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SUMMARY

The importance of communication locality and the suitability of reconfig-
urable transputer networks for testing locality—based programming styles is
investigated. To make the management of a reconfigurable transputer net-
work easier, an extension to the Occam II parallel language is presented.
The extension, named OCTOPUS, provides the programmer with a set of
constructions and facilities for structuring and mapping parallel programs,
and for flexible run—time management of the transputer interconnections. An
OCTOPUS-to-Occam source translator automatically generates the code deal-
ing with network configuration and placement of the Uccam channeis onto
transputer links. The capability of altering at run-time the transputer inter-
connections allows the programmer to devise distinct network topologies that
result more suitable to mapping the various phases of a computation in order
to exploit solely local-communications. The approach sensibly decreases the
programming costs and turned out to be effective for exploiting locality—based
parallelism.
KEYWORDS: Occam, Transputer, programming tools, locality, run-time net-

work configuration.

1 Introduction

Transputer networks and the Qccam programming language [1,2] have gained wide-
spread use in recent years as a low cost parallel solution to many problems. The
clear semantics of Occam, directly derived by the CSP model (3], together with
its efficient implementation on the transputer architecture, have attracted many
researchers interested to message-passing computational paradigms.

Unfortunately, parallel program design with Occam requires a hard refinement
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2 R. Perego

work, greatly influenced by the experience and skill of the programmer. First, the
most promising decomposition strategy aimed at structuring the program as a bare
set of cooperating processes that can be efficiently executed in parallel has to be
chosen. Later, all the processes have to be correctly coded and mapped on the
transputers of the network in a way that minimizes the total execution time of
the program while maximizing the system utilization. The mapping cannot gener-
ally preserve the neighbourhood relations of all the processes and therefore both
channel multiplexing/de-multiplexing functions and a deadlock-free routing algo-
rithm have to be provided by the programmer in order to support the process
communications by routing the messages through intermediate nodes. Parallel pro-
gramming languages like Occam assume in fact a logical connection between all the
communicating processes and do not force the programmer to structure the pro-
gram according to the architectural characteristics of the target multicomputer. On
the contrary, for well-known technological reasons, transputer systems as all other
multicomputers, are built over networks in which each processing element (pe) is
directly connected to only a fixed number of other neighbouring pe's. Even if the
interconnection network is reconfigurable, its connectivity is however limited by the
number of pe links and its topology is usually modifiable only before the loading of
the program takes place.

In this article, OCTOPUS (OCcam TOQols for Programming Utility Software),
an extension to Occam II concurrent language together with its corresponding
tools is presented. OCTOPUS provides a set of constructions and facilities devoted
to simplifying the development of efficient transputer applications. With OCTO-
PUS the programmer can easily configure at run—time the transputer network and
project, when possible, the logical structure of the program onto the physical net-
work. The prolix Occam code for configuring the interconnect and for declaring and
mapping the processes on the transputers and the topology—dependent communi-
cations channels on the links is automatically generated by a OCTOPUS-to-Occam
source translator. Moreover many topologies can be exploited in distinct execution
stages of the same parallel application, as different communication patterns may

be required during each of these stages.

The paper is organized as follows. Section 2 discusses in some depth the im-
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Locality-Based Programming on a Reconfigurable Transputer Network 3

portance of exploiting communications locality to efficiently program transputer
networks and surveys some of the relevant literature. Section 3 describes the OC-
TOPUS language and the functionalities of the associated tools. Results obtained
on a parallel matrix multiplication algorithm that exploits the dynamic reconfigu-
ration capabilities of OCTOPUS are also reported. Finally, concluding remarks are

presented in section 4.

2 Locality Exploitation

To design an efficient multicomputer application many aspects have to be consid-
ered. Some depend strictly on the architectural characteristics of the system (e.g.
topology and communication bandwidth of the interconnection network, routing
services, power of the pe); many others depend on the target application and, in
particular, on the parallelism model chosen to exploit concurrency. As a matter
of fact, the ability to structure the program giving priority to low cost local com-
munications (between directly connected or neighbouring pe’s) over more expensive
non-local ones (routed through a number of intermediate pe’s) plays a fundamental
role in the achievement of satisfactory performances. This is particularly true for
transputer systems with Store and Forward routing, but it holds also for last gen-
eration multicomputers designed upon low—latency communication networks with
wormhole routing [4]. In fact, local communications, not only have lower latencies
due to the fewer nodes crossed, but also consume a smaller fraction of the net-
work bandwidth and reduce the probability of temporal conflicts for the use of the
multiplexed communication links [5].

The enhancements from using message locality were recently considered in
many proposals of new parallel languages. In ref. [6] the basis of an interesting
architecture—independent programming language based on the Bird—Meertens for-
malism is presented. The proposal aims to restrict the parallel computational model
by reducing the distance over which communications can take place. In ref. [7] a
new parallel language, named P3L, is presented. The language provides construc-
tors that allow easy exploitation of locality-based massive parallelism according
to common optimized algorithmic skeletons. Moreover, also the compilers for data
parallel languages such as Fortran-D [8] and High Performance Fortran [9], exploit

locality by splitting and mapping the arrays in a way that minimizes the need for
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a) processor farm parallelism b) geometric parallelism

¢) pipeline parallelism d) algorithmic parallelism

Figure 1. Sketches of some general parallelism models.

non-local data exchanges.

Reconfigurable multicomputers [10] are clearly good candidates for experiment-
ing with a locality-based programming style. The interconnection topology of these
systems can be optimized for mapping each specific application according to its
communications requirements.

Other works deal with the alteration of the topology of transputer networks during
run-time under the control of executing user code. In particular the work by Jones
and Murta [11] is relevant for the complete analysis of the reconfiguration costs.
They propose a communication scheme in which every transputer issuing a message
on the network requires firstly to a centralized resource manager the direct connec-
tion with the destination pe. Once the request is granted, messages are injected on
the physical connection that has after to be relinquished by the owner process. The
approach, implemented on a ParSiFal T-RACK, realizes a virtual fully connected

network, but its cost is very high.
In the following subsections the suitability and flexibility of reconfigurable mul-

ticomputers in exploiting locality in classes of applications involving regular and

unregular communication patterns is analyzed.
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2.1 Message locality on regular problems

A large class of scientific problems have an intrinsically regular underlying struc-
ture. For these applications a natural parallelization strategy based on the geomet-
ric decomposition of the data domain is generally followed. In the literature this
parallelism model (see fig. 1.b) is referred to as geometric parallelism [12], or do-
main partition [13], model. The model provides for data decomposed and evenly
distributed over all the pe's that run the same code. Each pe solves the problem on
its local data by cooperating with the nodes holding adjacent partitions.

The paradigm is not always easy to exploit and care has to be taken to determine
the degree of parallelism which grants an acceptable compromise between compu-
tation and communication times on each node. Moreover effective scalability of this
kind of application is unlikely to be reached by simply increasing the number of
nodes to deal with a given problem with fixed dimensions. In other words, only
when the dimensions of a problem increase, can a proportional increase in the ex-
ploited parallelism be reached by leaving the dimensions of the data subset assigned
to each pe unchanged.

In designing a parallel program to solve an intrinsically regular problem, it is gen-
erally possible to find a perfect embedding which preserves the adjacency relations
deriving from the data decomposition scheme. When this is achieved messages are
exchanged only between physically connected pe’s. Some difficulties can arise when
the natural geometry of the problem does not map the topology of the network
(e.g. a 3-D data domain on a 2-D mesh or a tree architecture). However, especially
on highly connected and reconfigurable multicomputers, a nearest-neighbour algo-
rithm can be designed in most cases.

Many other problems lead to natural parallel solutions involving well-defined regu-
lar communication patterns. For some of these it is simple to derive a strictly local
implementation (e.g. the pipeline model sketched in fig. 1.c); for others, communi-
cations locality is more difficult to exploit. Consider, for instance, the divide and

conquer model [13] or the processor farm model [12] (see fig. 1.a).

2.2 Message locality on unregular problems

Analyzing the control flow of any sequential program one can devise different fea-

tures that may be executed concurrently or in a pipeline fashion. A similar paral-
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lelization strategy based on the decomposition of program functions requires the
programmer to design a number of specialized cooperating processes. This leads to a
process graph whose mutable structure strictly depends on the particular algorithm
implemented. Hey’s algorithmic parallelism model [12], based on the splitting and
converging of multiple pipes of processes (see fig. 1.d), reflects a general instance
of this control parallel approach that seldom gives origin to geometrically regular
communication patterns. Although difficult to design and generally not scalable,
the adoption of an algorithmic parallelization strategy is often compulsory at some
level. In fact the limitations on pe’s local memory make often necessary partitioning
and distributing both program functions and data. The approach generally prevents
the exploiting of message locality on static networks. On reconfigurable multicom-
puters, on the contrary, it is often possible to configure the physical network with

the same connections existing on the algorithmic network.

3 OCTOPUS

OCTOPUS has been designed as a research testbed to simplify the development of
transputer parallel applications and to investigate the suitability of run—time recon-
figuration as a strategy for enhancing program efficiency through the exploitation
of message locality on each communications pattern involved in the computation.
It provides the programmer with a small set of powerful and syntactically well-
integrated extensions to the Occam II language that increase program modularity
and programming ease with respect to the standard Occam II programming envi-
ronment.

Using OCTOPUS the programmer no longer needs to know the physical addresses
of the connections between all the transputers in the network nor how to deal with
the explicit declaration and placement of the external communication channels onto
the links (all Occam programmers know what this means in terms of annoyance
and error proneness). The Occam code for these operations is, in fact, automati-
cally generated by an OCTOPUS-to-Occam source translator (about 2000 lines of
Pascal), as a function of the topology selected for the network and of the particular
architecture of the target transputer network. The user needs only to link the codes
produced by the translator with the OCTOPUS libraries when compiling. The tar-
get system of the OCTOPUS prototype is composed of an INMOS ITEM with 21
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Figure 2. OCTOPUS system organization.

T800 transputer and four €004 crossbar switches, hosted by a PC.

OCTOPUS programs may be divided into two categories: (a) static programs
that do not involve multiple topologies, and (b) dynamic programs that change
at run-time the network interconnect. Although the high level differences between
static and dynamic programs are light, for clarity purposes we separate their dis-

cussion.

3.1 OCTOPUS static programs

Figure 3 sketches an OCTOPUS static program with a complete three-level ternary
tree structure. The algorithmic description of the program, as well as the network
configuration and the mapping information of all the parallelism units making up
the parallel program, are included within a single construction. The name of the

program (e.g. Ternary.Tree. Computation) and the physical topology selected for

PARALLEL Ternary. Tree.Computation ON TTREE(3]
PROCESS Root.Module POSITION ROOT
... Occam code for the root processor
PROCESS Node.Module POSITION NODE
... Occam code for node processors
PROCESS Leaf.Module POSITION LEAF

.... Occam code for leaf processors

Figure 3. An OCTOPUS static program with a complete three-level ternary tree struc-

ture.
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8 R. Perego

running it (e.g. TTREE(3], a three-levels ternary tree) are indicated in the pro-
gram prologue after the keyword PARALLEL.

After the prologue, from one to NV, with IV equal to the number of pe’s of the selected
topology, parallelism units (i.e. the Occam modules executed by each transputer)
have to be defined. The code describing each parallelism unit is preceded by a head-
ing composed of the keyword PROCESS, the user provided name of the unit (e.g.
Root.Module, Node.Module, Leaf.Module) and the keyword POSITION followed by
a placer. The placer defines the mapping of the parallelism unit on the topology.
It can be a tuple with the coordinates of the pe on which the unit will run (e.g.
the keyword ROOT that stands for [1][1], indicates the first transputer at the first
level of the ternary tree, i.e. the root), or a replicator (e.g. NODE, LEAF), whose
syntax and semantics depend on the selected topology, used to place the same unit
onto more pe's.

Table 1 informally shows, for a subset of the topologies managed by OCTOPUS,
the syntax of both single and multiple placers. The set of OCTOPUS predefined
topologies includes the most common regular topologies that can be built with pe’s
having four links such as rings, grids, binary and ternary trees, three and four di-
mensional hypercubes. Other irregular topologies can be added by the user to the
OCTOPUS environment providing the physical description of their interconnection

scheme in the standard INMOS MMS?2 configuration language.

OCTOPUS programming style recalls the Single Program Multiple Data (SPMD)
model where all the pe's execute the same code, but their behaviour can be differ-
ent on the basis, for example, of their position inside the network. This analogy is
strengthened by the availability of the OCTOPUS library function WhoAmlI that
returns the position of the caller pe in the configured topology.

As an example, the simple OCTOPUS program:

PARALLEL grid.program ON MESH]5,5]
PROCESS Node POSITION [FROM 1 FOR 5, FROM 1 FOR 5]

... Occam code

configures a two—-dimensional square mesh on the network and specifies that the
same Occam code has to be loaded and executed on all its 25 pe's. On the basis

of the position of the transputer on the mesh, returned by a call to WhoAml, each
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10 R. Perego

simplicity of performing the same operation with OCTOPUS, Figure 4 reports an
Occam program equivalent to that of Figure 3. It is worth mentioning that the
code reported in Figure 4 (a slightly modified version of that proposed in ref. [14])
assumes a homogeneous ternary tree topology on the transputer network with link
0 of each transputer connected to the parent pe, and links 1, 2 and 3 connected to
the left, middle and right children pe's respectively. In many cases this homogeneity
in the hardware does not exist due to some architectural limitations in the trans-
puter connectivity. Therefore the actual code would be much more complex and,
especially, not portable across different transputer networks. Eventual architectural
non-homogeneity and differences are instead hidden by OCTOPUS and do not af-
fect program writing. Moreover, the code the programmer has to write to adapt his
parallel algorithm to the transputer network is strongly reduced, resulting in sig-
nificant time savings, time that can be instead more profitably spent in fine-tuning

and optimizing the parallel algorithm.

3.2 OCTOPUS dynamic programs

It has been observed that many parallel applications use various communication
patterns in different phases of execution [15]. Moreover, each distinct communica-
tion pattern often turns out to be highly regular. Consider, for example, geometric
applications in which almost three different communications patterns can be de-
vised if the data are not already distributed on the pe’s. In a first phase, the data
must in fact be loaded and distributed over the nodes; in a second phase, the pe's
cooperate to compute the results; lastly, the distributed results have to be assem-
bled and returned. Often these three communication patterns cannot be efficiently
embedded into the same topology.

Only small advantages over a static configuration capability can be therefore gained
because the network topology can be optimized for a single communication pattern
only. A greater flexibility is instead theoretically offered by dynamically reconfig-
urable systems. The possibility of reconfiguring the network during execution allows
the programmer to structure the computation so that the more suitable topology
is chosen for each communication pattern involved. As a consequence, it is easier
to map the processes, and locality exploitation is enhanced while reducing, and

frequently totally eliminating, the need for implementing routing algorithms.
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... 8C root(CHAN OF ANY from.l.son,to.l.son, from.m.son,to.m.son,from.r.son,to.r.son)
... 3C node(CHAN OF ANY from.father,to.father,from.l.son,to.l.son,from.m.son,to.m.son,
from.r.son,to.r.son)
... SC leaf(CHAN OF ANY from.father, to.father)
[13)]CHAN OF ANY a,b:
PLACED PAR
PROCESSOR 0 T8
PLACE a[l] AT 5:
PLACE b[1] AT L
PLACE a2] AT 6:
PLACE b[2] AT 2:
PLACE a[3] AT 7:
PLACE b[3] AT 3
root(a[1],b{1],2[2],b[2],2[3],b[3])
PLACED PAR k2 =0 FOR 3
VAL p3 IS (3%k2)+1:
PLACED PAR
VAL p IS k2+1:
VAL n IS p3:
PROCESSOR p T8
PLACE b[p] AT 4;
PLACE alp] AT 0:
PLACE a[n] AT 5:
PLACE b[n] AT 1:
PLACE a[n+1] AT 6:
PLACE b[n+1] AT 2:
PLACE a[n+2] AT 7:
PLACE b[n+2] AT 3:
node(b[p],a{p],a[n],b[n],a[n+1],bn+1],a[n+2],b[n+2])
PLACED PAR k3 =0 FOR 3
VAL p IS (p3+k3):
PROCESSOR p T8
PLACE b[p] AT 4:
PLACE afp] AT 0:

leaf(b[p],a[p])

Figure 4. Occam configuration code for a ternary tree network.

29/4/1994 11:16 PAGE PROOFS Paper



Locality-Based Programming on a Reconfigurable Transputer Network 13

the prologue, OCTOPUS dynamic programs are characterized by the presence of
more SET commands within the parallelism units. Each SET command is trans-
lated into a call to the OCTOPUS run-time support dealing with processor syn-
chronization and links configuration. In writing dynamic programs few rules must
be followed:

1. all parallelism units must select the same topologies in the same order to

ensure mapping consistency;

2. topologies with different number of pe’s can be used in the same program,
but the number of transputers used in each distinct configuration must be

the same;

3. at every reconfiguration the external communication channels are redefined.
The scope of the OCTOPUS names of the channels placed onto transputer
links is restricted at the phase in which each topology is physically configured.

Reconfiguring the network at run—time requires the synchronization of all the
pe’s in order to prevent processors from using the communication links while switch-
ing is in progress. Moreover the reconfiguration cost on the testbed architecture is
proportional to the number of links that have to be switched, making similar dy-
namic reconfiguration approaches well suited only for small networks.

The time Tyonf, needed to perform an alteration of the interconnections during
run-time on the OCTOPUS prototype is expressed by the following equation:
Teons = Tsyne + Tstartup + (k * Tswiten)
where Tync is the time needed to synchronize all the pe’s, Tstartup is a constant
time (about 25 microseconds), k is the number of links that have to be switched,
and Tyyiten (about 20 microseconds), is the time required to switch one link.

On the other end, the reconfiguration cost is generally not weighed down by
load unbalance because the computational phases one can devise in a parallel ap-
plication are generally synchronous: in most cases in fact, program semantics forces
each pe to wait for the others at the end of a phase before it can successfully begin
the next one.

For its high cost, reconfiguration has therefore to be used carefully, only when the

advantages, in terms both of locality exploitation and of programming ease, are
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14 R. Perego

Table 2. Matrix multiplication times (in seconds) on sixteen pe’s.

matrix dimensions | static version | dynamic version
20X 20 0.019 0.017
100 X 100 0.856 0.770
150 X 150 2.383 2.195
200 X 200 5.275 4.928

large.

To test the OCTOPUS dynamic reconfiguration capabilities, a dynamic version
of the matrix multiplication algorithm with square subblock decomposition pro-
posed in ref. [16] was implemented. The program uses an incomplete ternary tree
both in the first phase (partitioning the matrices into subblocks and loading them
on the nodes) and in the third phase (assembling the resulting matrix). Matrix
multiplication is instead performed after having configured a mesh.

In table 2, execution times {in seconds) on sixteen T800 transputers of the OC-
TOPUS dynamic version of the program are compared with those measured with
an Occam II version of the same algorithm in which the loading and unloading of
the pe’s are also performed on a mesh adopting the efficient double-buffer pipelined
algorithm proposed in ref. [14]. The results obtained are comparable although the
times of the dynamic version are about 10% lower in the average than those of the
standard Occam implementation. The main advantage is instead the easier imple-
mentation that together with the sensibly shorter OCTOPUS source code, results

in sensible time savings for the programmer.

4 Concluding remarks

The role of message locality on multicomputer architectures and the suitability of
reconfigurable multicomputer to exploit locality on the more common parallelism
models was analyzed. Use of dynamic reconfiguration to more flexibly exploit local-
ity was proposed, and the main aims of OCTOPUS, a new proposal for program-
ming reconfigurable transputer networks, were outlined. The tool simplifies the
programming and the mapping of parallel programs on transputer networks. The

availability of a complete set of predefined topologies and communication contexts
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that can be installed on the transputer network by a simple OCTOPUS command,
makes program design easier. The exploitation of communication locality is possible
also when multiple communication pattern are involved because OCTOPUS allows
the alteration of the topology of the network during run-time under the control of
executing user code. In this way, more networks can be used by the same OCTO-
PUS program, resulting in a dynamic evolution of the topology of the interconnect
during execution.

An OCTOPUS-to-Occam translator and a library that supports the proposed ex-
tensions to Occam II have been implemented. The prototype, tested in every day
use, works satisfactorily and provides meaningful error reporting. It checks the con-
sistency of both single and multiple network settings and process placements.
Some results showing the gains achieved through the dynamic reconfiguration on a

parallel matrix multiplication algorithm were given.
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