ISTITUTO DI ELABORAZIONE DELLA INFORMAZIONE

PISA

Radiometro spettrale ad immagine VIRS-201: descrizione del sistema per l'elaborazione in linea dei dati e progetto del software

L. Bedini A. Ribolini

Nota Interna B4-19 Giugno 1992

Lavoro eseguito nell'ambito di una collaborazione con Sie-Lab s.r.l. e Officine Galileo S.p.A.

INDICE

1. DOCUMENTI DI RIFERIMENTO	.1
2. DESCRIZIONE GENERALE	
2.1 software residente sulla CO.S.C-A.	.3
2.2 software residente sul DSP/VIS-NIR	.4
2.3 software residente sul DSP/FLIR	
3. DESCRIZIONE DELL'HARDWARE DSP/VIS-NIR	.5
3.1.Mappa di memoria	
3.1.1. Address latch (indirizzo Y:A000)	.7
3.1.2. Registro di controllo HARD1 (Indirizzo Y:E000)	.8
3.1.3. Registro di controllo HARD2 (Indirizzo Y:F000)	.8
3.1.4. Configurazione della Dual Port RAM	.9
4. DESCRIZIONE FUNZIONALE DEL SOFTWARE	.9
4.1. Organizzazione del software	.10
4.2. Modalita' di attivazione e controllo delle funzioni	.13
4.3 Sincronizzazione con ISR_FRAME	.16
4.4 Gestione degli errori	.16
4.5 Descrizione delle funzioni svolte dal modulo principale	.17
4.5.0. Stand by	.17
4.5.1. Setup	.18
4.5.2. Diagnostica	19
4.5.3. Operativo	19
4.5.4. Calibrazione	22
4.5.5. Comandi registratore	.22
4.5.6. Selezione bande VIS	
4.5.7. Impostazione guadagno - shutter VIS	23
4.5.8 Impostazione parametri IR	25
4.5.9 Ripristino configurazione.	
4.5.10 Errore (o malfunzionamento)	
5. BIBLIOGRAFIA	27

1. DOCUMENTI DI RIFERIMENTO

- 1.1 Officine Galileo: Specifica Tecnica: "VIS 201 Requisiti per il software on-line del modulo di controllo ed acquisizione" N. ST9110021;
- 1.2 Officine Galileo: Specifica Tecnica: "Requisiti del software VIRS-201 Modulo di Elaborazione - MES - DSP_CCD" N. ST/I-91-007/3;
- 1.3 Officine Galileo: schema elettrico della scheda DSP_CCD.

2. DESCRIZIONE GENERALE

Il VIRS_201 e' un radiometro spettrale ad immagine, in grado di misurare la radiazione spettrale dell'area di osservazione. Il nome VIRS-201 (Visual-InfraRed-Scanner) deriva dal fatto che vengono utilizzati due sensori separati (CCD e IR) per l'acquisizione di dati nelle bande del Visibile e Infrarosso.

Le teste di rilevazione sono montate fisicamente su una piattaforma stabilizzata giroscopicamente sull'asse di rollio. Questa piattaforma ha il compito di mantenere stabilmente la linea di mira delle teste sul campo previsto di osservazione correggendo gli errori sull'asse di rollio generati dall'aereo.

Con il radiometro saranno compiute missioni di telerilevamento aereo su aree ben definite. Lo strumento verra' calibrato a terra secondo una determinata procedura, poi verra' installato a bordo del velivolo e quindi alimentato in modo da raggiungere le condizioni previste per la sua operativita'.

Durante la prima fase del volo l'operatore avra' la possibilita' di bloccare il sistema di stabilizzazione della piattaforma nelle fasi cruciali di volo e dovra' impostare i parametri caratteristici della macchina (guadagni, diaframma ...).

Terminata questa attivita' l'operatore dovra' limitarsi ad abilitare o inibire il registratore dati quando verranno esplorate le zone interessate della missione.

Nel tempo che intercorre fra due acquisizioni successive l'operatore avra' la possibilita' di effettuare alcune operazioni:

- sostituire bombola di raffredamento IR;
- sostituire nastro magnetico;
- modificare i parametri impostati nella fase di predisposizione dello strumento

I dati acquisiti dai sensori durante la missione dovranno essere pre-elaborati e registrati tramite una registratore a cassette.

I dati provenienti dalla testa VIS_NIR saranno pre-elaborati in tempo reale e su ogni singolo segnale verra' eseguita una moltiplicazione per un opportuno fattore correttivo per equalizzare le risposte radiometriche.

I dati provenienti dalla testa IR saranno invece integrati durante il tempo di scansione di una linea CCD allo scopo di aumentare il rapporto segnale rumore e riportare allo stesso valore della testa VIS il flusso di dati IR.

I dati cosi' elaborati verranno inviati al registratore per il loro trasferimento su un nasrtro magnetico con un formato che oltre all'integrazione dei dati acquisiti prevede informazioni inerenti ai parametri di misura, dati di volo e dati per le correzioni radiometriche.

L'operatore potra' interagire con il sistema tramite una interfaccia costituita da una tastiera, un display e da una serie di pulsanti e lampade posti sul pannello del modulo di controllo.

Il sistema, come risulta dallo schema di figura 1, e' costituito da un modulo di controllo e un modulo di elaborazione.

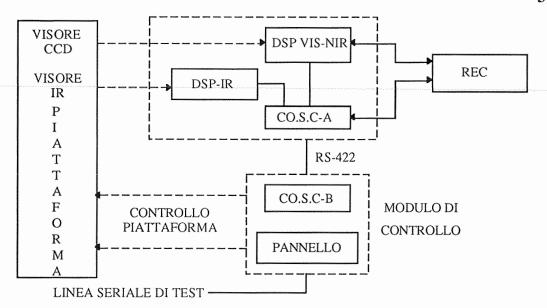


figura 1: schema a blocchi del sistema

I due moduli distinti scambieranno informazione fra loro utilizzando una linea seriale asincrona 422.

Il modulo di controllo prevede un software a bordo della CO.S.C-B che controlla il funzionamento della piattaforma sulla quale sono montate le teste di rilevazione, gestisce il colloquio con il modulo di elaborazione e l'interfaccia con l'operatore (pulsanti, lampadine, display e tastiera).

Il modulo di elaborazione prevede invece 3 software distinti:

2.1 software residente sulla CO.S.C-A.

Questo software deve compilare e tenere sempre costantemente aggiornato l'header di record, sincronizzare le attivita' delle carte DSP/FLIR e DSP-VIS-NIR, comunicare con la CO.S.C-B per ricevere i comandi dell'operatore e inviare informazioni destinate al display, deve leggere e scrivere FLIR e CCD, deve infine inviare l'header sulla dual-port condivisa con il DSP/VIS-NIR.

2.2 software residente sul DSP/VIS-NIR

Durante l'acquisizione questa carta e' preposta alla compilazione del record di dati che sara' inviato ad un registratore. Fra due acquisizioni successive, su richiesta dell'operatore, questo DSP dovra' effettuare alcune operazioni sui dati provenienti dalla testa CCD per estrarre informazioni sulla dinamica della scena osservata.

La descrizione dettagliata del software presentato in questo paragrafo e' l'oggetto della presente Specifica del Software.

2.3 software residente sul DSP/FLIR.

Il DSP riceve, durante l'acquisizione, dalla testa FLIR in 33 msec. circa 60 linee composte di 1060 campioni ciascuna a 8 bit. Compito del software e' quello di selezionare i 1024 campioni centrali e di fare la media sui campioni di posizione di almeno 30 linee, scelte in modo uniforme fra le 60 disponibili. La linea risultante, composta dai 1024 campioni "media" normalizzati ad una dinamica di 10 bits, verra' impacchettata opportunamente e inviata sulla dual-port comunicante con la CO.S.C prima dell'arrivo dalla testa IR delle 60 linee seguenti.

Fra le due acquisizioni successive, come per il DSP VIS-NIR, l'operatore potra' richiedere indicazioni sulla dinamica del segnale IR osservato.

3. DESCRIZIONE DELL'HARDWARE DSP/VIS-NIR

L'hardware DSP/VIS-NIR e' costituito da n schede identiche basate sul DSP Motorola 56000 operanti in parallelo.

Lo schema a blocchi di ciascuna scheda e' riportato in figura 2.

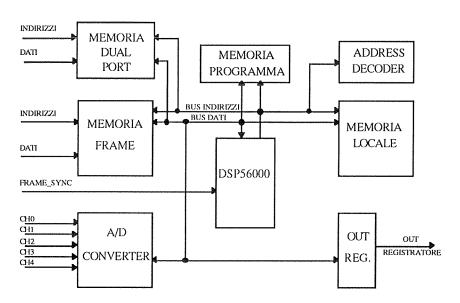


figura 2: schema a blocchi della scheda DSP

La memoria frame, di profondita' 256Kword da 16bit, e' costituita dalle RAM U48-U51. Gli indirizzi e i dati provenienti dall'esterno, bufferizzati dai driver Tree_State U43-U47, sono in grado di indirizzarla e quindi di scriverla integralmente. Il DSP56000, invece, vede questa RAM attraverso una finestra di 16384 word, posizionata mediante la scrittura dell'address latch. Quest'ultimo registro fornisce gli indirizzi A14-A17 necessari al completo indirizzamento della RAM. Mentre il mondo esterno puo' solamente scrivere nella memoria frame, il DSP56000 puo' sia leggere che scrivere. I buffer di separazione dei dati-indirizzi del DSP56000 con quelli provenienti dall'esterno sono U53 e U54, per quanto riguarda gli indirizzi e U56 e U57 per quanto riguarda i dati; U55 e' il registro indirizzo citato.

Ogni scheda DSP ha un ponticello di identificazione sulle uscita della U58 in quanto la CO.S.C-A seleziona la scheda in scrittura tramite3 linee di selezione (SEL_0, SEL_1 e SEL_2 fino a 8 schede DSP); dette linee corrispondono alla numerazione binaria delle schede DSP presenti nel sistema. Il cambiamento di stato delle tre linee di selezione avviene in sincronismo con il segnale frame_sync. Il segnale cosi' generato (RAM_LOAD) abilita i buffer in ingresso verso la RAM frame ed e' applicato al registro di

controllo HARD2 come bit D2. Non c'e' nessun accorgimento hardware che evita l'eventuale conflitto tra scrittura dall'esterno e scrittura da parte del DSP56000; il software deve assicurare la non utilizzazione della memoria frame quando il bit D2 del registro HARD2 e' pari a 0.

Le partizioni dell'area di memoria indirizzabile dal DSP56000 (U1) vengono effettuate dai decoder U41 e U42 che generano i seguenti segnali:

CCDR	per la pagina RAM da 8K associata alla memoria
	frame (X)
CSR	per indirizzare la ram locale 32K (Y)
DUAL_PORT	per indirizzare la Dual Port 4K (Y)
MEMB	per scrivere sul registro indirizzo (Y)
G	per scrivere il registro HARD1
OUT	per scrivere verso il registratore
s.n	per scrivere il registro HARD2

Il DSP56000 (U1) utilizza come memoria programma le logiche U5-U7 che sono tre EPROM 32Kx8 tipo 57C256 in cui deve essere memorizzato il modulo software oggetto della presente specifica; la logica U5 e' quella relativa al byte basso, la U6 al byte intermedio e la U7 al byte alto.

Analogamente alla memoria programma, la memoria locale Y da 32K e' stata implementata utilizzando tre RAM tipo CY7C199 da 32K byte ciascuna (U2-U4). Lo watch-dog timer e' realizzato tramite MAX692 (U9) resettato dalla linea proveniente dal latch U13 che costituisce il registro di controllo HARD1. Tramite questo registro viene abilitato il buffer U14 in uscita verso il registratore, l'informazione di strobe al registratore e' fornito dalla linea denominata OUT generata per ogni operazione di scrittura all'indirizzo Y:E800.

La dual port memory e' costituita da un unico chip tipo IDT7024L (U17) di capacita' 4K word a 16 bit. L'indirizzi e dati provenienti dall'esterno sono bufferizzati dai driver U18-U21, mentre quelli provenienti dal DSP56000 sono applicati direttamente in quanto la DPRAM e' selezionata tramite la linea DUAL_PORT generata dalla decodifica interna degli indirizzi.

Per l'identificazione dei pin del connettore, presente sulla scheda, necessari alla simulazione dell'ambiente esterno, si veda lo schema elettrico della scheda DSP_CCD.

3.1.Mappa di memoria

In base a quanto riportato nella Specifica Tecnica delle Officine Galileo N ST/I-91-007/3 ed in base alla descrizione dell'hardware riportata nel paragrafo precedente, la costituzione della scheda DSP/VIS-NIR puo' essere sintetizzata, dal punto di vista del software presente su ciascuna scheda, come di seguito specificato.

MEMORY MAP

		=======================================	:=
	X MEMORY	=	Y MEMORY
	// //	0000 7FFF	32K LOCAL MEMORY
8000 AFFF	16K PAGE DATA MEMORY	* I T T T T T T T T T T T T T T T T T T	4K D.P. MEMORY
	//	A000	ADD.LATCH
		E000	HARD1
		E800	OUT REG >> registratore
		F000	HARD2
	 //	 	

Si tenga presente che le aree di memoria, proprie del DSP56000, quali la "ON-CHIP PERIPHERAL" e la "INTERRUPT MAP", non vengono rappresentate ma le stesse sono considerate mappate agli indirizzi previsti da qualsiasi manuale o Data Book Motorola relativi al Digital Signal Processor della famiglia DSP56000.

3.1.1. Address latch (indirizzo Y:A000)

Permette di selezionare la pagina di 16384 parole, tramite la quale accedere, in lettura, alla memoria frame contenente i dati da elaborare. La sua configurazione e' la seguente:

3.1.2. Registro di controllo HARD1 (Indirizzo Y:E000)

Questo registro contiene i comandi necessarie all'attivazione della scrittura dati verso il registratore ed il bit di reset del watch-dog timer. La sua configurazione e' la seguente:

3.1.3. Registro di controllo HARD2 (Indirizzo Y:F000)

Il registro contiene il bit CCD che, quando letto a zero, indica che e' in corso l'operazione di scrittura della memoria frame.. La sua configurazione e' la seguente:

3.1.4. Configurazione della Dual Port RAM (Indirizzi Y:8000-Y:8FFF)

L'area di indirizzamento, relativa alle 4096 parole a 16 bit, associata alla memoria Dual Port, e' cosi' configurata:

8000 807F		PREAMBOLO ///////////	256 byte
8100 81FF	 	HEADER RECORD	512 byte
8280 82FF		POSTAMBOLO ///////////////////////////////////	256 byte
8350 884F		CAMPO DATI IR /////////	2.5Kbyte
8900 8A3F	 	SOTTOCAMPI VIS //////////	20x32 byte
8B00	1	MODALITA' DI FUNZIONAM	ENTO 1w
8B01	1	DSP SELEZIONATO DA I/F	1w
8B02	1	STATO REGISTRAZIONE	1w
8B03	Ī	ERRORE	1w
8B04	1	DSP_RUN	1w
8C00 8C7F		ISTOGRAMMA (DSP0) //////////	128word
8C80	1	ESITO DIAGNOSTICA DSP	1w
8D00	1	DATI VALIDI ISTOGRAMMA	1w
8FFF	 	IDENTIFICAZIONE DSP	1w

4. DESCRIZIONE FUNZIONALE DEL SOFTWARE

Di seguito viene riportata la descrizione funzionale del software per la scheda DSP/VIS-NIR. Le specifiche dettagliate del software sia per la scheda DSP/VIS-NIR, che per la scheda DSP/FLIR, sono riportate nei documenti [1] e [2].

4.1. Organizzazione del software

Il software per le schede DSP/VIS-NIR e' costituito da un modulo principale e da due Interrupt Service Routine (ISR_TIMER e ISR_FRAME), denominate nel seguito con la sola dicitura ISR, ed e' organizzato come mostrato in figura 3.

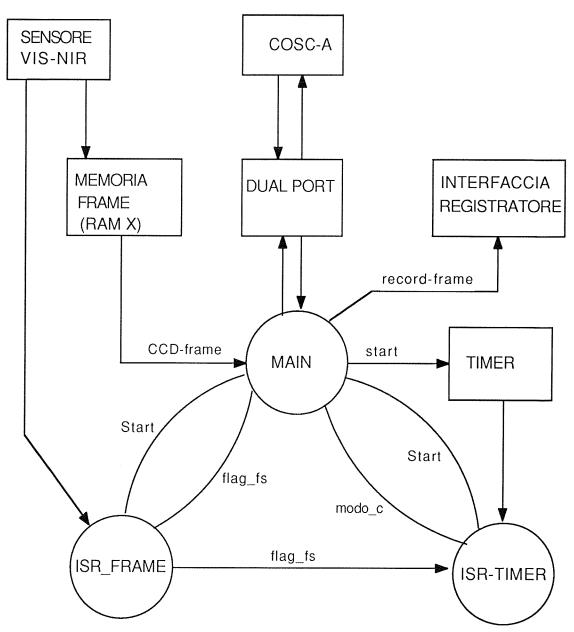


figura 3: organizzazione del software residente sulla scheda DSP

La ISR_TIMER e' attivata, ogni 10 msec, dall'interrupt generato dal timer interno al DSP56000; la routine svolge i seguenti compiti principali:

- a) legge la cella di memoria della dual-port memory in cui la CO.S.C-A ha memorizzato la modalita' di funzionamento;
- b) controlla, attraverso un time_out, la presenza del sincronismo di frame;
- c) controlla il valore di una variabile sita nella dual-port memory atta a segnalare la presenza di errori nel modulo principale;
- d) trasmette al modulo principale il nome (modo_c) della modalita' di funzionamento; nel caso riveli la mancanza del sincronismo di frame o la presenza di un errore nel modulo principale(vedi punto c) trasmette la modalita' di funzionamento "MALFUNCTION";
- e) ogni 500 msec. invia il segnale di reset del watch dog timer ed incrementa la cella DSP_RUN sita nella dual-port memory.

La ISR_FRAME e' attivata, ogni 34 msec., dal segnale di sincronismo di frame. La routine invia al modulo principale il segnale di sincronizzazione flag_fs necessario per lo svolgimento di quelle funzioni in cui e' richiesta la sincronizzazione tra l'attivita' di elaborazione, di acquisizione e di trasferimento dei dati.

Il segnale flag_fs e' inviata anche alla ISR_TIMER che lo utilizza per l'espletamento dell'attivita' b. Il modulo principale esegue la modalita' di funzionamento trasmessa dalla ISR_TIMER, utilizzando, se necessario, i segnali di sincronizzazione generati dalla ISR_FRAME.

Al modulo principale compete inoltre l'attivita' iniziale connessa al Power_Up o Reset del DSP56000.

Sono previste le seguenti modalita' di funzionamento:

0 = stand by

1 = setup

2 = diagnostica

3 = operativo

4 = calibrazione

5 = comandi registratore

6 = selezione bande VIS

7 = impostazione guadagno - shutter VIS

8 = impostazione parametri IR

9 = ripristino configurazione

10 = errore

Dopo la fase iniziale il modulo si pone in stand-by in attesa di ricevere da ISR_TIMER il comando relativo ad una nuova modalita' di funzionamento, tramite la variabile modo_c.

Quando una nuova modalita' e' attivata si possono avere fondamentalmente due casi:

- a) la modalita' non utilizza i segnali di sincronismo generati dalla ISR_FRAME: l'attivita' del modulo relativa all'espletamento della modalita' attivata viene eseguita prima che la ISR_TIMER possa selezionare una diversa modalita'; il modulo esegue e si pone in attesa di un nuovo comando;
- b) la modalita' utilizza il segnale di sincronismo generato dalla ISR_FRAME: l'attivita' del modulo e' svolta in cicli successivi; ciascun ciclo si sincronizza con il segnale generato dalla ISR_FRAME. Il modulo esegue e, al termine di ciascun ciclo, controlla se e' stata selezionata una diversa modalita' di funzionamento.

E' prevista l'utilizzazione di un vettore func_status[] di variabili atte a riassumere lo stato dell'attivita' in corso per ciascuna delle funzioni. Nel caso non venga riconosciuta una

modalita' di funzionamento prevista (n>10), viene inviata una segnalazione di errore. Il significato e le modalita' di aggiornamento delle variabili func_status[] sono illustrate nel paragrafo 4.2.

4.2. Modalita' di attivazione e controllo delle funzioni

Le varie funzioni, svolte dal modulo principale, sono attivate e controllate con due modalita' diverse a seconda che utilizzino i segnali di sincronizzazione della ISR_FRAME.

Ad ogni funzione function[n], n=0-10, e' associata una variabile di stato func_status[n]. Tale variabile assume il valore di -1, quando la funzione non e' attivata. La modalita' di funzionamento selezionata da ISR_TIMER e' memorizzata nella variabile modo c.

Lo schema di flusso delle varie modalita' di funzionamento e' riportato in figura 4.

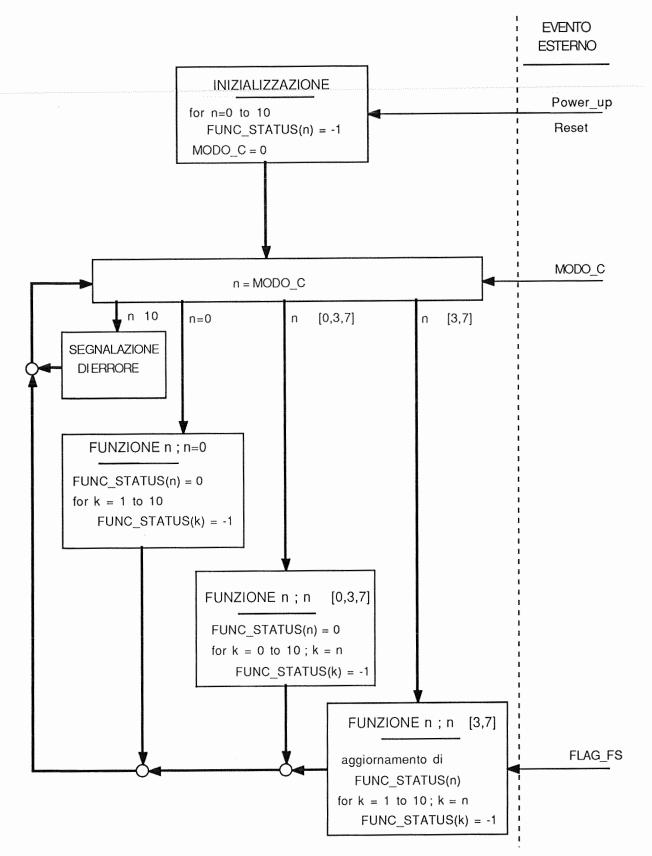


figura 4: aggiornamento di FUNC_STATUS[] nel modulo principale

Le variabili di stato func status[] assumono i seguenti valori:

a) per le funzioni con indice n diverso da 3 e da 7:

b) per la funzione con indice n=3:

c) per la funzione con indice n = 7:

Per ogni scheda DSP e' definita una variabile **primo_frame** che segnala la presenza di un frame valido sulla ram X della scheda DSP.

Tale variabile e' aggiornata dalle funzioni con indice 3 o 7. Assume il valore 1 quando e' presente un frame valido.

4.3 Sincronizzazione con ISR_FRAME.

Per la sincronizzazione con ISR_FRAME viene utilizzato un flag flag_fs. Tale flag e' settato dalla ISR_FRAME e resettato dai moduli principali, operanti in ciascuna scheda, che lo utilizzano.

Il meccanismo di sincronizzazione e' reso operativo solo per le funzioni 3 e 7. In fase di inizializzazione (power-up o reset) si pone flag fs=0.

Al fine di assicurare l'uscita dal ciclo di attesa su flag_fs, anche quando manchi il segnale di sincronismo di frame, viene utilizzato il time out gestito dalla ISR_TIMER. Allo scadere del time out prefissato, e cioe' nel caso manchi il sincronismo di frame, ISR_TIMER forza modo_c=10 (errore) e setta la variabile error al valore ERR_CODE quindi pone flag_fs=1 per forzare l'uscita dalla fase di attesa nel modulo attivato correntemente.

4.4 Gestione degli errori

Si hanno fondamentalmente due tipi di errori:

- a) errori rilevati dal modulo principale, quali, ad esempio, modo_c > 10 o numero di frame trasferiti dalla RAM X maggiore di NMAX;
- b) mancanza del sincronismo di frame, rilevata attraverso il time out gestito da ISR_TIMER.

Nel caso a il modulo principale utilizza la variabile error per segnalare la presenza e il tipo di errore rilevato; ISR_TIMER controlla la variabile error e forza la modalita' di funzionamento MALFUNCTION.

Nel caso b l'errore viene direttamente rilevato da ISR_TIMER che aggiorna la variabile error e forza la modalita' di funzionamento MALFUNCTION.

Il valore della variabile error e' trasferito nella cella ERRORE della dual port in modo da rendere l'informazione disponibile a CO.S.C-A. Il valore della cella ERRORE viene testato dalla isr_timer(); quando CO.S.C-A azzera tale cella, la isr_timer(), tramite modo_c forza la modalita' di funzionamento richiesta da CO.S.C-A.

4.5 Descrizione delle funzioni svolte dal modulo principale

Nel presente paragrafo vengono descritte in dettaglio le funzione svolte dal modulo principale.

4.5.0. Stand by

In questa modalita' le variabili di stato associate a ciascuna funzione vengono reinizializzate al valore -1 e la variabile **error** resettata a 0. Lo schema di flusso e' riportato in figura 5.

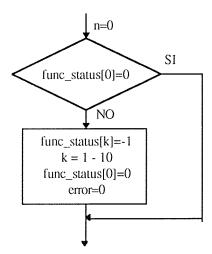


figura 5: schema di flusso per la modalita' operativa n=0

4.5.1. Setup

Non viene eseguita nessuna attivita'. Il controllo viene restituito immediatamente al modulo principale. Lo schema di flusso e' riportato in figura 6.

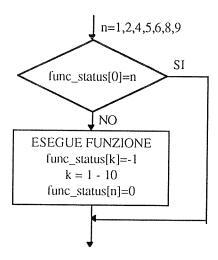


figura 6: schema di flusso per le modalita' n=1,2,4,5,6,8,9

4.5.2. Diagnostica

Il modulo esegue la seguente attivita':

- a) verifica che in coda al campo dati della testa VIS-NIR, sulla RAM Y del DSP56000, siano presenti 64 byte con contenuto 2EH;
- b) controlla che nella Dual Port memory siano memorizzati i seguenti dati:

Indirizzo Valore

Y:8C80 0

Y:8D00 FALSE

Y:8FFF FFH

Y:8B00 2 (DIAGNOSTICA)

Y:8B02 'N'

Y:8B01 FFH

c) comunica alla CO.S.C-A, tramite la Dual Port il risultato della diagnostica ('O' = risultato OK, 'K' = esito negativo).

Lo schema di flusso e' riportato in figura 6.

4.5.3. Operativo

Il modulo esegue le seguenti attivita':

- a) controlla, tramite la Dual Port, quale scheda DSP e' in fase di acquisizione dati dalla testa VIS-NIR. Per tale controllo utilizza le informazioni memorizzate dalla CO.S.C-A sulla Dual Port relative all'identificazione del DSP e al DSP selezionato in scrittura dati dalla testa VIS-NIR;
- b) se la scheda DSP e' in fase di acquisizione dati dalla testa VIS-NIR, il modulo controlla lo stato del registratore. Se il registratore e' attivo il modulo gestisce il trasferimento dei

- dati memorizzati nella memoria Y verso l'interfaccia con il registratore;
- c) se la scheda DSP non e' in fase di acquisizione dati dalla testa VIS-NIR, il modulo trasferisce i dati presenti nella RAM X del DSP alla RAM Y, inserendo al termina di ciascuna riga di 512 dati, un campo checksum di 8 dati (2 byte per dato).

Il modulo esegue ciclicamente le attivita' sopra citate, sincronizzandosi con i segnali generati da ISR_FRAME. Nel primo ciclo il trasferimento dati al registratore non viene effettuato perche' non sono ancora presenti dati da trasferire. Tale attivita' ha termine quando la CO.S.C-A forza una diversa modalita' di funzionamento o quando viene rilevata una condizione di errore. Lo schema di flusso e' riportato in figura 7.

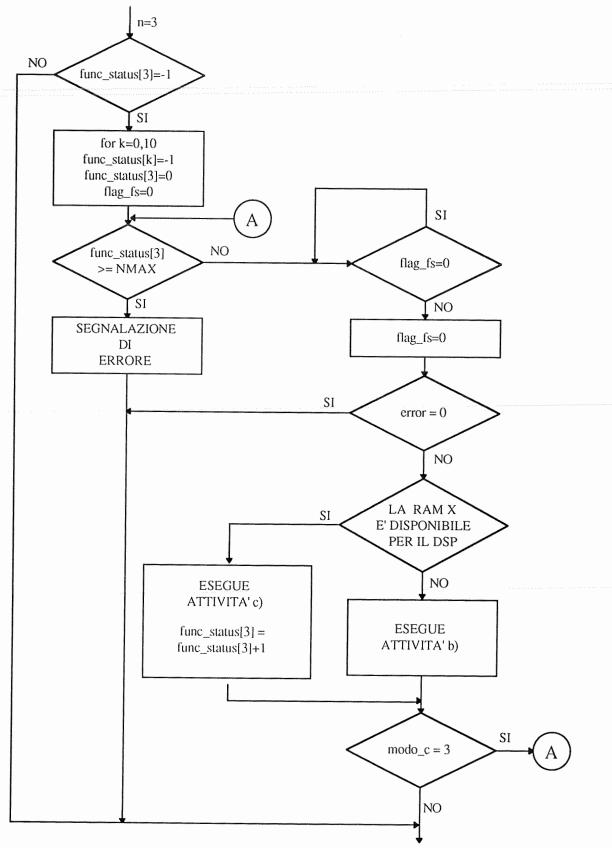


figura 7: schema di flusso per la modalita' operativa n=3

Sono previste due possibili cause di errore:

- a) il numero di frame trasferiti e' maggiore di NMAX;
- b) la ISR_TIMER rileva la mancanza del sincronismo di frame.

Nel caso b la ISR_TIMER forza flag_fs=1 in modo da consentire l'uscita dal ciclo di attesa; segnala inoltre l'errore settando la variabile error in maniera appropriata. Il modulo rimane nella modalita' operativa fino a quando la ISR_TIMER forza la modalita' di funzionamento MALFUNCTION.

4.5.4. Calibrazione

Non viene eseguita nessuna attivita'. Il controllo viene restituito immediatamente al modulo principale. Lo schema di flusso e' riportato in figura 6.

4.5.5. Comandi registratore

Non viene eseguita nessuna attivita'. Il controllo viene restituito immediatamente al modulo principale. Lo schema di flusso e' riportato in figura 6.

4.5.6. Selezione bande VIS

Non viene eseguita nessuna attivita'. Il controllo viene restituito immediatamente al modulo principale. Lo schema di flusso e' riportato in figura 6.

4.5.7. Impostazione guadagno - shutter VIS

Il modulo residente sulle schede DSP con numero di identificazione diverso da 0 operano in stand by; il modulo residente sulla scheda DSPO esegue le seguenti attivita':

- a) azzera un blocco di memoria Y costituito da 1024 dati (2 byte per dato) in cui verra' memorizzato una prima versione dell'istogramma;
- b) azzera la cella della Dual Port relativa ai "dati validi istogramma";
- c) controlla, tramite Dual Port, se la scheda DSPO e' in fase di acquisizione dati dalla testa VIS-NIR;
- d) se la scheda DSPO e' in fase di acquisizione si pone in fase di attesa;
- e) se la scheda DSPO non e' in fase di acquisizione dati, ed ha acquisito un frame, gestisce il trasferimento dei dati dalla memoria X e aggiorna i dati istogramma nel blocco di 1024 dati predisposto nella memoria Y.

Il modulo esegue le attivita' c, d, e, in modo ciclico, sincronizzandosi con i segnali trasmessi dalla ISR_FRAME. L'attivita' ha termine o perche' la CO.S.C-A ha forzato una nuova modalita', o perche' sono stati completati 10 cicli o perche' e' stata rilevata la mancanza del sincronismo di frame.

Se sono stati completati 10 cicli il modulo esegue:

- f) compatta l'istogramma calcolato su 1024 punti in 64 punti, sommando i dati di 16 celle contigue;
- g) normalizza i dati dell'istogramma cosi' calcolato in modo da avere come valore massimo 32;
- h) trasferisce i dati istogramma sulla Dual Port e segnala alla CO.S.C-A che i dati di istogramma sono validi scrivendo il valore OFFH nella cella "dati validi istogramma" della Dual Port.

Lo schema di flusso e' riportato in figura 8.

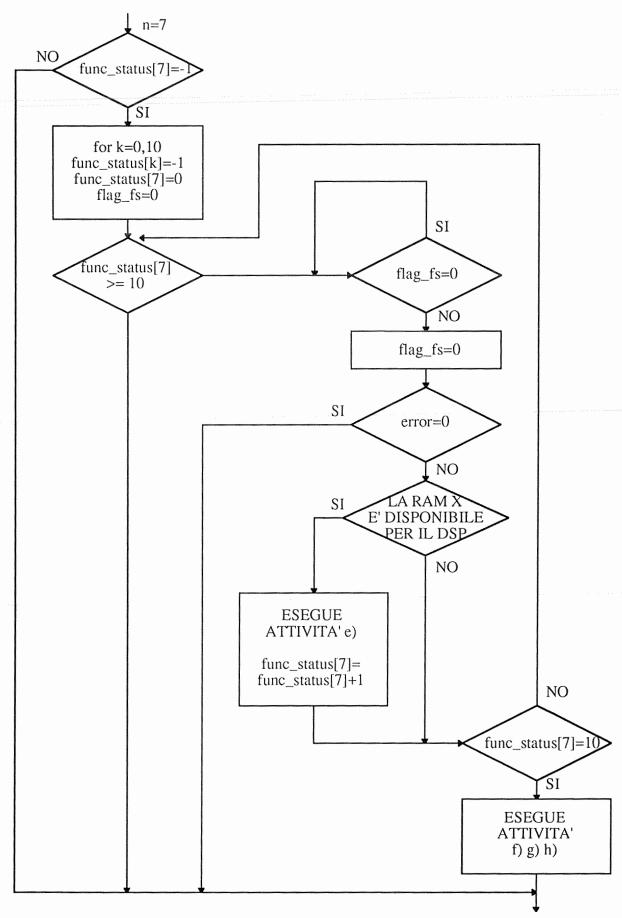


figura 8: schema di flusso della modalita' operativa n=7

4.5.8 Impostazione parametri IR

Non viene eseguita nessuna attivita'. Il controllo viene restituito immediatamente al modulo principale. Lo schema di flusso e' riportato in figura 6.

4.5.9 Ripristino configurazione

Non viene eseguita nessuna attivita'. Il controllo viene restituito immediatamente al modulo principale. Lo schema di flusso e' riportato in figura 6.

4.5.10 Errore (o malfunzionamento)

Le modalita' 4.5.3 e 4.5.7 e la isr_timer() possono rilevare degli errori. Tali errori vengono comunicati alla CO.S.C-A attraverso la cella ERRORE della dual-port. In presenza di errore la isr_timer() forza la presente modalita' (MALFUNCTION).

In questa modalita' il modulo cicla in attesa che la isr_timer() selezioni una nuova modalita' di funzionamento.

Il contenuto della cella ERRORE ha il seguente significato:

- ERR = identifica la presenza di almeno un errore;
- ${\sf ENM}$ = se settato indica che il conteggio dei frame validi per la modalita' OPERATIVO ha superato il valore 2^{24} 1
- COD = se settato indica che e' stato ricevuto un codice sconosciuto;
- ${\sf EFS} = {\sf se}$ settato evidenzia l'assenza del segnale di sincronismo frame_sync.

Lo schema di flusso e' riportato in figura 9.

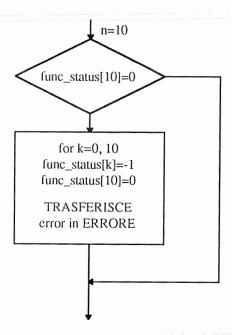


figura 9: schema di flusso per la modalita' operativa n=10

5. BIBLIOGRAFIA

- [1] L. Bedini, A. Ribolini:

 "Radiometro spettrale ad immagine VIRS-201: specifiche del software di elaborazione dei dati nella banda visibile"

 Nota Interna B4-20, Giugno 1992

 I.E.I. del CNR Pisa.
- [2] L. Bedini, A. Ribolini:

 "Radiometro spettrale ad immagine VIRS-201: specifiche del software di elaborazione dei dati nella banda infrarosso"

 Nota Interna B4-21, Giugno 1992

 I.E.I. del CNR Pisa.