l

' DECLARATIVE RECONSTRUCTION
OF AN OBJECT ORIENTED ||
DATA MODEL WITH ROLES

7 B Internal Report C95-45

/ 21 Dicembre 1995

!-' } B “,,7,]
/ / / | [M. Carboni
[b ;7 F. Giannotti

A T Y G. Manco
" . S ~D. Pedreschi

\/ —

: : - / 77/ — —

| ATl N
/

\/ [/ ;Fj

Declarative Reconstruction of an Object-Oriented Data Mode]
with Roles
(Extended Abstract) *

M. Carboui!, F. Giannotti', (i, Manco! and D. Pedreschi?

Y CNUCE lustitute of CNR
Via S, Maria 3G, 56125 Pisa, ltaly
e-niail: F.Giannotti@cnuce.enr. it

: Dipartimento dj luformatica, Univ, Pisa
Corso ltalia 40, 56125 Pisa, Italy
e-tlul: pedrefdi.unipi.it

Abstract

This paper is aimed at showing how a simple von-deterministic exteusion of Datalog is sufficient to
declaratively recoustiuct e essence of object-oriented data models with roles. The target language
15 a subset of the logical data language £DL++ [AOTZ93). The reconstruction is performed by
means of a cowpilation juto the extended Datalog language of the basic features of the object model,
including the schema definition language, the query language and the basic update operations. The
purpose of this compilation is twolold, On one side, it provides a logical semantics of the object
model, as the semantics of the target language is assigued in purely logical terms [SZ90, ZA093], On
the other side, the proposed campilation forus the hasiy of a realistic implementation, as LDLA+ is
efficiently executed by weans of a fixpoint procedure with “in sity” updates.

Keywords, Logic Database Languages, Ohject-Oricuted Data Madels, Updates, Stratified Logic Pro-
grams, Non-determinisin,

1 Introduction

This paper tries to answer the following question: is it possible to declaratively reconstruct the
essence of object-oriented data models in simple declarative terms, without resorting to non-standard
logical frameworks? If we agree that a natural exteusion of Datalog with a single unary function and
a non-deterministic construct is indeed a simple langnage, then the answer to the above question is
affirmative. In this paper, we consider:

¢ a small language embodying the essential static aud dynamic aspects of a deductive object data
model with roles, and

¢ the mentioned extension of Damlog, wlich corresponds to a fragment of the Logical Data Language

LDLA+,

*Work partially supported by the EC-US Cooperative Activity Project ECUS.033 — DEus Ex MacHINA.

2 XY-STRATIFICATION AND NONDETERMINISM 2

and provide a compilation of the former iuto the latter, with a twofold aim. On one side, such a
compilation provides directly a logical semantics of the object model, as the semantics of the target
language is assigned in purely logical terms [SZ90, ZAOY3]. On the other side, the proposed compilation
forms the basis of a realistic implementation, as LD L++ can be efficiently executed by means of a fixpoint
procedure with real side-effects to support updates.

The static compouent of the considered object model, i.e., its data definition and query language,
can be seen as a fragment of F-logic [BIKY3], and provides mechanisms for multiple inheritance, multiple
roles, virtual objects, views, and methods (derived attributes). The dynamic component of the considered
object model, i.e. the basic update and object-migration operations, is inspired by the analogous features
of the Fibonaeci language [ABGO93]. The object model is comipiled into an extension of deductive
databases with

o non determinism, used to realize object identifiers, in a way similar to [Zan89], and
e a form of stratification, used to realize updates and object-migration.

The code obtained as a result of the compilation can be understood in model-theoretic terms, thus
providing a formal interpretation of the source object-oriented program. Perhaps more importantly,
such a code can be executed by the ordinary deductive, fixpoint-based computation integrated with
efficient support for updates Ly weans of side effects. A major advantage of this opportunity is the fact
that the architecture of the abstract machine supporting deductive databases is left unaltered and, as a
consequence, the available optimization techniques, such as magic sets, are directly applicable.

Many proposals in literature enhance the standard semantics of deductive databases, in order to
support the object-oriented paradigm, but is missing a reference model which supports static and dynamic
aspects in a uniform and simple framework. There are proposals which tackle only static (structural)
aspects of an object-oriented data moclel. This is tle case, for example, of the LOGIN proposal [AKN86],
in whicli a new unification algorithi is defiued to deal with structural inheritance, or of its extension
F-logic [KLWY3], in which a model-theoretic semantics is given in terms of F-structures, and a notion
of object-identifier is modeled by way of existential quantification. As far as the dynamic aspects is
concerned, there are proposals which provide a procedural semantics, as in the case of [Mon93, BGM95],
and other proposals provide ad-loc model theoretic semantics related to modal logic [BK93, MW86,
Mang9, Chedi]. Both the approaches alterate the original standard semantics of deductive databases.
Moreover, it is difficult to semantically cotubine the approaches to structural and dynamic aspects of
the object data madel in decuctive datalases, For instauce, the F-logic combined with transaction logic
leads to a very complicated setnantic model, due to the necessity of combining F-structures with path-
structures. Yet, it is not clear how to enliance sucl approaches to haudle more complex dynamic features,
such as role-dynamics and object-miigration, whicl liave been shiown to be very important issues in the
object-oriented paradigm [ABGOY3, RSYY, Suvi, WdSY5).

In the complete version of this paper, the compilation of all aspects of the object model is presented,
along with the results concerning the correctness and eftficiency of the compilation.

2 XY-Stratification and Nondeterminism

The basic tool used in this paper is a fragment of the £DL + + language, consisting of Datalog
augmented with a non-deterministic choice construct [GPSZY1] and a form of stratification called XY-

stratification [AOTZY3].
Choice goals are used to non-deterministically select subsets of answers to queries which obey a

specified FD constraiut. For iustance, the rule

st_ad(St, Ad) — major(St, Area), facully{ Ad, Area), choice({St}), (Ad)).

3 A DEDUCTIVE OBJECT-ORIENTED DATA MODEL 3

assigns to each student a unique advisor frow the saine area, as the choice goal restricts the sf_ad relation
to obey the FD (5t — Ad). Cloice programs Liave a natural declarative reading, which can be formalized
using stable-model semantics [SZY0], and can be efficiently executed by enforcing the FD constraints
during the bottom-up computation. [GPSZYl]

XY-stratification has been introduced in [AOTZY3] as a syntactically decidable class of programs
extending stratified programs. Recursive predicates use a special argument, called stage which is a
natural number used to count the stages of the computation, and to enforce local stratification of recursive
programs. Two kinds of rules are allowed:

e X-rules, where all stage arguments are the same variable, say J, and
¢ Y-rules, where a stage s(.J) is used iu the head goals, aud either 5(J) or J are used in body goals.

Recursion is allowed ouly in Y-rules, on decreasing stages,
As an example, consider the problein of computing the maxitwun of an array «[0,n — 1] of integers,
represented as a relation

a(0,ey), .. uln—1,0,1)
An XY-stratified program which solves the problem is the following:

maz{0, X) « (0, X). {
maz(s(J),Y) «mar(J, X), a(s(J). Y} Y > X. (
del(s(J), X) = mae(J, X), e(s(J), Y}, ¥ > X. (m3
mar(s(J),) = mnae(J, X)), ~ded(5(1), X)), {rmy4

The intuitive meaning of this program is quite obvious: at each stage J, maz(J, X) holds if X is the
maximum of the array [0, J]. Notice the use of the del relation to specify when the current maximum
value changes from a stage to the next oune. This interpretation is formalized by the notion of perfect
model, characterized by an intended fixpoint procedure which computes one stratum at a time starting
from stage 0.

Although useful to understand programs, this abstract procedural view is hopelessly inefficient, due
to the enormous amount of copying needed at each stage. However, a smarter procedural interpretation
allows us Lo avoid copying, based ou the observation that new values can be produced starting from values
in the current stage ouly, and therefore the old stages may be discarded. According to this interpretation,
the stage argument is represented by a single variable which is incremented at each execution of the Y-
values. The only real computation needed, wlen tle Lody of rules (1m4) and (my) is true, corresponds to
inserting a new fact nuer (V) and deleting the new fact max{X}, in order to obtain the correct extension
of the relation maz at the current stage. [n other words, the effect of Y-rules can be implemented in
terms of real side-effects, those making it viable to use XY-stratified programs for database programming.
In our example, the execution of the proposed programn boils down to the efficient iterative computation
of the following Pascal-like program:

max = all];
for j:=1ton-1do
if mar < afj] then mar ;= af))

For this reasons, XY-stratified programs play a ceutral role in the reconstruction of the dynamics
aspects of the object model, as discussed later,

3 A DEDUCTIVE OBJECT-ORIENTED DATA MODEL 4

|

atom = predonameiterin) | ofd r_-[uss_namt‘[nttrib-ual]

clause v atom e body | class name isa class_nane. | class_namelattrib.def).
body = true | atom | body A body

attribval = attribonaie — term | nthd name@term | attrib_val; attrib_val
attribdef = abtribname = attrib_type | attrib_de f; attribode f

attreb_type = string| int | class_name

Figure 1: Abstract syntax lor the objject-oriented deductive model.

3 A Deductive Object-Oriented Data Model

We consider liere a paradiginatic object-oriented data model, with nechanisms for supporting a kernel
of relevant aspects of (deductive) oliject-ariented databases, which are listed below.

» Object identity: objects in any class are identified by a unique oud.

¢ Multiple roles: an ohject belonging to a class can be viewed as playing a role in that class. The set
of classes in wlich an object Lives, at a given stage, specifies the set of roles of that object. Objects
can dynamically change their roles.

o Maitiple structural inlieritance: tie stricture of objects propagates down from classes to subclasses;
this form of inleritauce is monotonic in the seuse that any additional attribute of method specified
for a subclass is added to the structure inherited from the superclass(es).

¢ Virtual objects and views: new classes can be derived from otliers by means of {deductive) rules,
by specifying their extension on the basis of pre-existing classes.

* Methods: objects may have derived attributes, whose values are commputed on the basis of pre-
existing objects. :

¢ Basic update operations: priniitives for object creation, deletion and role migration are provided,
whose effects propagates to the whoie schema by means of inheritance and derivation rules.

For limitation of space, we clioose not to discuss sonte other relevant aspects, listed below.

» Overriding inheritance and late binding: as a cousequence, we assume that attributes and methods
are not redefined in subclasses, However, these features can be appropriately accommeodated in our
approach with minor modifications.

e Structured attribute types: sequence and tuple types are not considered here, although they can
be easily modeled using complex objects.

» Static type checking: this is actually an orthiogounal issue to our approach, and is outside the scope
of tlis paper.

¢ Transactions and active rules: this is material of future research which we plan to pursue by
extending the techuiques in [CFGPY5, Zanyh).

4 COMPILING THE SCHEMA 5

person[name = stringj. departicent{inngr = employee; assistant = person].
student[af filiation = school]. employee[salary = integer; af filiation = department].
researcher[uPaper = article], schoollabout = string; aStudent = student).

employee isa person. school isa deparément.

reseacher isa employee. student isa person.

D department[assistant = O]
A O personname — N].

(r)

O : employeefaf filiation = D;name — N «

O employee[a f filintion — D]
A D depurtmentfmngr — M.

(r2)

O employeellossa)f] «

Figure 2: An exaniple scliema.

The syntax of the reference ohject-oriented {deductive) database language is shown in Fig. 1. The
language is closely related to many propesals such as [KLWY3, Abi92, AKNSS, BJY4]. Figure 2 shows a
schema definition in this language. A schema is composed by definitions of classes and (deductive) rules.

A class can be defined in three different ways:

o by explicitly defining the set of its attributes such as, for instance, in the definition of the class
depariment;

e by specialization from another class as, for instance, in the definition of the class school as a subclass
of department,

* by dertvation from other classes by means of conditions as, for instance, in the definition of rule
(1), which can be read as follows: ali persons which are assistauts of any department can be viewed
also as employees.

A few remarks about deductive rules are in order. First, objects are referred to by means of atoms of
the form oid : class[atirib_val] whose declarative readiug is: the object identified by oid, viewed in the
role class, has attribute values as specified in attrib_val. Secoud, rules are a fexible mechanism to define
virtual objects and views. Rule (#)), for instance, allows to extend the extension of class employee with
new derived objects. Similarly, views and derived (subjclasses may be constructed. Third, incomplete
information is allowed, iu the seuse that atiribiute values may be partially specified in rule heads, as for
instance, in rule {r)) wlere the salary attribute is missing. In our approach, missing attribute values
are filled in with null values. Finally, creation of virtual objects is subject to the constraint of the oid
uniqueness, so that no new objects are created with oid's already in use.

Rule (r) in Fig. 2 defines a method for the employee class. It specifies that boss is a derived attribute
of any employee object O, whick can be computed as the manager of the department where O works.
To comply with structural inlieritance, methods are propagated to subclasses.

4 Compiling the Schema

[n this section we use XY-stratified, non-deterministic Datalog programs to compile the reference object
model, in a way inspired by [ZanBY]. Tnformally, classes are represented by predicates which specify the
class attributes augmented witl two extra arguments denoting the stage and the oid. Therefore, we

4 COMPILING THE SCHEMA 6

associate with every class P with n attributes, n terhary predicates poq,,(J, oid, filz}),i=1,.. . n, where
J is the stage, oid is the object identifier, f; is the i-tl attribute of the class P, and is its value. Observe
that the stage plays a role in wiodeling the dynamic aspects of the object model. In the compilation of
the static part of tle model, enly X-rules are used, and therefore the stage is only used for deduction
within the current state of the database.

The basis of our approach is to represent objects as instances of the most specialized class they
dynamically belong to. In otlier words, each object is completely specified by its most spectalized version
(msv in short) which contains all attributes currently (at each stage) available for the object. To this
purpose, we introduce a relation .

rmso(f, oid, g(x))
which denotes that, at stage J, the tuple » in class ¢ is the most specialized version of object oid.

In cur approacl we requiire that tle msn of each object is unique, albeit possibly different at different
stages. Such a property is aclieved. in our model, by requiring that the 7SA hierarchy is closed under
intersection, i.e., for any two classes » and ¢ which are not ISA-related, the intersection class rNgq is
present. Clearly, » N ¢ is a subclass of both r and g, and its attributes are the union of the attributes
of r and 4. Tu a real situation, we elvisage that the system automatically completes the schema with
intersection classes wlienever these are not explicitly specified,

The role of msv is to activate the deduction process which populates the classes in the whole hierarchy.
For each predicate ¢..,, and for eacl, attribute f of ¢ the following clause is defined:

Feinss(J, OUd, FIX)) « mse(J, Oid, y(Y)). {MSV Rule}
where ¥ is the tuple of variables correspouding to the atiribites of the object Oid in class q, X is the

variable corresponding to the attribute Finthe tuple ¥,

EXAMPLE 1 The code correspouding to the definition of the class employee in Fig. 2 is the following.
enploye ey, (J, Qid, af filiution(A)) « mso(J, Qid, employee(N, A, 5)).
employee o, (J, Oid, salary(S)) « nso(J, Qid, employee(N, A, 5)).
employee iy, (f, Qid, nwme (N)} e mso(J, Oid, employee(N, A, S)). o

An ISA relation between two classes, p isa 4, s modeled in the following way. For each attribute S
in ¢ the following rule is generated:

Petass (4, Oidd, (X)) ¢ qesass (1. Oid, F(X)). {ISA Rule}

which naturally states that each object of the subelass is also an object of the superclass.

EXAMPLE 2 The code correspoiding to the delinition of cinployee as a subclass of person in Fig. 2 is
the following.

PEPSONaes (J, Oid, nane (N)) & ecrnployes o, {J, Oid, employee(N, A, S)).
a

By the M SV -rule, the sy of each, object is inserted in the appropriate class; then, by the 7S A-rules
each object is propagated up in the lierarchy to the superclasses. It is worth noting how the /§A-rules
defining the hierarchy from oue side provide the declarative specification of subclasses, and from the
operational point of view they allow to populate the database—a dual reading which is typical of logic
programs.

The above rules can be systematically geuerated, by gathering from the schema the following static
information:

4 COMPILING THE SCIHEMA 7

e for each definition p[fy =>t;;. . .. f, = t:] we associate to the label p the set of attribute-type pairs

{(fl)tl): e (fnntn>};

» for each definition p isa ¢, we extend the set of pairs associated to p with those associated to q,
and repeat trausitively this operation w.r.t. the ISA lLierarchy;

¢ for any pair of not ISA-related classes p and g the class p Ny is defined, whose attributes are the
{disjoint) union of the attributes of p and q.

We now provide a compilation for deductive rules. We consider rules where all atoms are either of
the form oid : p[f — (] or of the form oid : plf@t]. Clearly, an atom oid : plhi—=ti . fa = 1] in the
body of a rule is equivalent to a conjunction of atoms oid : plii=t] A ... Aoid: plfn = t,], as well as
such a predicate in the liead of a rules corresponcs to a set of rules with identical body. The compilation
function 7] is defined as follows.

Tlave= A n oA Al ={an=aar . a, | (e, a) € HlAu], BlA] =i (i=1,..,n)}
where H[.] and B[] are defined as follows:
o H[Oid : p[f =] = {(petuss (S, Oidd, F(1)), ~muso(J, Oid, g())} | is a subclass of p}
o H[Ow : plm@1]] = {{qeinse(], Qid, 0i{L}), qetuns (S, Oid,)} | g is a subclass of Pl
o BIOid : p[f — t]] = BLOid : plf@]] = pepass (], Oidd, F(1)).

Intuitively, each method is propagated downwards to the subclasses, as specified by the H function, which
produces a couclusion for any subclass of the given oue. Moreover, the H function yields a check of the
existence of the object Qid iu class for which the method is defined—in a way which recalls the use
of self in o-o languages. Conversely, the couclusions of derivation rules are ouly propagated upwards,
by means of the fSA-ruies. [t is needed, liowever, to clieck that virtual objects are created only if not
already existing: this is perforined by the M function by intreducing a negated use of the msv relation.

EXAMPLE 3 The code for the rule {r;} of Fig. 2 is the following.

employeea g, (J, O, af filiation{D)) + —wnsv(J, Oid, employee(_)),
de partment g, (J, D, assistant (0)),
PETEONCaay (. O, name(N)).

employee as, (J, O, nane(N)) « —eso(J, Qid, employee (L)),
depurtiment q.,,{J, D, assistant(0)),
PErsoiiae s (J, O, name(N)).

employeeciass (J, 0, af filiation(D)) +— ~unso(J, Oid, researcher(_)),
de purtment yqs,(J, D, assistant{0)),
Personge, (4, O, name(N)).

employeecio, (J, 0, name(N)) — —wnso(J, Oid, researcher(.)),
de partment g, ,(J, D, assistant(Q)),
PETsoiee(f, O, name(N)).

EXaMPLE 4 The code for the rule () of Fig. 2 is the {ollowing.

5 COMPILING UPDATES AND ROLE MIGRATION 8

employee iy, (J, 0, boss{M)) « employeceiass (S, 0,),
employeeciass (J, O, af filiation{ D)),
de purtnent o5 (J, D, magr(M}).

reseurcher o, (J, O, boss(M)) + reseurcherc,,.(J,0,),
emplogeeaass {4, O, af filiation{ D)),
de purtinent gy (J, D, mugr(M)).

5 Compiling Updates and Role Migration

We are now ready to compile updates and role migration within our object-oriented model. Notice
that the previous translation was indepeudent from the stage argument of each class predicate. Now, in
order to modify the current state of the database (i.e., to add, delete or modify the objects), we need to
operate on the stage argunment, in a way similar to that used in [CFGPY5, SZ95). We consider five basic

operations:
o new(yla), vid): creation of a new object 11 class ¢ with attributes a.
o extend{oid, qla]): lusertion of an existing object oid in class ¢ with attributes a.
o drop(oid, 4[a]): deletion of an existing abject vid from class ¢ with attributes a.

delete(oid, g[a]): deletion of an existing oliject oid,

madi fy(eid, ¢[b]}: modification of the attributes of an existing object oid in class g with attributes

b.

The basic idea is to petforin sucll operatious ou the msv of the referred object. This is done by using
a sort of frame aziom 1 the style of [CFGPYS, 5295). lutuitively, the alive objects at the current siage
are the newly created oues, and those of the previous stage which have not been explicitly deleted. The
following rule states tlie above concept: relition msogg records the abjects which have been explicitly
deleted, updated and/or migrated at the current stage.

msu(s(J), Qid, X) & msv(J, Qid, X), =msvg (5(J}, Oid, X}. {COPY Rule}

Notice that, as already meutioned 2, sucl a clause does not need to be really implemented as a rewrite
rule, but it is amenable of a more efficient inpleinentation using side effects,

As a colisequence of the assumption that each object has a unique msv, we can model updates by
simply updating the msv relation, as the A/ SV-rules and the JSA-rules accomplish the task of reflecting
the updates on the whole database. We now shiow liow tlie msv refation is used to the purpose of modeling
the above five update operatious.

The code realizing the operation new(p{u}, Oid) is composed by the following rule and by the COPY-
rule. Notice that, if « is a partial specification of the attributes of p then a’ is the complete list of the
attributes of p, where the attributes unspecified in « are assigned to nudl,

msv(s(JS}, Qid, p(a')) « Q. ide (Oidy, ~msv(J, Oid,),
choice((Oid). ((a)}), choice{(p(a)), (Oid)). {NEW Rule}

In the NEW-rule, the relation ide is tle domain of object identifiers. According to this rule, a new Oid
is chosen which is not already in use at stage J, and associated to tuple @ in class p. The choice operator
allows us to non deterministically select, for each tuple, exactly one of the unused identifiers. As usual,
the copy rule passes to the next stage all mse’s of objects which have not been dropped. Observe that the
NEW-rule is applicable also when the database is empty, i.e., when no fact msv{0, _, } is present—thus
reflecting the fact that the database can be loaded by a sequtence of new operations.

5 COMPILING UPDATES AND ROLE MIGRATION 9

EXAMPLE 5 The operation new(emplyee[name = smith], Oid) generates the following NEW-rule:

msv{s(J), OQid, employee (snith, null, null)) « ide(0id), -msv(J, Oid, .},
choice({employee(smith, null, null)), (Oid)), choice ((Qid), {student(smith, null, null))).

This rule, together with the A/SV-rules of example 1 has the effect of inserting the new object in class
employee. Finally, the /S A-rules of example 2 insert the same object in class person. a

The code realizing the operation delete(oid) is the following rule plus the COPY-rule:
msvg {s(J), 0id, X) — mso{J, 0id, X) {DELETE Rule}

The code realizing the operation extend{vid, ¢[]) is composed by the following three sets of rules plus
the COPY-rule (again, o' is the set of attributes of ¢ specified in a and completed with nuil).

1. For each superclass r of p the following rules are defined:

msv(s(J), old, pla’)) & mso{J, oid, 1 (c)).

sV (500), 0id, r(0)) + mso{J, oid, +{c}}. {SPECIALIZE Rules}

2. For each subclass r of

msv(s(J}, oid, pla)) & mse{J, oid, r(a, D).

msvge (), oid, r{a, 0)) & oS, oid, +(a, b)) {GENERALIZE Rules}

3. For each class v not ISA-reluted with o

msv(s{J), oid, p N e(a!, 0)) — msv(J, oid, r(8)). .
msvger (s(J), ol v (B)) + msu(J, oid, rib)). {EXTEND Rules}

Notice that each set of rules is composed by two different rules: an insertion rule, which inserts a new
msv, and a deletion rule, which deletes the old msv. The SPECIALIZE-rules model the specialization
of the object oid from superclass r to subelass p. The associated deletion rule deletes the previous msv
of the object oid. The GENERALIZE-rules remove the msv of object oid if it belongs to a subclass of
p, and generate the uew msv in p. The EXTEND-rules deal with the possibility of inserting the object
oid in a class p while its current msv belongs to class + which is not /SA-related with p. In this case the
new msv of the object belongs to the intersection class of p and r.

EXAMPLE 6 the operation extend{oid, stude nt[nanie — greene, school — 0id']) generates the following
insertion and deletion rules.

msu(s(J), otd, student{greene, oid')) = msv(J, oid, person(greene)).
msvge{s{J), oid, person{greence)) — wmse(J oid person{greene)).
msv(s(J), oud, student N emplayee(greene, oid', X, 1)) — o] oid, employee(greene, X, Y}},

msv(s(J), oid, student Nresearcher(greene, i, X, Y, Z)) +— wmse(J, oid, researcher(greene, X, Y, Z)).

mevae{s(J), vid, researcher(greene, X, Y, 2)}) — mase(J, oid, researcher(greene, X, Y, Z)).

mavye(s(J), oid, employece(greene, X, Y)) +— msv(J, oid, employee(greene, X, Y'}}.

Notice that, to complete the compilation schema, the EXTEND-rules related to department, school and
others should be generated.]

REFERENCES 10

Observe that, by the uniqueness of the nisv relation, for each oid we have that at most one insertion
rule is applicable, and analogously for the deletion rules. In fact, if either the student oid is not present or
its current msv belongs to student or to student Nemyployee, then noue of the above clauses is applicable
and therefore the extend{oid, student[nume — greene; school — 4)}) is not executed.

The code realizing the operation drop(oid, 4u]), is composed by the following rules. For each subclass
r of p {possibly r = p), and for eacl class ¢ which is eitlier a superclass of p or a superclass of r not

ISA-related with p:

msuv(s(J}, 0id, ¢(c)) — msv(J, oid, +{u, b}).
msvyet (8(J), 0id, v, b)) — mso(J, oid, r{u, b}). “{DROP Rules}

The DROP rule in the secoud clause removes the msv of object oid if it belongs to a subclass of ¢ or to
g itself. To generate the new msv of vid three cases are cousidered. If ¢ is the root class of the hierarchy,
the oid is removed [rom the database as no wsertion rule is defined. If g is the specialization of a unique
class p, then the new mswe of eid belongs to p. In any other case, by the hypothesis of closure under
intersection of the Lierarchy, the current sy of wid belongs to the intersection of a subclass of ¢ and
some relation p which is not [5A-related with ¢. In this case the new msv of oid belongs to p. Observe
that two cases are possible. If the current msv of oid belougs to student, then the new msv of oid will
end up in person. Otherwise, if curreut msn of oid belougs to student Nemployee, then the new msv will
end up in employee. Tt is wortl uoting that the constraint that deletion cannot be applied to intersection
classes is needed to guarantee the uniqueness of the msv. I the example, it is not allowed to delete a
student N employee directly, but it is needed to delete it both as a student and as an employee.

The code realizing the operation ruodify is similar to that of the delete operation, and therefore

omitted.

References

[ABGO93] A. Albano, R. Berguwnini, G. Ghelli, aud R. Orsini. An Object Data Model with Roles. In
Proceedings of the 19th International Conference on Very Larye Data Bases, 1993,

[Abi92] 8. Abiteboul. Towards a Deductive Object-Oriented Databases. In Proceedings of the [nt.
Conf. on Deductive and Object-Oriented Dutubases, pages 453-472. W. Kim and Nicolas,

J.-M. and 5. Nislio, 1992

[AKN86] H. Ait Kaci and R. Nasr. LOGIN: A Logic Programming Language with Built-in Inheritance.
Journal of Logic Progeamning, 3(3):185-215, 1986,

[AOTZ93] N. Arni, K. Ong, S. Tsur, and C. Zaniolo. LDL++: A Second Generation Deductive
Databases Systems. Technical report, MCC Corporation, 1993.

[BGMY5] E. Bertino, G. Guerrini, andd D. Montesi. Deductive Object Databases. In Proocedings of
ECOOP'95, 1945,

[BJ94] M. Bugliesi and H. M. Jamil. A Logic For Encapsulation in Obiect-Oriented Languages.
In Maria Alpuente, Roberto Barbuti, aud [sidro Ramos, editors, Proceedings of the GULP-
PRODE’G4 Juint Cunference on Declurative Programming, volume 2, pages 161-175, Septem-
ber 1494.

[BK93] A. J. Bonner micd M. Kiler. Trausaction Logic Programming. Technical Report CSRI-270,
Computer System Research [ustitute, University of Toronto, December 1993.

REFERENCES 11

[CFGPY5] M. Carboui, V. Foddai, F. Giaunotti, and D. Pedreschi. Declarative Reconstruction of Up-

[Chef1]

[GPSZ91]

(KLW93]

[Man89]
[Mon93]

[MW86]

[RS90]
[Suflj

[SZ90]

[SZ95]
[WdS95]

[Zan&9]

[Zan95]

[ZAO93]

dates in Logic Databases: A Compilative Approach. In M. Alpuente and M. T Sessa, edi-
tors, Proceedings of the GULP-PRODE joint conference on Declarative Programiming- GULP-
PRODESS5, pages 165-180, september 1995,

W. Chen. Declarative Specification and Evaluation of Database Updates. In Proceedings of the
Second International Conference on Deductive and Qbject-Oriented Datelases (DOOD'91),
number 566 in Lecture Notes in Computer Science, pages 147-166, 1991

F. Giaunotti, D. Pedreschi, D. Sacca, and C. Zaniclo. Non-Determinism in Deductive
Databases. In (. Defobel, M. Kiter, aud Y. Masuuga, editors, Proceedings of the 2nd Inter-
national Conference on Deductive and Qlject-Oviented Databases (DOODJ!), Lecture Notes
in Computer Science, pages 129-140, Springer-Verlag, Berlin, 1991,

M. Kifer, Gi. Lausen, and J. W, Logical Foundations of Object-Oriented and Frame-Based
Programming. Techuical Report Y3/06, Department of Computer Science, SUNY at Stony
Brook, June 1993, Also appeared i Jourual of ACM.

S. Mauchanda. Declarative Expression of Deductive Database Updates. In Proceedings of the
ACM Sympasivm o Principles of Dutabase Systeis, 19849,

D. Montesi. A Model for [dates and Transactions in Deductive Databases. PhD thesis,
Dipartimento di Informatica Universita di Pisa, 1993,

S. Mauchanda and D. . Warren. A logic-Based Language for Database Updates. In J. Minker,
editor, Foundufions of Deductie Databases and Logic Programmang, pages 363-394. Springer-
Verlag, Berlin, 1930,

J. Richardson and P. Schwarz. Aspects: Exteuding Objects to Support Multiple, Indipenddent
Roles. Technical Report 7657, IBM Almaden Research ceuter, 19490,

J. Su. Dynamic Coustraints and Object Migration. {n Proceedings of the 17th International
Conference on Very Large Dutu Bases, 1991,

D. Sacch and C. Zaniolo. Stable Models aud Non-deterininism in Logic Programs with Nega-
tion. [n Proceedings of the ACM Symposium on Principles of Database Systems, pages 205—
217, 1990,

V. 8. Subrahmanian auc C. Zaniolo. Relating Stable Models and Al Planning Domains. In
Proceeding of the Internationul Conference on Logic Programming, 1995.

R. Wieringa, W. de Jouge, and P. Spruit. Using Dynamic Classes and Role Classes to Model
Object Migration. Theory and Praclice of Object Systems, 1{1):173-196, 1995.

C. Zaniolo. Object Identity and Inheritance in Deductive Databases - An Evolutionary Ap-
proach. Technical Report AST-ST-373-89, MCC Corporation, 1989, Also in the lst Int. Conf.
ont Deductive and Qbject-Otiented Databases.

C. Zaniolo. Active Database Rules with Transaction Cunscious Stable Model Semantics. In
Jth International Conference on Deductive and Object-Oriented Databases, 1995. To appeat.

C. Zauniolo, N. Arni, and K. Oug. Negation and Aggregates in Recursive Rules: The
LDL++ Approach. In International conference on Deductive and Object-Oriented Databases

(DOOD'93), 1993,

