Team Automata for Security Analysis of
Multicast /Broadcast Communication*

Maurice ter Beek!, Gabriele Lenzini', and Marinella Petrocchi?

! Istituto di Scienza e Tecnologie dell’Informazione, ISTI-CNR
Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy
{maurice.terbeek,gabriele.lenzini}@isti.cnr.it
2 Istituto di Informatica e Telematica, IIT-CNR
Area della Ricerca di Pisa, Via G. Moruzzi 1, 56124 Pisa, Italy

marinella.petrocchi@iit.cnr.it

Abstract. We show that team automata (TA) are well suited to model
secure multicast/broadcast communication with possible packet loss. This
is a consequence of the natural way in which one-to-many (one-to-all)
transmissions typical of multicast (broadcast) sessions can be modelled
as communications between the component automata (CA) constitut-
ing a TA. To this aim, we use TA to model an instance of the EMSS
multicast protocol family. In addition, we investigate a formulation of
the Generalized Non-Deducibility on Compositions (GNDC) schema in
terms of TA with the aim to embed TA in this well-established analysis
framework. We intend to use this new setting for the formal verification
of security properties for stream signature protocols.

Keywords:team automata, multicast /broadcast communication, GNDC

1 Introduction

Multicast/broadcast communication technology was born with the intent of sav-
ing bandwidth and CPU time with respect to the standard point-to-point con-
nection known as unicast. A single virtual connection indeed uses no more band-
width and resources for thousands of users than it does for a single user. Multicast
and broadcast communication however present substantial differences. A sender
transmitting a stream of data to a set of receivers could broadcast the stream
to all the connected recipients (e.g. radio and TV broadcasts) or multicast the
stream only to designated recipients (e.g. pay-per-view TV and conference calls).
Multicast and broadcast data packets are usually sent over unreliable transport,
protocols, such as the User Data Protocol (UDP). This may cause packet loss
(the stream is received incomplete by a part of the recipients). A variety of
stream signature protocols dealing with the problem of authenticating streamed
data over channels with packet loss has recently been proposed [10, 18, 19].
* ter Beek is supported by an ERCIM postdoctoral fellowship, Lenzini is supported by MIUR project
SP4, and Petrocchi is partially supported by MURST Progetto “Metodi Formali per la Sicurezza
ed il Tempo” (MEFISTO), by CNR project “Tecniche e Strumenti Software per ’Analisi della

Sicurezza delle Comunicazioni in Applicazioni Telematiche di Interesse Economico e Sociale”, and
by a CSP grant for the project “SeTAPS II”.

The aim of this paper is twofold. First it provides an initial investigation
of the use of team automata (TA) for modelling stream signature protocols
for secure multicast/broadcast communication in scenarios where packet loss
may occur. To this aim an instance of one such a protocol, viz. the determin-
istic (1,2) schema of the Efficient Multi-chained Stream Signature (EMSS) pro-
tocol [19] is modelled by TA. Secondly, it inquires the possibility of defining
a formal verification framework in terms of TA for analyzing the security of
multicast /broadcast protocols. To this aim we study how the Generalized Non-
Deducibility on Compositions (GNDC) schema may be reformulated in terms
of TA, since this would embed TA in this well-established theory for defining
and verifying a variety of security properties [7, 8, 17]. Generally speaking, a
system specification P satisfies GNDCj(P) if and only if P, despite the fact
that it is running in a hostile environment, appears indistinguishable from «(P)
(w.r.t. a notion < of external observation). This «(P) represents the correct
behaviour of P. Security properties such as NDC (Non-Deducibility on Compo-
sitions) and BNDC (Bisimulation-based NDC) [6] have been subsumed to GNDC
instances [8]. Originally, the GNDC schema was formalized for a CCS-like pro-
cess algebra and efficient verification strategies may be applied for verifying that
P satisfies GNDC2") when specific conditions are met. Here we intend to take
some preliminary steps towards formulating a TA version of GNDC.

TA form a flexible framework for modelling communication between system
components [1, 2, 3], originally introduced in [5]. A TA is composed of compo-
nent automata (CA), which are ordinary automata without final states and with
a distinction of their sets of actions into input, output and internal actions. TA
model the logical architecture of a system by describing it solely in terms of an
automaton, the role of actions and synchronizations between these actions. The
crux of composing a TA is to define the way in which its constituting CA commu-
nicate by synchronizations reflecting the specific protocol of communication to
be modelled. TA are an extension of input/output automata (I0A) [16, 22]. We
now discuss this relation in an informal way. Formal comparisons can be found
in [1, 2, 3]. The only difference between CA and IOA is the fact that the latter
are input enabled: in each state it must be possible to execute every input action.
Given a set S of CA, there is no such thing as the unique TA composed over
S. Rather, a whole range of TA, distinguishable only by their synchronizations,
can be composed over this set of CA. IOA, on the other hand, are constructed
according to a single and very strict method of composing automata, in effect
resulting in composite automata that are uniquely defined by their constituents.
Finally, IOA do not allow synchronizations of output actions, whereas TA do.

The fact that TA allow one-to-many types of synchronization between a set
of CA makes them naturally suited for modelling multicast/broadcast communi-
cation. The basic communication mechanism in most CCS-like process algebras,
however, is pairwise synchronization (in the form of an input/output handshake)
between just two processes. This explains why in [17], where a CCS-like process
algebra is used in order to exploit a well-established analysis framework, replica-
tion of pairwise synchronizations is used to simulate multicast/broadcast com-

munication. Moreover, packet loss is modelled by considering a receiver process
that nondeterministically chooses whether or not to receive a packet. In the TA
framework, also packet loss can be modelled in a natural way by varying the one-
to-many type of synchronization per action. It would be interesting to further
investigate the possibility to exploit process algebras like CSP [12], which can
naturally express one-to-many communication, or the Calculus of Broadcasting
Systems [20], which has broadcast as its main communication mechanism.

TA are compositions of CA that cooperate by synchronizing on certain ac-
tions. These synchronizations are labelled transitions describing state changes
caused by global team actions. As a consequence, the operational semantics in
terms of TA computations is of a sequential nature and does not reflect the
fact that TA are distributed systems. If we switch from global (team) actions
to vectors of (component) actions, however, then we have available the local
information from which we can immediately extract which CA participate in
a team synchronization. This visualizes the potential concurrency within a TA
and thus relates TA to the world of Petri nets. In fact, this variant of TA called
vector TA can be translated to a particular model of vector-labelled Petri nets
from the framework of Vector Controlled Concurrent Systems (VCCSs), viz. In-
dividual Token Net Controllers (ITNCs) [13, 14]. Though related, a number of
important differences remain between vector TA and ITNCs. Contrary to vector
TA, ITNCs allow fundamentally different actions to synchronize. In this respect,
ITNCs thus allow the modelling of more types of synchronization than (vector)
TA do. However, ITNCs do not distinguish between input, output, and internal
actions, which is a crucial modelling feature of (vector) TA. Finally, ITNCs are
finite-state systems, whereas (vector) TA may have an infinite number of states.

The paper is organized as follows. Section 2 lists some mathematical nota-
tions used throughout the paper and formally defines the framework of TA with
multicast/broadcast communication. In Section 3 we briefly describe the EMSS
protocol and show how to model its deterministic (1,2) schema by TA. In Sec-
tion 4 we venture into the use of TA for security analysis by reformulating an
instance of the GNDC schema in terms of TA. Section 5 concludes the paper.

2 TA with Multicast/Broadcast Communication

We begin this section with a list of mathematical notations that are used through-
out this paper and which may be skipped on first reading. Consequently, we
formally define the framework of TA with multicast/broadcast communication.

2.1 Some Notation

We assume some familiarity with basic notions of formal language theory [21].
Set inclusion is denoted by C. Set difference of sets V' and W is denoted by

V —W. The powerset of set V, formed by its finite parts only, is denoted by 2V.
N denotes the set of positive integers. Let Z C N be a set of indices given by

T = {i1,ia,... } withi; <idpif 1 <j < £. Forsets Vj, i € Z, we denote by [, Vi

the (cartesian) product {(vj, ,vi,,...) | vi; € Vi, for all j > 1}. In addition to the
prefix notation Hiel Vi, we also use the infix notation V;; x V;, x ---. Let j € 7.
Then projz ; : [[;e7 Vi = Vj is the function defined by projz ;((as,ai,,...)) =
aj. We thus note that if 7 = {2, 3}, then projz »((a,b)) = a.

Let f: A — A" and let g : B — B’ be (total) functions. Then fxg: AxB —
A" x B is defined as (f x g)(a,b) = (f(a),g(b)). We will use f[?I as shorthand
notation for fx f : Ax A — A’ x A’. Thus f1?/(a,b) = (f(a), f(b)). This notation
should not be confused with iterated function application. In particular, we will
use projim as shorthand notation for proj; x proj,. If C' C A, then f(C) = {f(a) |
a €O}, andif D C A x A, then f2/(D) = {(f(d1), f(d2)) | (d1,d2) € D}.

Let X' and I' be two sets of symbols. Then the homomorphism presy : ¥ —
I'*, defined by presy, (a) = a if a € I" and presy; (a) = A otherwise, preserves
the symbols from I" and erases all other symbols. Whenever X' is clear from the
context, we simply write pres, rather than presy, .

2.2 Team Automata (TA)
In this subsection we recall some definitions and results concerning TA from [3].

Definition 1. An automaton is a construct A= (Q, X4, 1), with (possibly in-
finite) set Q of states, set X' of actions, QN Y = &, set § C Q x ¥ x Q of
transitions, and set I C () of initial states.

The set C4 of computations of A is defined as consisting of the sequences
a = qoaiqiasqz -, with qo € I and, for all i > 1, ¢; € Q, a; € X, and
(gi—1,ai,q;) € 0, together with all their prefizes.

The I"-behaviour BY of A, with I' C X, is defined as BL, = presp(C4). O

The X-behaviour of A is also called the behaviour of A. Let a€ X. The set ¢, of
a-transitions of A is defined as 6, ={(q,q')|(¢,a,¢') €6} and a is enabled in A
at state g, denoted by aen 4 q, if there exists a state ¢’ of A such that (q,q") €d,.

A CA is an automaton distinguishing between output, input, and internal
actions. Its internal actions have strictly local visibility and cannot be used for
communication with other CA. Its input and output actions are observable by
other CA and are used for communication between CA.

Definition 2. A component automaton (CA) is a construct C = (Q, (Zout; Zinp,
Yint), 0, 1), with underlying automaton (Q, oyt U Xinp U Zint, 0, 1) and pairwise
disjoint sets Yoy of output, Xiy,p, of input, and Xy, of internal actions. O

X denotes the set X, U Xy U Xipyy of actions of C and X,y denotes its set
Zout U Xinp of external actions.

For the rest of this section we let S = {C; | i € Z} be an arbitrary but fixed
set of CA specified as C; = (Q4, (Xi,out, Zi inp, Xi,int); 0i, 1;), with set of actions
i =Y out U X inp U X int.

When composing a TA over S, we require the internal actions of the CA in S
to be private, i.e. for all 1 € Z, X ;s N Uje(Zf{i}) Y; = @. Such an S is called a
composable system. For the rest of this section we let S be a composable system.

The state space of a TA composed over S is the product of the state spaces
of the CA from S. Its actions, consequently, are uniquely determined by the
actions of the CA from S. Each action that is output for one or more of the CA
becomes an output action of the TA. Hence an action that is an output action of
one CA and also an input action of another CA, is considered an output action
of the TA. The input actions of the CA that do not occur at all as an output
action of any of the CA, become the input actions of the TA. Every internal
action of the CA becomes an internal action of the TA. The transitions of the
TA, finally, are based on but not fixed by those of the CA from S by allowing
certain synchronizations, while excluding others.

Definition 3. Let a € |J;c; Xi. The set A,(S) of synchronizations of a is de-
fined as Aq(S) = {(g,4') € [Tiez @i x [Tiez @i | [35 € T proji®(a,q) € 5.0 A
[Vi € Z: [proji®(a,q') € 610]V [proji(a) = proji(¢)]]}- O

A, (S) thus consists of all possible combinations of a-transitions of CA from
S, with all non-participating CA remaining idle. It is explicitly required that
in every synchronization at least one CA participates. The transformation of a
state of a TA over S is defined by the local state changes of the CA from S
participating in the action of the TA being executed. Hence, when defining a
TA, a specific subset of A,(S) must be chosen for each action a. This enforces
a certain kind of communication between the CA constituting the TA.

Definition 4. A team automaton (TA) over S is a construct T = (Q,(Xout,
Einp: Eint): 57 [)7 with Q = HiEZ Qi; Eout - UiEI Ei,outa Einp - (UiEZ Ei,inp) -
Loutr, Yint = UiEI Ezﬂnt; d c Q x X x Q; where X = Yy U Einp U Yint, is
such that {(q,q') | (¢,a,q") € 6} C Au(S), for alla € ¥, and {(¢,¢") | (¢,a,4") €
0} = Au(S), for all a € Yy, and I =T],c1 L. O

Each choice of synchronizations thus defines a TA. At this point it is important
to observe that every TA is again a CA, which in its turn can be used as a CA
in an iteratively composed TA. TA can thus be used as building blocks. In order
to do so, two important issues must be dealt with.

First it may be necessary to internalize certain external actions of a TA,
before using this TA as a building block, in order to prohibit the use of these
actions on a higher level of the construction.

Definition 5. Let T = (Q, (Zinp, Zouts Zint),0,1) be a TA and let I' C Xepy.
Then hldeF(T) = (Q: (Eznp - F; Eout - F; Eint U F),(5, I) a

In hidep(T), the subset I' of external actions of 7 have thus become unob-
servable for other TA by turning them into internal actions. Often the external
actions to be hidden are those that are used in communications between CA.

Definition 6. The set X, of communicating actions of S is defined as X¢on =
{a S UiEI Ez’,emt | Jdi,j€Z:a€ (Em‘np n Ej,out) U (21‘72‘”1, n Ei,out)}- O

Secondly, it must be possible to construct unique TA of a certain specified type.
This is the subject of the next subsection.

2.3 Multicast/Broadcast Communication in TA

In [3] several fixed strategies for choosing the synchronizations of a TA were
defined, each leading to a uniquely defined TA. These strategies fix the synchro-
nizations of a TA by defining, per action a, certain conditions on the a-transitions
to be chosen from A,(S), thus determining a unique subset of A,(S) as the set
of a-transitions of the TA. Such subsets are referred to as predicates for a. Once
predicates have been chosen for all actions, the TA over S defined by these predi-
cates is unique. Here we introduce some new predicates specifically for modelling
multicast /broadcast communication in TA.

Definition 7. Let a € |J;c; X and let J C Z. The predicate J-cast for a in S,
denoted by R} (S), is defined as R (S) = {(¢,¢') € Au(S) | [Vj€ J:[a€ T;A
aenc; proj;(q))] = projj[Q] (q,4") €6 NVI€Z\J : [projg;(q) =proj;(q')]}- O

The predicate J-cast thus contains all and only those a-transitions from A,(S)
in which every CA from J participates whenever a is currently enabled in that
CA, while none of the other CA does. These predicates thus model multicast
communication between CA. Obviously, the Z-cast predicate models broadcast
communication between CA. Hence in the sequel we may also refer to it as the
broadcast predicate.!

Definition 8. Let J C I, let R)(S) C Au(S) for all a € ;e Xi, and let
RJ = {Rg(S) | ac Uie] El} Then T = (Qa (Eoutyzinpaz‘int)y(sa I) iS the RJ'
TA over S, denoted by ||”S, if 6, = RI(S), for all a € U;c7 % O

Each R7-TA over S, with J C Z, is also called the J-cast TA over S because it is
the unique TA with the following property: the addition of any synchronization
results in a TA that contains a synchronization in which a CA from J in which
a is currently enabled does not participate. Furthermore, the RZ-TA over S is
also called the broadcast TA over S and it may also be denoted by |||S.

3 A Case Study: The EMSS Protocol Modelled by TA

In this section we show how the TA framework can be used to model protocols
for secure multicast/broadcast communication with possible packet loss. We do
this by modelling a particular instance of the EMSS protocol in terms of TA.

3.1 The EMSS Protocol

The Efficient Multi-chained Stream Signature (EMSS) protocol to sign digital
streams was introduced in [19]. EMSS exploits a combination of hash functions
and digital signatures and—contrary to previous proposals [9]—achieves (some)
robustness against packet loss. A stream signature protocol tolerates packet loss

! The broadcast predicate is called is-state-indispensable in [3].

whenever an incompletely received stream still allows the user to verify the
integrity of the packets that were not lost.

Actually, EMSS is a family of protocols. Here we focus on a specific instance of
this family, viz. the deterministic (1,2) schema. We assume that a sender S wants
to send a stream of messages mg, my, . . . , Myas 10 a set of receivers { R, | n > 1}.2
The protocol then requires S to send triples of messages (called packets) to the
receivers. After an initial phase, each packet P; contains a meaningful payload
m;,> together with the hashes h(P;_1) and h(P;_») of the previous two packets
sent. The end of a stream is indicated by a signature packet Py;g, containing
the hashes of the final two packets, along with a digital signature. In this way,
some robustness against packet loss is achieved.* The protocol can formally be
described as follows.

LN {R, |n>1} packet Py = (mo,d, D)

s 2y {R,|n>1} packet P = (my,(F),D)
S (R, |n>1} packet P = (mi,h(Pi_1), h(P;s)) 2 < i< last
ST% IR, In>1) packet Py, = (

——
=
)
i~}
w»
a
Nl
>
)
s
[}
3
|
o
)
=
w
ol
=
n
2
~~—

3.2 The EMSS Protocol Modelled by TA

In this subsection we use the TA framework to model the deterministic (1,2) sche-
ma of the EMSS family of protocols. We model the sender S by a CA Tg and
the set {R,, | n > 1} of receivers by n copies of a CA Tg. Ts uses its private key
sk(Ts) and a public key pk(Ts) to perform regular digital signature operations.
Let Messages denote the set {mg, m1,..., M} of meaningful payloads. Then
Ts uses the hash function h : Messages — Hashed, while 7g uses the hash
function h = h. Moreover, T uses the function s : 2M2"ed s Signed, defined
by s(H) = Hgy(1y), to sign sets of hashed messages with its private key sk(7s),
whereas Tr uses the function § : Signed — {true, false} and the public key pk(7s)
to verify whether or not a set of hashed messages was signed by Ts.

Before presenting the specification of 75 we note that we specify TA in the
way IOA are commonly defined [15, 16]. The notation for their sets of states
and transtitions might require some further explanation. The states of a TA are
defined by the current values of the variables listed under States. The transitions
of a TA are defined, per action a, as preconditions (Pre) and effect (Eff): (¢, a,q")
is a transition of 75 whenever the precondition of a is satisfied by ¢ and ¢’ is the
transformation of ¢ defined by the effect of a. We omit the precondition for an
action when this precondidition is true.

2 As is usual for recipients of digital data streams, the receivers are not able to com-
municate among each other.

We assume the private sender key sk(S) cannot be deduced from {m; | 0<i< last}.

* In [19], loss tolerance is increased by sending multiple copies of the signature packet.

Ts

Actions
Py Py P;
N

e e - A
Output: {(mo, &, @), (m1, h(Po), @)} U{(mi, h(Pi—1), h(P;i—2)) | 2 < i < last}
U {{{P(Piast)s B(Prast—1) sk (15)) }

P,

sign.

Input: @
Internal: {Hash; | 0 < i < last} U {Sign}

States

sent C Messages, hashed C Hashed, signed C Signed, all initially &

Transitions
Py Hashi, 0 <1< last
Eff: sent :=sentU {Py} Pre: P; € sent
Eff: hashed := hashed U {h(F;)}
Py
Pre: h(Py) € hashed P, 2<i< last
Eff: sent := sent U {P1} Pre: {h(P;-1),h(P;—2)} C hashed
Eff: sent :=sent U {P;}
Sign
Pre: h(Past) € hashed Psigp
Eff: signed := signed Pre:{h(Pase)h(Prast—1)} sir) € Signed

U {s ({h(Prast), h(Prast—1)})} Eff: sent :=sent U { Psign }

Clearly Ts has no input behaviour, while its output behaviour B ot consists
of all prefixes of Py P - - - Pjast Psign . To actually send the packets F, Pl, ooy Prast,
Py;ign in this particular order, 7s needs to perform some internal computations,
which is reflected by the fact that its internal behaviour B%’"t consists of all
prefixes of HashoHashy - - - Hash,s Sign.

We continue with the specification of Tg, capable of receiving all packets
Py, Py, ..., Pgst, Psign as input behaviour. Upon receiving P;, Tg verifies whether
or not it has received P;_;. First consider the case that Tr indeed received P;_;.
Then it extracts the hash h(P;_;) from P;, computes the hash h(P;_;), and
compares these two hashes. If they are equal, then the verifiable payload m;_ 1
is extracted from P;_. If they are not equal, then 7x has no output behaviour.

Secondly, consider the case that 7 did not receive P;_;. Then it verifies
whether or not it has received P;_». If it did not, then 7x concludes that it is
unable to check the hashes of either P;_; or P;_», so it goes on to verify whether
or not it has received P;y;. If T did receive P;_,, then it extracts the hash
h(P;_») from P;, computes the hash h(P;_»), and compares these two hashes. If
they are equal, then the verifiable payload m;_» is extracted from P;_5. If they
are not equal, then Tr has no output behaviour.

Eventually Tg receives the signature packet Psignf after which it verifies
the accompanying digital signature,® before repeating the above procedure. The
verification of the signature allows 7x to have guarantees on the integrity of the
stream of verifiable payloads collected in xtractedM, which is consequently sent
to the application level as the output behaviour of Tg.

Tr
Actions
Output: Messages
Input: {P; | 0 <7 < last} U {Psign}
Internal: {XtractH ;, XtractM ;, Hash; | 0 < i < last} U { Verify, Stream}

States

received, xtractedM C Messages, xtractedH, hashed C Hashed, all initially &
verified, send C {true, false}, both initially false

Transitions

P, 0<i<last
Eff: received := received U {P;}

XtractH; 1, 1 <1 < last
Pre: {Pi—1, P;} C received
Eff: xtractedH := xtractedH
XtractH; 2, 2 <1 < last U {h(Pi—1)}
Pre: [{P;—2, P;} C received]
A[P;—1 ¢ received] Puign
Eff: xtractedH := xtractedH Eff: received := received U {Piign }
U{h(Pi-2)}
XtractH sign,1
Pre: [{Piast, Psign } C received]
A [verified = true]
Eff: xtractedH := xtractedH
U {h(Piast)}

Verify
Pre: [P.ign € received |

/\[g({h(Plast)7 h(Bastfl)}sk(Ts)) :true]
Eff: verified := true

XtractH sign,2

Pre: [{Puast—1, Psign} C received |
A [Prast ¢ received] A [verified =true]
Eff: xtractedH := xtractedH

Stream
Pre: [[mias: € xtractedM]
V [[Miast—1 € xtractedM]

N[Plast ¢ received]]] A[verified =true]
Eff: send := true

U {h(Prast—1)}

5 We assume Pi;4n is always received. However, in the specification of 7z we sometimes
check if Psign has already been received to avoid a transition to take place before Psign
has actually been received.

5 We assume T has previously retrieved the public key pk(7s) corresponding to the
private key sk(Ts).

XtractM ;, 0 <i < last Hashi, 0 <1< last
Pre: [h(P;) € xtractedH] Pre: h(P;) € xtractedH
A [h(P;) € hashed] A [A(P;) =h(P)] Eff: hashed := hashed U {h(P;)}
Eff: xtractedM := xtractedMU{rm;}
mi, 1 <1< last
mo

Pre: [send =true] A[mg € xtractedM] Pre: [send =true] A[mi; € xtractedM]

Eff:xtractedM := xtractedM —{mo} A[{m|0<k <i} N xtractedM = 2]
Eff: xtractedM := xtractedM—{m; }

Clearly the input behaviour B%"” of Tg consists of all prefixes of all possi-
ble permutations of FyP; - - Plast Psign- When Tg actually receives the packets
Py, Py, ..., Past, Psign in this particular order, then 7x is able to perform a series
of internal computations, reflected by the fact that its internal behaviour B%"t
contains XtractH ; Hasho XtractMoXtractH» y Hashy XtractM - - - XtractH g5 1
Hashge—1 XtractM s —1 Verify XtractH gy, 1 Hashige XtractM 44 Stream, as well
as—reflecting a different order of performing the same series of internal computa-
tions—XtractH 1 XtractHs 1+ - - XtractH 1461 Hasho XtractM o Hashy XtractM - - -
Hashjast—1 XtractM 501 Verify XtractH gign 1 Hashiss XtractM a5 Stream and—
reflecting yet another different order—XtractH, 1 XtractHs --- XtractH o1
Verify Hasho XtractM o Hash, XtractM y - - - Hashqsi—1 XtractM 41 XtractH gg, 1
Hash g5 XtractM 45 Stream. Finally, the output behaviour B%’“ of Tg consists
of all prefixes of momy - - - Mygst-

Let C; = Ts and let C; = Tg,” for all 2 < i < n + 1. Then the {1}-cast
TA over {C; | 1 < i < n+ 1} is essentially the same as Tg. Since it has the
same output behaviour as T, it thus models multicast/broadcast communication
with full packet loss. The K-cast TA over {C; | 1 < i < n + 1}, where K D
{1}, has the union of the output (internal) actions of 7s and Tx as its output
(internal) actions and it has no input actions. The fact that its output behaviour
consists of all prefixes of Py Py - - - Pigst Poignmomi - - - my.e implies that it models
multicast /broadcast communication.

Finally, we illustrate how we can model multicast/broadcast communication
with some packet loss by varying the type of synchronization per output action.
Assume that T performs a multicast communication with two receivers, viz. the
jth and the kth receiver, and let L = {1} U {4,k | 2 < j < k < n + 1}. If there
would be no packet loss, then we would compose the L-cast TA over {C; | 1 <
i < mn+ 1}. Let X be the alphabet of this TA. Then we recall that the L-cast
TA may also be called the RF-TA or—even more detailed—the {RL |Va € X}-
TA over {C; | 1 < i < n + 1}. Next we assume that there is some packet
loss, viz. the jth receiver does not receive P, and the kth receiver does not
receive Pys; 1. To reflect this packet loss, we would compose the ({RL | Va €

(2~ {P1, Pusr—1)} U{RE, P U {RE "1)-TA over {¢; |1 <i<n+1).

st—

7 Strictly spoken, the internal actions of each 7z must be indexed to satisfy the com-
posability condition.

10

4 Towards Security Analysis with TA

In this section we perform an initial investigation of how TA can be used to
analyze security of cryptographic protocols, in particular those based on multi-
cast/broadcast communication. By doing this in a rather generic way, we hope
to achieve that this framework can eventually serve as a general setup for the
analysis and verification of a variety of security properties for cryptographic
protocols of communication.

4.1 The Insecure Communication Scenario

Contrary to the direct multicast/broadcast communication between sender and
receivers considered so far, we now assume that a sender 7g sends messages to a
set of receivers Tg over an insecure channel. We moreover introduce an intruder,
i.e. an eavesdropper, which is able to listen in on this insecure channel in such a
way that it can modify (fake) all messages passing through this channel. When
verifying security properties for communication protocols, it is quite common
to include (sometimes implicitly) an additional intruder component which is
supposed to be malicious and whose aim is to subvert the protocol’s correct
behaviour. A protocol specification is consequently considered secure w.r.t. a
security property (e.g. integrity) if it satisfies this property despite the presence
of the intruder. Based on the approach of [15], the insecure channel and the
intruder are modelled by TA 7T;¢ and Tx. We thus propose a framework of four
types of TA:

(a) Ts plays the role of the protocol’s honest sender,

(b) each Tg plays the role of one of the protocol’s honest receivers,
(¢) Tic plays the role of an insecure channel, and

(d) Tx plays the role of the intruder or hostile environment.

We assume the actions of these TA to be built over a first order signature, where
predicate symbols are seen as communication ports and atoms as messages. We
abstract from the cryptographic details concerning operations according to which
these messages can be encrypted, decrypted, hashed, etc., but we assume the
presence of a cryptosystem (defined by a derivation operator) that implements
these operations. By applying cryptographic operations from this cryptosystem
to a set of messages ¢, a new set of messages D(¢) can be obtained, i.e. D(¢) =
{m | ¢ - m}. This is a standard approach in the formal analysis of cryptographic
protocols of communication [8, 15].

We do not explicitly model the TA of our framework, but we instead describe
them informally by their interactions in Figure 1. When 7g attempts to send
messages to Tr through the public (insecure) channel, then these messages may
be eavesdropped by the intruder. The intruder is able to modify the messages it
has eavesdropped and to inject them back into the public channel.

We let Tp denote the TA representing our protocol specification in the ab-
sence of the intruder. We thus define 7p to be the broadcast TA over {Tg, Tr, - - -,

11

Private

e
() send/receive
Pri(m
Reveal (m)
Assertions
Pub(m)

Eavesdrop T Inject .
P

Eve’ (m)

Pub’ (m)

Public
send

Public
receive

Eve(m)L

@ .

Fig. 1. Interactions between the TA involved in the insecure communication scenario.

Tr,Tic} that is obtained after hiding the communicating actions Y. =~ =
{Pri(m),Pub(m),Pub’(m) | V messages m} of {Ts, Tr,---,Tr, Tic},® i.e. all the

messages that are sent through either the public or the insecure channel. Hence
TP :hideﬂim(HH%:TR:'"7TR37}C})- (1)

Alternatively, if we want to model a multicast communication between the sender
and a subset of the receivers, then the .J-cast operator ||” should be used in (1).
By internalizing the communicating actions ¥ these actions are no longer
available for synchronizations in further TA composed over Tp. To its environ-
ment, Tp thus appears as a black box with output actions Reveal(m)—signalling
the successful reception of messages®—and Eve(m)—serving as the back door for
intrusion. This is exactly what we need to guarantee that the intruder 7x may
communicate with 7p only through the insecure channel. We let 7; denote the
TA representing our protocol specification in the presence of the intruder. We
thus define 77 to be the broadcast TA over {7p, Tx} that is obtained after hid-
ing the communicating actions ¥! = {Eve(m),Eve’(m) | V messages m} of
{Tp,Tx}, i.e. all messages that the intruder can eavesdrop from and inject into
the insecure channel. Here the use of the broadcast operator just forces maximal
synchronization between the intruder and the protocol. Hence

Tr = hides:, ([{7Tp, Tx})-

com

We have now defined an insecure communication scenario by composing a secure
communication scenario with a TA specifying an intruder. Note that it is not
difficult to formulate an insecure communication scenario for our TA model of
the deterministic (1,2) schema of the EMSS protocol defined in Section 3.

8 In the setting of [3], 7» would be called the mazimal-si (communication) closed TA.
9 Usually these signals are used only for verification purposes.

12

4.2 Generalized Non-Deducibility on Compositions for TA

In this section we reformulate an instance of the Generalized Non-Deducibility
on Compositions (GNDC) schema, as originally defined in [8] in the context of
a CCS-like process algebra, in terms of TA. This embeds TA in this general and
well-established analysis framework for defining and verifying security properties.
We assume some familiarity with the basic notions from process algebras [4].

Informally, the GNDC schema states that a system specification P satisfies
property GNDCg(P) if the behaviour of P, despite the presence of a hostile
environment Eg’ that can interact with P only through a fixed set of channels C,
appears to be same (w.r.t. a behavioural relation < of observational equivalence)
as the behaviour of a modified version «(P) of P that represents the ezpected
(correct) behaviour of P. The GNDC schema thus has the form

P e GNDCYP) iff VX € 2 (P || X)\C <a(P), (2)

where (P || X)\C denotes the parallel composition of processes P and X re-
stricted to communication over channels other than C. By varying parameters «
and « a variety of security properties can be formulated in the GNDC schema [6].

In (2) there is an additional constraint that is required in the specific context
of analyzing cryptographic protocols: the static (initial) knowledge of the hos-
tile environment must be bound to a specific set of messages. This limitation is
needed to avoid a too strong hostile environment that would be able to corrupt
any secret (as it would know all cryptographic keys, etc.). Formally, Eg just rep-
resents an environment with an initial knowledge bound to at most the messages
in D(¢). Obviously, with a specific formal framework in mind, all symbols in (2)
need to be instantiated. As an example, consider the instance

Pe GNDCEY iff VX € &4 (P || X)\C <trace P\C (3)

of GNDC, which was used in [11, 17] to analyze integrity properties in stream sig-
nature protocols. Informally, (3) requires traces of process (P || X)\C (i.e. the
parallel composition of processes P and X restricted to communication over
channels other than C) to be included in the traces of process P in which com-
munications over C' are not allowed. This instance is thus a natural choice for
initiating a reformulation in terms of TA.

We begin by instantiating P to be a TA modelling broadcast communica-
tion between a sender and a set of receivers through the use of an insecure
public channel, in the style of the TA Tp considered before. We let Tp be spec-
ified as Tp = {Q, (X}, X, Zl,),0,1}. Because (3) requires P to communi-

cate with X through the channels contained in C, we require C N XL, # @,

out
cnxll #@,and CN XL = @. This resembles requiring 7p to be able to
communicate with the hostile environment 7x only by executing actions con-
tained in {Eve(m),Eve’(m) | V messages m}. We are now able to formalize the

hostile environment £ in terms of TA as

SC = {(Q7 (Eoutazinp; Eint);(sa I) | ZJinp - C7 ZJout c C}

13

In addition, (3) requires the initial knowledge of the environment to be bound
to a specified set of messages ¢. Informally this means that the environment
should be able to produce, by means of its internal functioning, at most the set
of messages contained in D(¢). In terms of TA this means that a TA in the
environment, when considered as a stand-alone component, can only execute
output actions that belong to D(¢). This is formally defined by restricting its
behaviour to those sequences consisting of solely output actions since—at a more
abstract level—these are the sequences that it can produce without receiving any
additional messages from outside, i.e. by exploiting only its own knowledge. Let
Id"(B;) = {y € By | v € I'*}, where I' is a set of actions. Consequently,
the initial knowledge of T is defined as Id*>**(B.). At this point the formal
definition of the environment, Eg in terms of TA is

£ = {X € £ | 1% (By) C (D(9))"}.

Finally, we define the observational behaviour excluding actions from C' of a TA
as those sequences consisting of solely input and output actions that are not
involved in any communication and that moreover are not contained in C'. The
observational behaviour plays the same role here as the set of traces does in [8].

Definition 9. Let T be a TA composed over a set of at least two CA. The
observational behaviour of T, denoted by O%, is defined as

Og— = IdE”FC(presEm_Ecm (By)). O
We are now able to reformulate (3) in terms of TA.
Definition 10. Let T be a TA composed over a set of at least two CA. Then

¢ ¢ . C C
T € GNDC¢ iff VX € EC ¢ Ofueir.x) € OF- 0
When used in the insecure scenario of the previous subsection and under the
condition that receivers claim to have successfully received every message, this

definition expresses integrity.

5 Conclusions and Future Work

This paper presents TA as a natural formal model for multicast/broadcast com-
munication. In fact, in the theory of TA, many variants of a concurrent compo-
sition operator can be uniformly defined. In particular, we defined a multicast
composition operator ||/ so that we were able to model a multicast protocol
involving one sender 7g and n copies of a receiver Tg as one-to-J synchroniza-
tions between the components of a TA. We showed the effectiveness of such a
formalization by providing the specification of an instance of the Efficient Multi-
chained Stream Signature (EMSS) protocol. In addition, in order to embed TA
in a well-established analysis framework, we initiated a study of how to reformu-
late the GNDC schema for TA. As an example we dealt with expressing integrity
properties as GNDC using TA. As future work we intend to study whether and
how analysis techniques, as existing for GNDC, such as a static characterization
of GNDC and compositionality proofs, can migrate in the world of TA.

14

References

[1]

2]

[20]

[21]
[22]

M.H. ter Beek. Team Automata—A Formal Approach to the Modeling of Collab-
oration Between System Components. PhD thesis, Leiden Institute of Advanced
Computer Science, Leiden University, 2003.

M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg. Team Automata for
CSCW. In Proc. 2nd International Colloguium on Petri Net Technologies for
Modelling Communication Based Systems, pages 1-20, 2001.

M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg. Synchronizations in Team
Automata for Groupware Systems. Computer Supported Cooperative Work—The
Journal of Collaborative Computing, 12(1):21-69, 2003.

J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra.
Elsevier Science, 2001.

C.A. Ellis. Team Automata for Groupware Systems. In Proc. International ACM
SIGGROUP Conference on Supporting Group Work: The Integration Challenge
(GROUP’97), pages 415-424. ACM Press, 1997.

R. Focardi and R. Gorrieri. A Classification of Security Properties. Journal of
Computer Security, 3(1), 1995.

R. Focardi, R. Gorrieri, and F. Martinelli. Non-Interference for the Analysis of
Cryyptographic Protocols. In Proc. ICALP’00, LNCS 1853. Springer, 2000.

R. Focardi and F. Martinelli. A Uniform Approach for the Definition of Security
Properties. In Proc. FM’99, LNCS 1708, pages 794-813. Springer, 1999.

R. Gennaro and P. Rohatgi. How to Sign Digital Streams. Information and
Computation, 165(1):100-116, 2001.

P. Golle and N. Modadugu. Authenticating Streamed Data in the Presence of
Random Packet Loss. In Proc. NDSS’01, 2001.

R. Gorrieri, F. Martinelli, M. Petrocchi, and A. Vaccarelli. Compositional Veri-
fication of Integrity for Digital Stream Signature Protocols. In Proc. ACSD’03.
IEEE Computer Society Press, 2003.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

N.W. Keesmaat. Vector Controlled Concurrent Systems. PhD thesis, Department
of Computer Science, Leiden University, 1990.

N.W. Keesmaat, H.C.M. Kleijn, and G. Rozenberg. Vector Controlled Concurrent
Systems, Part I: Basic Classes. Fundamenta Informaticae, 13:275-316, 1990.
N.A. Lynch. I/O Automaton Models and Proofs for Shared-Key Communication
Systems. In Proc. CSFW-12, pages 14-31, 1999.

N.A. Lynch and M.R. Tuttle. An Introduction to Input/Output Automata. CWI
Quarterly, 2(3):219 246, 1989.

F. Martinelli, M. Petrocchi, and A. Vaccarelli. Analysing EMSS with Composi-
tional Proof Rules for Non-Interference. In Proc. WITS 03, pages 52-61, 2003.
A. Pannetrat and R. Molva. Efficient Multicast Packet Authentication. In
Proc. NDSS’03, 2003.

A. Perrig, R. Canetti, J.D. Tygar, and D.X. Song. Efficient Authentication and
Signing of Multicast Streams over Lossy Channels. In Proc. IEEE S€P’00, pages
56-73, 2000.

K.V.S. Prasad. A Calculus of Broadcasting Systems. In Proc. 16th Colloquium on
Trees in Algebra and Programming (TAPSOFT-CAAP 1991), LNCS 493, pages
338-358, 1991.

A. Salomaa. Formal Languages. Academic Press, 1973.

M.R. Tuttle. Hierarchical Correctness Proofs for Distributed Algorithms. Master’s
thesis, Department of Electrical Engineering and Computer Science, MIT, 1987.

15

