O

Consiglio Nazionale delle Ricezche

ISTITUTO DI ELABORAZIONE
DELLA INFORMAZIONE

THE EVOLUTION OF GRAPHICS STANDARD:
FROM CORE TO PHIGS THROUGH GKD-RD

B. Biagi, C. Montani, R. Scopigno

Yo i

Nota interna B85-09

Agosto 1985

THE EVOLUTION OF GRAPHICS STANDARD:
FROM CORE TO PHIGS THROUGH GKD-3D

S A i ST e et T g

Benedetto BI1AGI~®, Claudio MONTANI~- andlﬂobcrto SCURPIGNO~"

© Istituto di Eleborazione dell’Informazione, Consiglic
Nazionale delle Ricerche, Via Sante Maria 46, 56100 PISA
(Italy]). -

~ -

Caoscade Graphics Development S.p.A., Via Monte Carmelo,
00166 ROMA (Italy).

ABSTRACT

The paper presents a comparative analysis of three
graphins languages (CORE, GKS-3D and PHIGS? which can be
considered as representing the main stages i; the process of
standardizing a general purpose graphic language.-

The way in which the evolution o% grophic languages has
favourd a8 greater flexibilty for the user at the price of a
heavier load for the system iIs underlined.

The different conceptual bankgrounds of the three
languages ore briefly discussed with respect to their
embedding in graphic data bases for sophisticated

opplicetions.

]

1. INTRODUCTION

In recent, there has been much interest in the

definition of a general purpuse grophic language which could

become an international standard. The large amount of
research activity in this period [1] bears witness to this
foot.

This poper presents the conclﬁsinns of @ long study ond
of much discussion on the evolution of propnsals for
general purpose graphic languages during the last years and
on the impact that the new tendencies dould have an computer
graphics in the near future.

(ur work begins with an enaolysis of the functionalities
and the basic concepts of the three graphic languages that,
in our opinion, can be considered as representing the main
stoges in the standardization process:

(a) CORE [2]: this language was formalized between 1975
and 1979 by the Graphics Standards Planning Committee (GSPC)
of the Special Interest Group on Computer Graphics of ACM
(ACM-SIGGRAPH]. CORE represents the first real effort
towards the standardization of o graphic languoge;

(b} OGKS-3D [3]: This is the natural extension tu the -
three-dimensional functionolities of the only graphic
language that today 4is an Internaotional Stendard (the

Graphical Kernel System). At the present, this language is

o R - . PN € L S ST AR5 et S N N

being studied by the IS0 TC9?7/SC21/WG5-2 Coummittee ond it is
expected that it will become a stendord before the end of
1986 ;

(c) PHIGS [4]: At the present, this language is at o
level of Draft Proposel under invesfigotion by ANSI X3H3

Committee. PHIGS was born as a GKS extension even if, in

mony aspects, it is not compatible with the GKS language. = -

tven if there is no strict chronological order (the
first formolization of PHIGS was infact previous to GKS-3D),
as far as the functionalities end.the basic concepts are
concerned a well defined evolution in terms of system
flexibility can be noted, passing from CORE to PHIGBS through
GKS--30.

In the next section: the different characteristics of
the three languages are analyzed. So that our study would be
uvn 4o homogeneous set, languages which offer full bi-
dimensional and three-dimensional functionelities have been
chosen.

The last section presents some considerations on the
possible future consequences of the present rapid

-

transformotions in computer graphics.

2. A COMPARATIVE ANALYSIS OF CORE, BGKS-3D AND PHIGS

In this section, the main charscteristics of CURE, GKS-
30 and PHIGS are compared. Our analysis refers to the main
aspects aof the languages: the workstation concept, segments'
vr structures, output primitives and their attributes;

geometric transformations and input.

2.1 WORKSTATION

A dominant featufe in the evalution of graphic
languages is represented by increasingly distinct separation
between device-dependent and device-independent parts of the
graphic system.

This distinction, which is made more urgent by the need
foc application softwore portability and by the strong
differences between existing graphic hardwere, had already
been felt by the suthors of CORE. Indeed, CORE presents the
concept of “multiple wview surfaces" to which the static
ottributes of the output primitives are bound. The display
of the output primitives depends on the velues of the
attributes. In fact, the attributes partially mask the
physical chorocteristics of the output devices.

On the contrary in GKS-3D and PHIGS the workstotion

.

%o

concept formalizes the distinction between device-dependence
and device-independence. Each user-ectivated workstation
is not limited to playing the role of the output interfsce,
but it represents the aggregotion of & logicel output device
and one or more logical input devices. 1In addition to many
attributes, 8 number of geaometric tréﬁsformaticns of the
output primitives are dependent on the single workstetions.

The user can dynamlecally modify the workstation

characteristics using commands to modify its stete.

2.2 SEGMENTS

All three 1languages present the concept of graphic
segment understood o5 8 set of logicaelly correlated graphic
elements (the segment wheel in the design of a ;ar, the
segment desk in an office furnishing applicotion). The
segment names are user—-defined.

The type and nature of the information which the user
can store in the segments and the transformations which can
be opplied tu the graphic elements before and ofter storoge
differ widely from ianguage to language.

CORE adopts the synthetic camera model to represent
three-dimensiounal scenes. Thus, the CORE segments store a

e

snapshot of each scene. All of the output primitives are |
passed through the viewing pipeline. At segment g¢reation
time, the current values of the sttributes are bound to the

output primitives and this defines their display features.

The CORE user can dynamically "move" (by rotation,

scaling and translation transformations) its snopshot in o

three-dimensional space. The system will then
vrthogrophically project the results onto the viewing
surface.

In OGK&-3D, a simple normalization trensformotion is

applied to the output primitives ot the creation time. The
output primitives of o segment go through the viewing
pipeline at traversal time; 4i.e. when the segment is
executed.

As in CORE, the current values ouf the attributes are
bound to the output primitives during the creation of the
segment. Moureover, a special mechanism ollows the user to
have a type of dynamic'attribute seleetion.

The PHIGBS segment stores graphic primitives which have
not wundergone any geometric transformations. The current
values of the attributes are not bound to the primitives at
creation time, but each segment stores the attributes
selection commands entered by user. Thesg commands will be
executed at traversal time and their exe&utinn will modify
the current values of the attributes. -

Unlike CORE and GKS-3D which only allow 8 segment to be
copied into another one or to be deleted, PHIGS provides the
user with o set of editing functions. Using these functions,
the user can delete, insert or replace greaphic commands into
an already defined segment.

A further and more evoluted fesature of PHIGS in

%

camparison to the other languages is represented by the
hierarchical structures of the graphic objects. In this
language, segments are known as structures énd o
hierarchicsal structure is obtained by referring from within
o segment to other segments using EXECUTE commands. From on

vperational point of view, the system state determined by &

"father"” segment (attribute selection, geometric
transformation of the viewing pipeline, etec.) is inherited
by the "son"™ segment. This son segment can modify the state

for itself and for its ownsons, but the system state will be

returned unchanged to the father.

2.3 OUTPUT PRIMITIVES

Operationally the evolution of graphic lanéuages has
nat implied substantial differences in the output
primitives. However, two particulsar aspects must be
underlined.

Unlike GKS-3D and PHIGS, the CORE language contains the
concept of "current position”. A direct cunsequence of this
feature 1is the presence of @ set of "relgtive" output
primitives 1tngether those with absolute coordinates. It
should also be noted that CORE has "low level" output
primitives (MOVE and LINE). These instructions are no longef
present in the other languages.

The second point to be stressed refers to the raoster

type output primitives. Whereas CORE only provides for

roster primitives at oan extension level, OG6KS-3D and PHIGS
formalize the concept of raoster primitives by defining their

display features on raster and vectoriel output devices.

2.4 ATTRIBUTES OF THE OUTPUT PRIMITIVES

With reference to the attributes of the vutput
primitives, it can be noted that the differences between the
languoges do not depend so much DpAthe number of different
attributes. at the user’s disposal (however, in this sense,
GKS-30 and PHIGS are richer than CORE), as on the way the
values of the attributes ore selected and the mument when
they ore bound to the primitives. |

CORE has only one way in which tou choose the.voalue of
the attributes. This is specified either before or during
the creatinn of a segment and is bound to the primitive(s)
to which it refers to when that primitive(s) is stored in
the scgment. This selection mode is known as "INDIVIDUAL"

\ .
selection.

In GKS-3D and PHIGS the formalizetion of the concept of
wnrkstation has lead to the definition of o further
selection mode: the "BUNDLE" selection. Using the “BUNDLE"
selection the wuser does not select the wvolue for each
attribute, but chonses an index to & taeble, which he can
olso modify. There is one bundle table for each active

wiirkstotion and it defines the values of the set of the

ottributes of each output primitive. In this woy, the some
primitive can be displayed with different feotures on
different workstations. It is important to stress thi;t one
or more ottributes of o primitive cen be selected in 6n
individual mode even if a bundle selection for the
attributes of that primitive has already been specified.

Similarly to CUORE, GKS-3D binds the current volues ‘of
the attributes to the output primitives, at segment creotio%
time. However, a kind of dynemic selection is achieved
through the bundle selection. The bundle table, logically
resident an the workstation, can:be modified by the user at
any time, even after the creation of the segment.

Un the contrary, in PHIGS the attribute selection
commands (individual or bundle selection) are stored in the
segments oand executed at traversal time. This is a fixed
choice in o hierarchical environment where the énntext of
the father (hence slso the current values of the attributes)
must be inherited by the sons.

A further difference between PHIGBS and the other twop
languages refers to the applicetion of certain eattributes
such as visibility or highlighting. In -PHIGS these
attributes are referred to groups of output pfimitivcs, in

CORE and GKS-3D they are referred to a segment.

Pe

2.5 GEOMETRIC TRANSFORMATIONS

The languages studied provide a complete viewing
pipeline for three-dimensional ' scenes. Geometric
transformations con be grouped into three categories:

modelling transformations place the objects of the final
scene in a8 single cartesian reference system; viewing
transformations create @ view of the scene to be
represented; workstetion transformations perform the mapping
trom & device-independent space to a device dependent one.

Whereas it is not possible to demonstrate substantiaol
differences among the functionalities pf the geometric
transformations afferéd by the 1languages, there are
considerable differences in the times at which the
transformatinns are applied to the output primitives,

Table 1 summarizes the geometcvic transformations of
each language, the entities to which they are applied and
their application time. The table does not present the
clipping transformations. In foct, each language has

-

clipping capabilities.

10

oF

2.6 INPUT

CORE, GKS-3D and PHIGS all have logicol input devices.
The application program cen acquire ;externol Iinformotion
through the logical input devices. &ﬁese logical devices
moke the woy In which the infcrmatién by means of physical
devices 1is acquired, completely transparent to the user.

The logical input devices are charscterized by the
"class" (the type of response) and the “mode" (request,
event and sample). b

Whereas the languages present similar closses, an
evulution con be noted with regeard to the operationsl mode.
In CORE the moude is a characteristic of the class, 1.e. each
class of logical devices can operate in a fixed mode. In
GKS5-30 and PHIBS, the mode is independent by the'glass. The
user con define the mode, dynamically.

In PHIGS, the functionalities of the PICK input class
are both flexible ond powerful. This is due to the need to
“"pick” the correct occurrence of a segment belonging to a

hierarchical structure.

11

3. ASSESSMENTS

After this comparative analysis of the basic feotures
of the three languages, we think thét the main differences
between them depend on the increasing flexibility which we
find moving from CORE to GKS-3D and to PHIGS rather than 'én
the possibilities that they offer. '

Some operations which ere quite heavy for o CORE user
become moure elementory in GKS_BD‘ahd far easier in PHIGS.

Let wus suppose, for example, that the user wants the
viewpoint in a 3-D scene to be modified and the color of
some objects be changed.

The CORE user is obliged to delete all the segments of
the scene and theﬁ to create new segments so that~all of the
primitives pass through the complete view pipeline.
Moreover, new attributes must be assigned to the primitives
with & change in c¢olor.

The OGKS-3D wuser only needs to rewrite those segments
which belong to objects with changed color oattributes (we
assumed INDIVIDUAL attribute selection) and tg'replace, ot
the workstetion level, the current view tronsformotion with
the required one.

Finally, the PHIGS user can simply edit those objects »
that contain the attribute selection command tu be modified
and select & new view transformation at the workstsation

level.

12

Our opinion is that wuser-acquired flexibility hes
taused a progressive shift of the work load from segments
creation time to traversal time.

This movement clearly increases the global system work
load, even though this is transparent for the user, but at
the same time the greater flexibilitQ.means that the wuser
can have real time or animated spplicotions. i

Let us consider, for example, an environment in which
only one object changes dynamically while the others remain
unchanged in time. It could be presumed that the static
objects also have to be re-execu£€ﬂ. This would be due to
the double buffer operating mode of the display device which
means that complete rewriting of the frame buffer is
necessary at each swapping. Otherwise it could be due to the
dynamicelly changing object priority which is less than that
of the static objects. In this two cases we would have a
situation in which a simple change of an object by & PHIGS
user (ond in some cases also by a GKS-3D) user causes a
complete retraversal of all the objects and consequently
would be more costly than the rewrite of é‘CORE segment and
also of a complete retraversal, which does _not require
applicotion of thé viewing pipeline for the static objects.

It is obvious that the evolution from CORE to PHIGS was
not caused by the need for increasing flexibility for the
user but rather by the rapid development in graphic
hardwore.

Ignoring the most sophisticeated devices, which use

firmware shading or anti-sliassing features, some graphic

13

o

cords are now commercially avoilable for personal computers
and give two- and three-dimensional performances.

We thus feel that the standard graphic language
proposals have evolved in response 1o these increased
possibilities,

Neverthless, for the present, we think that the poth of
an extremely flexible language can not be completely Smmoth:

A wide use of a very flexible stendard grephic 1anguagé
could have twa immediate consequences on the graphic
hardware:

a) if the hardwore hos high local intelligence, it will
hove to be programmed in accordonce with the standard to be
supported because, otherwise, the graphic laenguege-hardware
interface would be veryA‘heavy. In some coses, certain
functions will have to be implemented in software " without
using the advanced hardware features in order to ensure that
they ore standard;

b) if the hardwere has 1low 1local intelligence, an
interface between the language and the system hardware must
be provided so that the frequently performed traversals and
the execcution times are as fast &8s possible. Oné possible
solution could be to pair the high level date structures in
main memory (similar to those of PHIGS) with lower level
structures (CORE-like, for example) obtained by a complete
treversal of the high level structures. Changes can be made
on these low level structures, which do not involve &

complete regeneration. Probably, the execution times

14 N

would be more reasonable. However, unfortunately, the same
thing con not be said about memory costs.

In oddition to these observations on the graphic
hardware, 1t is worthwhilé also mentioning the evolution of
the graphic languages with respect to grophicel data bases.

In fact, most applicetions requiré links which may be

more or less strong with date bases of graphical objects.

Because of the evolution in the languages, 1t is now

possible to work at a much higher level thon that allowed by
the simple archiving of statie objects. PHIGS, for example,
pruvides powerful editing functionst. Many of the commonest
operations performed by a DBMS on date structures are eosily
translated in terms of PHIGS functions.

The management and manipulation of the objects and
their composition in complex images such those required by a
CAD application thus becoumes much simpler.

Furthermore, from an implementation viewpoint, the
conceptual approach of PHIGS 4is very close to that uséd by
a DBMS in the management of data structures, of attributes
and of the relationships among objects.

We could conclude by saying that the present trend
towards PHIGS-like Vlanguages is positive with respect to
applications but leaves some uncertainties as for ds the

host hardware is concerned.

15

i
|
|

TABLE 1

(n) Ceometric transformations in CORE

v TTTT T T !
Modelling Tr. ! World Courd. Tr. ! one or more primitives ! creotion !
! 1 [- !
Viewing Tr. ! Viewing Tr. ! segment ! ereotion !
! Projection 1r. ! segment !'"creation !
! ! ! !
Workstation Tr. ! Image Tr. ! segment ! traversal |
! ! ! H
(b) Geometric transformations in GKS-3D
..!_..._..__._-~..,_ C e e ——— - - ! Sl e e o o b e —— 15 . ! . . C e s —— ...!
Modelling Jr, I Normoalization Tr. ! one or more primitives ! creation !
! Segment Tr. { segment . ! traversal |
1 1 - 1 g
Viewing 1. I Viewing Tr. ! one or more primitives ! traversal !
' Projection Tr. ! one or more primitives ! traversal |
! ! 1 §
Wourkstation Tr. ! Workstation Tr. ! segment ! traversal |
! ! ! i
(c) Geoumetric transforwations in PHIGS
T T e B
Mudelling 1r. ! Global Mudel. Tr. ! one or more primitives ! traversal |
! Loval Model. Tr. | one or more primitives | troversol |
! ! ! !
Viewing Tr. ! Viewing Tr. ! one or more primitives | traversol |
! Projection Tr. ! one or more primitives | traversal T
! I ! !
Workstation Tr. | Workstation Tr. ! structure ! traversal |
! ! ! !

REFERENCES

[1] 6. Enderle, K. Kansy and B. Pfaff, "Computer Grophics
Programming: GKS, the BGraphics Standard"™, Springer Verlog,
New York, 1984.

[2] GSPC, *"Status Report of the Graphic Standards Planning

Committee”, Computer Graphics, 13, 2, 1979. -

10

[3] ANSC X3H3, “"Graphicol Kernel System”, Special issue of"
Computer Graphics, February 1984.

[4] ANSC X3H3, "PHIGS Functional Description", 84/40, 1964.

K

