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In his seminal paper on the Brownian Motion, Ein-
stein found the first example of fluctuation-dissipation
relation. In the absence of external forcing one has

〈x(t)〉 = 0 , 〈x2(t)〉 ' 2Dt , (1)

where x is the position of the Brownian particle and
D the diffusion coefficient. Once a small constant
external force F is applied one has a linear drift
δx(t) ' µFt which is proportional to 〈x2(t)〉 and the
Einstein relation holds: µ = βD.

However, it is now well established that in many sys-
tems the mean square displacement of a tagged par-
ticle does not grow linearly with time and anomalous
diffusion can be observed, i.e.

〈x2(t)〉 ∼ t2ν with ν 6= 1/2, (2)

see for instance [1].

Here we consider a couple of one-dimensional mod-
els, showing subdiffusive behaviour, and focus on the
study of the relation between the response to an ex-
ternal driving force and unperturbed correlations. In
particular, we study the dynamics of a single particle
making a random walk on a “comb” lattice and the
single-file model, i.e. a gas of hard rods coupled to an
external thermal bath. In both systems we observe
that the equilibrium fluctuation-dissipation theorem
in the form of the Einstein relation is satisfied also
in the subdiffusive regime, i.e. the response to an
external force and spontaneous fluctuations are pro-
portional. On the other hand, introducing “non equi-
librium” conditions through a stationary current, in
the form of unbalanced transition probabilities for the
comb or with dissipative interactions for the single-file,
we find in both cases strong violations of the Einstein
relation (see figure 1 and reference [2]).

For the comb model, where the transition rates
W [(x, y) → (x′, y′)] of the process are explicitly
known, we are able to write down an out of equilib-
rium fluctuation-dissipation relation [3–5]

δx(t) =
1

2
[〈x(t)x(t)〉 − 〈x(t)x(0)〉 − 〈x(t)A(t, 0)〉] ,

(3)
where A(t, 0) =

∑t
t′=0B(t′) and

B[(x, y)] =
∑

(x′,y′)

(x′ − x)W [(x, y)→ (x′, y′)], (4)

which allows us to recover an exact relation between
response function and unperturbed correlation func-

tions (see figure 1). The observable B gives an effec-
tive measure of the propensity of the system to leave
a certain state (x, y). Relation (3) is quite general and
holds for all kinds of non-equilibrium states, station-
ary or not. It has been used to build very efficient
field-free algorithms for the measure of the response
function in the framework of aging systems [6].

In conclusion, we find that the Einstein formula holds
also for models showing anomalous diffusion, provided
that no currents are present in the system. On the
contrary, when non equilibrium conditions are consid-
ered, strong violations occur, and a generalized non-
equilibrium relation has to be taken into account.
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FIG. 1. Response function (black line) and m.s.d. (red
dotted line) measured in the comb model. The correla-
tion function 〈x(t)A(t, 0)〉 (black dotted line) yields the
right correction to recover the full response function (blue
dotted line), in agreement with the FDR (3).
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