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We argue that the electrostatic field profile observed by ARTEMIS in the neigh-
bourhood of the lunar surface is sustained by singular electron and ion velocity
distribution functions. These are singular solutions of the steady state, two species
Vlasov-Poisson equations. The energy distributions of the hot, finite mass, mobile
ions is assumed to be log singular at the position of the electric potential’s minimum.
We show that the electron energy distributions on opposite sides of this minimum are
not equal. This leads to a jump discontinuity of the electron distribution across its
separatrix. A simple relation exists between the difference of these two electron dis-
tributions and that of the ions. The distributions of both species are given in terms
of elementary functions and they meet smooth boundary conditions at one plasma
end. Simple, finite amplitude profiles of the electric potential result from Poisson
equation, which are smoothly, but non monotonically and non symmetrically dis-
tributed in space. Three such solutions are investigated in detail as appropriate for
non monotonic double layers and for a plasma of semi-infinite extent bounded by a
surface.
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Non-monotonic Lunar Plasma Sheaths

L. Nocera∗

CNR-IPCF, Theoretical Plasma Physics, Via Moruzzi 1, I-56124 Pisa, Italy

We argue that the electrostatic field profile observed by ARTEMIS in the neighbourhood of the
lunar surface is sustained by singular electron and ion velocity distribution functions. These are
singular solutions of the steady state, two species Vlasov-Poisson equations. The energy distributions
of the hot, finite mass, mobile ions is assumed to be log singular at the position of the electric
potential’s minimum. We show that the electron energy distributions on opposite sides of this
minimum are not equal. This leads to a jump discontinuity of the electron distribution across its
separatrix. A simple relation exists between the difference of these two electron distributions and
that of the ions. The distributions of both species are given in terms of elementary functions and
they meet smooth boundary conditions at one plasma end. Simple, finite amplitude profiles of the
electric potential result from Poisson equation, which are smoothly, but non monotonically and non
symmetrically distributed in space. Three such solutions are investigated in detail as appropriate
for non monotonic double layers and for a plasma of semi-infinite extent bounded by a surface.

Our starting observational data is the electric potential
space distribution as observed by the ARTEMIS space-
craft [1]. This distribution is characterized by an asym-
metric shape about its minimum and by by an asymptotic
decay towards two different values as the space coordi-
nate x approaches ±∞ and it is modelled in Fig. 1.

To afford a concise treatment for both the electron
(subscript e) and ion (i) populations, we assume that
quantities in the plasma depend on position Lx and parti-
cle velocity v0v and denote by Φ0, n0, L = √(4πen0/Φ0),
v0 = √(eΦ0/me), me,i, −Zee, Zie, n0fe,i(x, v)/(Ze,iv0)
the scales of voltage, density, length and velocity, the
electron and ion masses and charges (with Ze = 1), and
their velocity distributions. We write the potential as

Φ(Lx) = minΦ+ Φ0φ(x), (1)

where Φ0 = maxΦ−minΦ, 0 ≤ φ ≤ 1 (2)

and we set

fe,i(x, v) + fe,i(x,−v) =
√
(2µe,i)Fe,i(ue,i)/Ze,i, (3)

where µe,i = me,i/(meZe,i) and

ue,i = µe,iv
2/2− Ve,i, Ve = φ, Vi = 1− φ (4)

are the particle total and potential energies. Finally, we
assume that the plasma be in steady state and collision-
less, so that Fe,i solve the time independent Vlasov equa-
tion, thus being constant along particle trajectories.

In each domain 1, 2, where φ′ %= 0 (Fig. 1), we set
φ(x) = η,φ′′(x) = φxx(η) and we write Poisson equation
as

φxx(φ) = ne − ni, ne,i =

∫ ∞

−Ve,i

dt
Fe,i(t)

√(t+ Ve,i)
. (5)

This equation is to be solved under the condition that, on
the high potential boundary, φ has its absolute maximum
(φ = 1,φ′ = 0, Eq. (2) and Fig. 1), and

Fe(w) = Fe0(w), Fi(u) = Fi0(u), for u ≥ 0. (6)

kx

φ

Ve=0

Vi=0

Fi(1)=Fi(2)Fe(1) Fe(2)

domain 1 domain 20
0

a

1

FIG. 1. An asymmetric potential φ vs. coordinate x. Note the
zero values of the electron and ion potential energies Ve,i (dot-
dashed lines) and the loci of trapped electrons [ions] (wide
[narrow] hatched area). In domains 1, 2, φ′ != 0 and the elec-
tron [ion] distributions Fe(1,2) [Fi(1,2)] differ [coincide].

These boundary conditions uniquely fix the distribution
of the electrons in domain 2 and that of the positive
energy ions (the former reach that boundary from domain
2, and the latter do so from any domain, on trajectories
along which their distributions are constant).
To find the distributions of the negative energy ions

and of the domain 1 electrons, we denote by −p and
−q the total charge densities respectively at the potental
minimum and maximum and we write

φxx(φ) = p+

∫ φ

0
dt

Ge(t)
√(φ− t)

= q−
∫ 1

φ
dt

Gi(1− t)
√(t− φ)

. (7)

By direct substitution and using principal value integra-
tion according to need, we prove that the solution of Eq.
(5) obeys the relation (here α = e [i], β = i [e], u > 0)

Fα(−u) = Gα(u)+

∫ ∞

0
dt

√u

π√t

[
Fα(t)

t+ u
+

Fβ(t− 1)

t− u

]
. (8)

Now, we showed [2] that Fi(−u) is algebraically continu-
ous on the ion separatrix (i.e. for u = 0), and log singular
at the potential’s minimum and for zero velocity (u = 1).
To account for these properties, in domain 2 we make the
non trivial Ansätz

Gi(u) =
2c

π
[3d(2b−5+5u)tanh−1√u+(e−16u)

√
u], (9)
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where e = 12− r/c+ d(5− 12b), r = p− q and b, c, d are
constants. Eqs. (6), (8) and (9) complete the derivation
of the ion distribution in domain 2.

We know that the ion distributions in domains 1 and 2
concide and so do those of the positive energy electrons
(such particles visit both domains on trajectories along
which their distributions are constant). To find the dis-
tribution of the negative energy electrons in domain 1, we
denote by ∆f(u) = f(u)|domain2 − f(u)|domain1 the dif-
ference of the values that a quantity f attains in domains
1 and 2 for the same value of its argument u. Using Eq.
(8) and solving Abel’s Eq. (7) for Ge, we find, for u > 0,

∆Fe(−u) = ∆Ge(u) =
1

π

d

du

∫ u

0
dt

∆φxx(t)
√(u− t)

. (10)

Now, Eqs. (7) and (9) give (here y = √φ)

φxx(φ) = q+(1−φ)(r−12cφ)+cdy(1−y)(5y+3b) (11)

in domain 2. This turns into φxx|domain1 if y '→ −y [3]
and, taking b, c, d from Eq. (9), Eq. (10) gives

∆φxx = 8cdy(3b− 5φ),∆Fe(−u) = 6cd(2b− 5u). (12)

Given u > 0, this provides the distribution of the negative
energy electrons in domain 1 once it is known in domain 2
and completes the derivation of the particle distributions.

The remarkable result of Eq. (12) gives ∆Fe(u − 1)
at no extra cost, as π times the coefficient of the log
singular term in the ion distribution (Eqs. (8) and (9)).
Note that, since Gi(1) must be non negative, so must
be ∆Fe. Also, in going from positive to negative values
of energy across the domain 1 branch of the separatrix,
the electron distribution jumps from Fe0(0) to Fe0(0) −
∆Fe(0), and since this latter value must be non negative,
from Eqs. (6) and (12), the following constraints hold for
the coefficients in Eq. (9):

0 ≤ 12bcd ≤ Fe0(0). (13)

As an application of our results, we consider the po-
tential distribution within a non monotonic double layer,
for which both plasma boundaries may be set at infinity.
Eq. (11) gives

φ(x) = a{2/[(1−√
a)− (1 +

√
a)coth(kx)]}2, (14)

where a = φ(−∞) and k = √[2c(1 +√a)].
In Figs. 1 and 2, we show the asymmetric potential

of Eq. (14) and the related particle distributions. For
w < 0 these are

Fe(w) = Fe0(w) in domain 2, (15)

Fe(w) = Fe0(w)−∆Fe(w) in domain 1, (16)

Fi(w) = Gi(−w) +
√
(βi/π)e

−βiwerfc(
√
[−βiw])−

√
(βe/π)e

βewerfi(
√
[−βew]). (17)
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FIG. 2. (a) The electron [ion] distribution Fe [Fi] vs. energy
w is discontinuous [log singular] at w = 0 [w = −1], i.e. on
the left branch of the separatrix ((b) and dashed curve in (d))
[at x = v = 0, ((c) and bullet in (e))]. Shaded areas in (d)
and (e) denote trapped particles. Fe(1,2) are the values of Fe

in domains 1, 2 and Fe,i0 are the boundary conditions of Fe,i.

For w > 0, Fe,i = Fe,i0 (Eq. (6)), where

Fe0(u) =
√
(βe/π)e

−βe(1+u), Fi0(u) =
√
(βi/π)e

−βiu (18)

are the boundary conditions for x → ∞. We assumed
that electrons and ions are in charge neutrality there
(φ′′ = 0 at infinity) and thermally distributed with den-
sity and temperature n0/Ze,i and eΦ0Ze,i/βe,i respec-
tively.
The values of the parameters in Eqs. (9), (14), (17)

and (18) used to draw Figs. 1 and 2 are k = 0.2, c =
k2/[2(1+b)2], b = √(r/c)/2 = √a = 1/√2, d = 1−b,βe =
0.1,βi = 0.2. These values give a maximum charge den-
sity and voltage drops across the double layer respec-
tively of p = 0.01 times the electron charge density and
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Φ0 = 0.1 times the electron temperature both taken as
x → ∞ and an ion to electron temperature ratio there
of 0.5. The agreement of the potential profile of Fig. 1
with some waveforms of weak double layers [4] is worth
noticing.

As a second application, we consider the potential dis-
tribution in the semi-infinite half space bounded by a
plane surface where the potential reaches a maximum
φ = φ0. If this is also the absolute potential maximum,
then, by construction (Eq. (2)), φ0 = 1, the surface oc-
cupies the high potential boundary at, say, x = 0 and
it hosts the particle distributions’ boundary conditions
of Eq. (6): the other boundary shifts to infinity, where
φ = φ∞ < φ0. Quadrature of Eq. (11) gives

φ(x) = {√φ0 +AB/[1− (1 +B)coth2(kx)]}2, (19)

where A = √φ∞ + √φ0, AB = 2(|√φ0 − √φ∞| − d),
k = √[c(1 + B)]A, and c, d are the constants appearing
in Eq. (9).

A third application arises when φ0 < 1 is not the ab-
solute potential maximum. Again by construction, the
boundary hosting the particle distributions’s conditions
now shifts to infinity, where φ = φ∞ = 1. The solution
of Eq. (19) still holds provided B '→ −B. The plots of
this solution and of the associated particle distributions
are analogous to the ones in Figs. 1 and 2.

The fully analytical treatment we presented of steady
state, non monotonic, asymmetric, electrostatic potential
distributions and of the associated velocity distributions
of collision-less electrons and ions offers some concomi-
tant new results and advantages: (a) it involves both
electrons and finite mass, mobile, hot ions; (b) it meets
smooth boundary particle distributions at one plasma

end (Eq. (6)); (c) it complies with the general result that
the solutions of the steady state electron and ion Vlasov
equations subject to smooth boundary conditions and
supporting smooth, asymmetric potential profiles must
necessarily be jump discontinuous and log singular [2, 5];
(d) it shows that, although the electron distribution on
opposite sides of the potential minimum are not equal,
they cannot be given arbitrarily and that, remarkably,
they can be calculated directly from that of the ions at
no extra cost (Eq. (12)); (e) it is not limited to small-
amplitude potentials; (f) it affords an unified analysis
of the potential distribution in different plasma settings
(Eqs. (14) and (19)).
The simplicity of the singular solutions of the steady

state, two species Vlasov-Poisson equations based on Eq.
(9), their concise derivation, properties, versatile applica-
tions and agreement with observations should hopefully
appear as convincing circumstances of their relevance.
Their stability and their numerical reproduction will be
dealt with elsewhere.
This work was supported by the National Research
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