The FIM and SE are
defined by the following formulae:

FIM =

+∞∫
−∞

(
∂

∂x
f (x)

)2 dx
f (x)

, (5)

SE = −
+∞∫
−∞

fX(x) log fX(x)dx (6)

where f (x) is the distribution of the series x. The Shannon entropy power NX is generally
used instead of SE:

NX =
1

2πe
e2HX (7)
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to avoid dealing with negative quantities. FIM and NX are not independent of each other
due to the isoperimetric inequality FIM·NX ≥ D [28], where D is the dimension of the space,
which, for the time series, is 1.

FIM and NX depend on f (x), whose accurate estimation is crucial in order to obtain
reliable values of informational quantities. For calculating FIM and NX, we applied the
kernel-based approach that Telesca and Lovallo [29] demonstrated to be better than the
discrete-based approach. Thus, we apply the kernel density estimator method for f(x) [30,31]
as shown in the following formula:

f̂M(x) =
1

Mb

M

∑
i=1

K
(

x− xi
b

)
(8)

where M and b denote the length of the series and the bandwidth, respectively, while K(u)
is the kernel that is a continuous, symmetric, and non-negative function satisfying the two
following constraints:

K(u) ≥ 0 and
+∞∫
−∞

K(u)du = 1 (9)

f (x) is estimated by means of an optimized integrated procedure using the algorithms
of Troudi et al. [32] and Raykar and Duraiswami [33], with a Gaussian kernel:

f̂M(x) =
1

M
√

2πb2

M

∑
i=1

e−
(x−xi)

2

2b2 (10)

Due to the isoperimetric inequality, the Fisher-Shannon information plane (FSIP),
which has the NX as the x-axis and FIM as the y-axis, represents a very useful tool to
investigate the time dynamics of signals [34]. For scalar signals, the curve FIM·NX = 1
separates the FSIP into two parts, and each signal can be represented by a point located
only in the space FIM·NX > 1.

4. Results

We analyzed the 2000–2020 time variation of four vegetation indices: evapotranspi-
ration (ET), normalized difference vegetation index (NDVI), leaf area index (LAI), and
enhanced vegetation index (EVI).

First, the SSA was applied to each time series, and the value of the phase lag M was
selected, taking into account the sampling time of the series (8 days for ET and LAI; 16 days
for EVI and NDVI). To detect at least the annual cycle, M was set as 45 for the ET and LAI
series, and as 24 for the EVI and NDVI series; moreover, these values fit well with Khan
and Poskitt’s [24] criterion, varying the length of the data from 503 values (EVI and NDVI)
to 965 (ET) and 1003 (LAI).

Figure 5 shows the application of the SSA to the ET time series of Appia as an example.
Before applying the SSA, the original time series was normalized. Figure 5a shows the
eigenvalue spectrum of the SSA decomposition; each eigenvalue corresponds to a recon-
structed component and represents the fraction of the total variance of the original series
explained by that component. Figure 5b shows all the obtained reconstructed components,
whose behaviour varies from oscillatory with amplitude modulation to apparently noisy.

Applying the MDL criterion, the signal is separated into a trend and a detrended
series; the value of kmin corresponding to the minimum MDL represents the number of
the first reconstructed components to sum up for obtaining the trend (Table 2). Apply-
ing this criterium to the ET time series of Appia, the MDL curve is shown in Figure 5c,
and the minimum MDL is at kmin = 11; thus, the trend is obtained by summing up the
first 11 reconstructed components (Figure 5d) and the detrended series by subtracting the
trend from the original normalized series (Figure 5e). Figures 6 and 7 show, similarly to
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Figure 5, the application of SSA to the ET series of the other two sites, Castel Volturno and
Castel Porziano.
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Table 2. Values of minimum MDL.

Castel Volturno Castel Porziano Appia

ET 5 7 11
EVI 5 10 10
LAI 5 7 9

NDVI 5 9 10
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The trend is characterized by an oscillatory behaviour that explains the seasonal cycles
of the series, very likely linked with the meteoclimatic variability. The detrended series,
although apparently noisy, would represent the inner time dynamics of the series that might
be not influenced by external driving mechanisms. Table 2 shows for all the investigated
indices the value of the minimum of the MDL criterion.
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Our aim is to characterize the time dynamics of the inner vegetation of the investigated
sites by using the Fisher-Shannon method. Thus, for each site we focused on the detrended
series, since this represents the inner time variability of vegetation not influenced by
external meteoclimatic factors.

Figure 8 shows the FSIP of ET (Figure 8a), EVI (Figure 8b), LAI (Figure 8c), and
NDVI (Figure 8d). The FSIP indicates that the Castel Volturno site is characterized by the
highest Shannon entropy power and the lowest FIM that suggests a low level of order and
organization of vegetation indices; Appia Park, except for the ET, is characterized by the
lowest Shannon entropy power and the lowest FIM that reveal a relative high level of order
and organization of vegetation indices; Castel Porziano is generally characterized by an
“intermediate” behaviour, since the vegetation indices, except ET, are located in the FSIP
between Castel Volturno and Castel Porziano.
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5. Discussion

The potential of satellite systems for the monitoring of vegetation resources is widely
recognized and nowadays the most recent ICT technological developments, the joint use of
artificial intelligence and EO, and the growing availability of information (as well as data
from the free cloud such as GEE) have opened new frontiers and application fields.

The use of EO-based indicators for the monitoring of vegetation is particularly rele-
vant, and recently the RS-derived data have been shown to be useful across many fields;
however, undoubtedly, large earth observation data such as satellite time series pose several
challenges to face in order to transform data in useful and reliable information.

For the purpose of our investigation, the four vegetation indices (ET, NDVI, LAI, and
EVI) are various satellite products available in the cloud storage of Google Earth Engine,
selected because they are related to the interactions between soil, water, atmosphere, and
plants, while MODIS products were chosen due to their global coverage and long duration
of data acquisition.

The analyses of satellite time series are generally quite complex and time-consuming
due to the amount of data, but they are expected to be as suitable for the identification
of both slow and fast changes as, for example, parasites or salinization, deforestation or
wildfires, which adversely have been affecting NC during the last decades. In reality, the
ability and effectiveness of change detection approaches and methods depend on the ability
to account for the great variability exhibited by the seasonal variations (at seasonal and/or
intra-annual scales) while identifying small multi-year trends and changes at diverse
interannual time scales.

The methodological approach consisted of the following steps: decomposition of
each satellite vegetation index through the SSA, detection of annual and seasonal cycles,
separation between trend and detrended series, and application of the Fisher-Shannon
method to the detrended series. In particular, this approach enabled us to perform the
deseasonality and, therefore, to split the stronger seasonal dynamics from the subtle inner
time variability of the investigated signals. Identifying and extracting information related
to the potential presence of small but significant trends or variations in vegetation is an
important issue, and the effectiveness of change detection approaches depends on their
ability to account for both the great variability exhibited by the seasonal variations and the
small multiyear changes that might be completely veiled by the seasonal dynamics.

Our study highlighted that the trend is characterized by an oscillatory behaviour
that explains the seasonal cycles of the series, very likely linked with the meteoclimatic
variability. Furthermore, the detrended series, whose variability our study has focused
on, although apparently noisy, would represent the inner time dynamics of the series that
might be not influenced by external driving mechanisms.

For Castel Volturno, a low level of order and organization of the MODIS time series
was observed during the whole investigated period. This behaviour denoted an anomalous
vegetational dynamic that can be explained and attributable to the effect of attack by the
parasite Toumeyella parvicornis, which in the recent years adversely impacted the Pinus trees
of the area, dramatically damaging them.

The reliability of the analytical results obtained from the Fisher-Shannon approach
was assessed by comparisons with field surveys and independent data analyses. In fact, the
results obtained from the statistical analysis herein conducted fit well with the results ob-
tained from the processing of Sentinel 2 data jointly carried out by CNR and Carabinieri [35]
and shown in Figure 9; the dark grey pixels (in Figure 9d) indicate the areas affected by a
decreasing trend (site degradation) as a resulting effect of the parasite attacking the pinus
trees; the white pixels are related to areas involved in increasing trend, mainly linked to
agricultural activities. Finally, Figure 9f,g, acquired during the field survey, clearly provide
evidence of the macroscopic effect of the Toumeyella parvicornis on the pinus trees. An
example of this behaviour, i.e., grey and white pixels, related to decreasing and increasing
trends, is shown in Figure 9e, where the blue and red lines depicted the maximum NDVI



Entropy 2022, 24, 1784 14 of 17

over time as obtained from Sentinel 2 data for the pixels indicated by the blue and red
triangles, respectively.
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Figure 9. Outputs from the analysis jointly conducted by Consiglio Nazionale delle Ricerche (CNR)
and Carabinieri [35] based on the Sentinel 2 NDVI time series. Details related to the results were
obtained by the independent analyses on Sentinel 2 ((a)—2016, (b)—2019, (c)—2021) conducted by
CNR and verified by Carabinieri by field surveys. The figure shows in a, b, and c false colours RGB
(NIR, SWIR, RED) with the healthy vegetation coloured red/orange (red triangle) and the unhealthy
vegetation tending towards green (blue triangle). The dark grey areas in (d) indicated the pixels
affected by a decreasing trend (site degradation). (e) Indicates vegetation trends at two points of
interest: blue negative trend, red stable trend. (f,g) Field survey highlighted that this decreasing
trend is mainly linked to the parasite attack which in the last 5 years strongly affected the pinus tree
and dramatically damaged the area.

The inner dynamic of the vegetation of Appia Antica Park seems quite stable, and
this was confirmed by in situ analysis. This site is mainly involved in and characterised by
agricultural activities that were conducted systematically maintaining the same cultivation
types for the whole period of our analysis [35]. The behaviour of the inner vegetation
appears without anomalous dynamics, because the area was not involved in significant
changes of vegetation status as well as of the land use and land cover as it can be seen from
the Corine land cover updates (freely available online in the framework of the Copernicus
initiative; see, for example, CORINE Land Cover—Copernicus Land Monitoring Service).

Castel Porziano, instead, presents FIM and Shannon Entropy values in the middle
between those of Castel Volturno and Appia, except for the evapotranspiration. Compari-



Entropy 2022, 24, 1784 15 of 17

son with independent data sets [35] can confirm that from 2000 to 2020 the area was quite
stable, as it can be seen from Figure 10, where the Google Earth satellite pictures at higher
resolution do not show particular changes in land cover.
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6. Conclusions

The vegetation of three study areas from the Central (Appia Ancient Park and Castel
Porziano) to the Southern (Castel Volturno) parts of Italy were analyzed. The study areas
were periurban and specifically selected as key in improving environmental quality: in
fact, they are rich in biodiversity and allow urban areas to be more sustainable, helping to
combat climate change and make cities more comfortable, as recently strongly emphasized
by the COVID-19 pandemic emergency.

Thus, for each site we focused on the detrended series, since this represents the inner
time variability of the vegetation not influenced by external meteoclimatic factors.

Results of our analyses highlighted that the (i) trend is characterized by an oscil-
latory behaviour that explains the seasonal cycles of the series, very likely linked with
the meteo-climatic variability, (ii) detrended series, although apparently noisy, would
represent the inner time dynamics of the series that might be not influenced by external
driving mechanisms.

Among the sites investigated, Castel Volturno was characterized by the highest Shan-
non entropy power and the lowest FIM that indicate a low level of order and organization
of the vegetation indices for this site. Independent analyses and field survey highlighted
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that Castel Volturno is strongly affected by a parasite, the Toumeyella parvicornis, which has
been provoking dramatic damage to the Pinus trees in recent years.

Our results could contribute to the definition of methods suitable for an early di-
agnosis of deterioration trends, and create operational tools for multiscale, multisensor,
multitemporal monitoring of biophysical parameters relating to the state of vegetation.

Our future work will be in the application of robust statistical analyses to satellite time
series to define, for example, indicators devised to assess and monitor land degradation
that can be applied at different spatial and temporal scales using different satellite time
series (MODIS along with Sentinel 2 data sets). In fact, the use of EO-based indicators is
particularly relevant because RS-derived data have been shown to be useful across many
fields, and at the local to global levels using data freely available from NASA (MODIS, TM)
and ESA (Sentinel 1–5).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24121784/s1.

Author Contributions: Conceptualization, L.T. and R.L.; methodology, L.T.; software, M.L.; valida-
tion, G.P., A.A., G.C., N.A. and R.L.; formal analysis, L.T.; investigation, F.F., G.P., A.A., G.C., N.A.
and R.L.; resources, R.L.; data curation, N.A. and F.F.; writing—original draft preparation, L.T. and
R.L.; writing—review and editing, L.T. and R.L.; visualization, F.F.; project administration, G.P. and
R.L.; funding acquisition, G.P. and R.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by CNR in the framework of the SMART Forest project, funded
by Carabinieri CUFAA, and COELUM, funded by CNR.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Filipponi, F.; Valentini, E.; Nguyen Xuan, A.; Guerra, C.A.; Wolf, F.; Andrzejak, M.; Taramelli, A. Global MODIS fraction of green

vegetation cover for monitoring abrupt and gradual vegetation changes. Remote Sens. 2018, 10, 653. [CrossRef]
2. Bastiaanssen, W.G.M.; Noordman, H.; Pelgrum, G.; Thoreson, B.P.; Allen, R.G. SEBAL model with remotely sensed data to

improve water resources management under actual field conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [CrossRef]
3. Senay, G.B.; Budde, M.E.; Verdin, J.P. Enhancing the simplified surface energy balance (SSEB) approach for estimating landscape

ET: Validation with the METRIC model. Agric. Water Manag. 2011, 98, 606–618. [CrossRef]
4. Tadesse, T.; Senay, G.B.; Berhan, G.; Regassa, T.; Beyene, S. Evaluating a satellite-based seasonal evapotranspiration product and

identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia. Int. J. Appl. Earth Obs.
Geoinf. 2015, 40, 39–54. [CrossRef]

5. Abbasi, N.; Nouri, H.; Didan, K.; Barreto-Muñoz, A.; Chavoshi Borujeni, S.; Salemi, H.; Nagler, P. Estimating Actual Evap-
otranspiration over Croplands Using Vegetation Index Methods and Dynamic Harvested Area. Remote Sens. 2021, 13, 5167.
[CrossRef]

6. Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping
using remote sensing and weather datasets: A new parameterization for the SSEB approach. J. Am. Water Res. Assoc. 2013, 49,
577–591. [CrossRef]

7. Laipelt, L.; Kayser RH, B.; Fleischmann, A.S.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-term monitoring of
evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote Sens.
2021, 178, 81–96. [CrossRef]

8. Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II
data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [CrossRef]

9. Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ.
2011, 115, 1781–1800. [CrossRef]

10. Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fern´andez-Prieto, D.; Beck, H.E.; Dorigo, W.A.;
Verhoest, N.E.C. GLEAM v3: Satellitebased land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925.
[CrossRef]

11. Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land
(SEBAL): 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [CrossRef]

12. Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration
(METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [CrossRef]

https://www.mdpi.com/article/10.3390/e24121784/s1
https://www.mdpi.com/article/10.3390/e24121784/s1
http://doi.org/10.3390/rs10040653
http://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85)
http://doi.org/10.1016/j.agwat.2010.10.014
http://doi.org/10.1016/j.jag.2015.03.006
http://doi.org/10.3390/rs13245167
http://doi.org/10.1111/jawr.12057
http://doi.org/10.1016/j.isprsjprs.2021.05.018
http://doi.org/10.1016/j.rse.2007.06.025
http://doi.org/10.1016/j.rse.2011.02.019
http://doi.org/10.5194/gmd-10-1903-2017
http://doi.org/10.1016/S0022-1694(98)00253-4
http://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)


Entropy 2022, 24, 1784 17 of 17

13. Su, B. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100.
[CrossRef]

14. Palmer, W.C. Meteorological Drought; US Weather Bureau Research Paper; Department of Commerce, Weather Bureau: Melbourne,
Australia, 1965; Volume 45.

15. Zhang, H.; Song, J.; Wang, G.; Wu, X.; Li, J. Spatiotemporal characteristic and forecast of drought in northern Xinjiang, China.
Ecol. Indic. 2021, 127, 107712. [CrossRef]

16. Aghelpour, P.; Mohammadi, B.; Mehdizadeh, S.; Bahrami-Pichaghchi, H.; Duan, Z. A novel hybrid dragonfly optimization
algorithm for agricultural drought prediction. Stoch. Environ. Res. Risk Assess. 2021, 35, 2459–2477. [CrossRef]

17. Liu, Y.; Zhang, X.; Song, H.; Cai, Q.; Li, Q.; Zhao, B.; Mei, R. Tree-ring-width-based PDSI reconstruction for central Inner Mongolia,
China over the past 333 years. Clim. Dyn. 2017, 48, 867–879. [CrossRef]

18. Zhang, B.; Wu, P.; Zhao, X.; Wang, Y.; Gao, X.; Cao, X. A drought hazard assessment index based on the VIC–PDSI model and its
application on the Loess Plateau, China. Theor. Appl. Climatol. 2013, 114, 125–138. [CrossRef]

19. Jacobi, J.; Perrone, D.; Duncan, L.L.; Hornberger, G. A tool for calculating the Palmer drought indices. Water Resour. Res. 2013, 49,
6086–6089. [CrossRef]

20. Alley, W.M. The Palmer drought severity index: Limitations and assumptions. J. Appl. Meteorol. Climatol. 1984, 23, 1100–1109.
[CrossRef]

21. Vautard, R.; Ghil, M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D
1989, 35, 395–424. [CrossRef]

22. Hassani, H. Singular Spectrum Analysis: Methodology and Comparison. J. Data Sci. 2007, 5, 239–257. [CrossRef] [PubMed]
23. Schoellhamer, D. Singular spectrum analysis for time series with missing data. Geophys. Res. Lett. 2001, 28, 3187–3190. [CrossRef]
24. Khan, M.; Poskitt, D.S. Description Length Based Signal Detection in Singular Spectrum Analysis; Monash Econometrics and

Business Statistics Working Papers 13/10; Monash University, Department of Econometrics and Business Statistics: Melbourne,
Australia, 2010.

25. Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33,
387–392. [CrossRef]

26. Fisher, R.A. Theory of Statistical Estimation. Math. Proc. Camb. Philos. Soc. 1925, 22, 700–725. [CrossRef]
27. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
28. Sen, K.D.; Antolín, J.; Angulo, J.C. Fisher-Shannon Analysis of Ionization Processes and Isoelectronic Series. Phys. Rev. A 2007,

76, 032502. [CrossRef]
29. Telesca, L.; Lovallo, M. Fisher-Shannon Analysis of Wind Records. Int. J. Energy Stat. 2013, 1, 281–290. [CrossRef]
30. Janicki, A.; Weron, A. Simulation and Chaotic Behavior of Alpha-Stable Stochastic Processes; Chapman & Hall/CRC Pure and Applied

Mathematics; CRC Press: Boca Raton, FL, USA, 1993; ISBN 978-0-8247-8882-7.
31. Devroye, L. A Course in Density Estimation; Progress in Probability; Birkhäuser Boston Inc.: Cambridge, MA, USA, 1987;

ISBN 978-0-8176-3365-3.
32. Troudi, M.; Alimi, A.M.; Saoudi, S. Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study.

EURASIP J. Adv. Signal Process. 2008, 2008, 739082. [CrossRef]
33. Raykar, V.C.; Duraiswami, R. Fast optimal bandwidth selection for kernel density estimation. In Proceedings of the 2006 SIAM

International Conference on Data Mining, Bethesda, MD, USA, 20–22 April 2006; Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 2006; pp. 524–528, ISBN 978-0-89871-611-5.

34. Vignat, C.; Bercher, J.-F. Analysis of Signals in the Fisher–Shannon Information Plane. Phys. Lett. A 2003, 312, 27–33. [CrossRef]
35. Lasaponara, R.; Abate, N.; Fattore, C.; Aromando, A.; Cardettini, G. Project report 2021-0002058/2021 del 15/12/2021 [Accordo di

collaborazione tra il CUFA e il CNR –IMAA per attività di supporto alla progettazione, realizzazione e gestione del Programma
SMART FOREST MONITORING—Monitoraggio delle anomalie multi spettrali delle foreste italiane tramite remote sensing
da piattaforme satellitari nell’ambito del “green New Deal e Transizione ecologica del Paese” relativamente alle attività di
monitoraggio forestale e ambientale. (available upon request).

http://doi.org/10.5194/hess-6-85-2002
http://doi.org/10.1016/j.ecolind.2021.107712
http://doi.org/10.1007/s00477-021-02011-2
http://doi.org/10.1007/s00382-016-3115-6
http://doi.org/10.1007/s00704-012-0826-4
http://doi.org/10.1002/wrcr.20342
http://doi.org/10.1175/1520-0450(1984)023&lt;1100:TPDSIL&gt;2.0.CO;2
http://doi.org/10.1016/0167-2789(89)90077-8
http://doi.org/10.6339/JDS.2007.05(2).396
http://www.ncbi.nlm.nih.gov/pubmed/36376866
http://doi.org/10.1029/2000GL012698
http://doi.org/10.1109/TASSP.1985.1164557
http://doi.org/10.1017/S0305004100009580
http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://doi.org/10.1103/PhysRevA.76.032502
http://doi.org/10.1142/S2335680413500208
http://doi.org/10.1155/2008/739082
http://doi.org/10.1016/S0375-9601(03)00570-X

	Introduction 
	Study Areas and Dataset 
	Castel Volturno 
	Castel Porziano 
	The Appia Antica Regional Park 
	Data Sets 

	Methods 
	The Singular Spectrum Analysis 
	The Fisher-Shannon Method 

	Results 
	Discussion 
	Conclusions 
	References

