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Shape decompositions that are guided by a motorcycle graph endow topological properties that are
relevant for many engineering applications, such as T-spline fitting, shape compression and structured
mesh generation. While for the surface case this is a widely studied and well-established construction,
the concept of motorcycle graph was lifted to volumes only recently (Briickler et al., 2021). Due to this
recent introduction, the generation of volumetric motorcycle graphs that fulfill application dependent
criteria, such as minimal number of blocks or high approximation capabilities, is still an open problem.
In this article we study and compare two alternative approaches to the computation of volume shape
decompositions guided by a motorcycle graph. The proposed methodologies are designed to optimize

alternative application-dependent quality criteria and, overall, perform better than prior art in most

of the cases.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Decomposing a given shape into an atlas of quadrilateral or cu-
bic patches is an important step in many applications in graphics
and engineering. In particular, non conforming partitions where
patches are adjacent along a portion of an edge or a face al-
low to greatly reduce the overall number of primitives in the
decomposition. For the surface case, patches are bounded by
the arcs of the so called motorcycle graph [1,2], and the result-
ing decompositions are widely used as computational domain
for higher order meshing [3], quadrilateral remeshing [4], mesh
booleans [5], field-aligned surface mapping [6], texturing [7], and
production of knitted models [8].

The concept of motorcycle graph was lifted from the surface
to the volume setting only recently [9] and so far it was only
exploited to perform robust quantization of volumetric Integer
Grid Maps [10]. Considering the importance and variety of appli-
cations that are involved in the surface setting, motorcycle graphs
promise to be equally useful in the volume setting, supporting a
natural extension of the same applications for solid meshes.

In this work we first observe that the technique presented
in [9] allows to compute just one among the (exponentially many)
possible motorcycle graphs of a given mesh. Based on this obser-
vation, we propose novel algorithms that allow to systematically
explore the space of solutions, permitting to find the decomposi-
tion that best suits the requirements of the application at hand.
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Due to this space size issue, an exhaustive search to find the ab-
solute (global) optimum is often unfeasible. Rather, our approach
identifies a practically good local optimum whose calculation
requires a reasonable amount of time.

We explore the space of different 3D motorcycle complexes
in a constructive manner. We propose two novel methods: 3D
motorcycle complex enumeration and sheet swapping, which are
based on serial fire growing metaphor introduced in [9]. Inspi-
ration for these novel approaches comes from previous works in
2D [3,11], which explore the space of non conforming four sided
partitions by segmenting an input quadrilateral surface mesh.

Our experiments confirm that the volumetric extension of
these methodologies produce superior 3D motorcycle graphs
than [9]. As an example, for the Stanford Dragon shown in Fig. 1
our best decomposition reduced the number of blocks from 220
to 187. More in general, when used for geometry compression
purposes [12-14], replacing [9] with our approach leads to an
average gain of approximately 3 bits-per-vertex (bpv), with peaks
of 12 bpv for some test models. A detailed comparative analysis
of our results can be found in Section 4.

2. Related works

This paper aims to compute non conforming coarse block de-
compositions that are aligned with the connectivity of a guiding
hexahedral mesh. Hexahedral meshes are a prominent volume
shape representation in graphics and engineering [15]. These
decompositions are useful both to aid existing hexahedral mesh-
ing pipelines [10] and for downstream applications, where they
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Fig. 1. 3D motorcycle complex as computed in [9] (top) versus an optimized complex computed by our method (bottom). The number of blocks is reduced by
approximately 15%. Relevant differences are highlighted in the closeups on the right, where sheets separating the blocks are shown.

become a computational domain for the resolution of Partial
Differential Equations (PDEs) with spline methods [16,17].

Literature proposes several approaches for the computation
of hexahedral meshes, such as adaptive grids [18-21], poly-
cubes [22-30], frame fields [31-37], sweeping along curves or
membranes [38-40], and many others. Interactive approaches
[23,41,42] or methods that occasionally introduce spurious non
hexahedral cells [42-46] have also been explored.

Each of these methodologies is more or less capable to create
meshes whose connectivity admits a good block decomposition
for some application. The notion of good is application depen-
dent, but typically relates to the number of domains in the de-
composition, to the ability of each domain to accommodate a
tensor product that approximates the target geometry well, to
the block decomposition to compress a hexahedral mesh that is
stored in a smaller amount of space, or to a combination of all
these criteria. For example, grid-based methods are known to
produce poorly structured meshes with high valence singulari-
ties [20]. As such, they are suitable for Finite Element Analysis
(FEA), which operates on each element separately, but are unsuit-
able for spline methods such as Iso Geometric Analysis (IGA) [17],
which demands the existence a coarse block decomposition. Con-
versely, frame field and polycube methods produce much coarser
structures, obtained aligning singular vertices either at mesh
generation time or in post processing [47-49].

Releasing the conformity requirement between adjacent
blocks allows to greatly reduce the number of domains, also
for complex meshes produced with grid methods. The recently
proposed volumetric motorcycle graphs [9] can be used to gen-
erate such decompositions. Our work is positioned in this new
line of research, improving the state of the art by permitting to
explore a wider portion of the space of possible non conforming
block decompositions, selecting the best suited for the application
at hand based on a selected criteria such as minimization of
number of blocks [9] and minimization of storage space [12-14].
Note that many science and engineering applications utilize high-
resolution unstructured hexahedral meshes for modeling solid
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shapes for finite element simulations. These meshes need huge
amount of space when stored in a raw format, and encoding
their connectivity/geometry allows reduction of the storage space
needed [12].

Exploration of combinatorial solution spaces. Regardless of the
specific application, our algorithm is also loosely related to all
methodologies that aim to make the exploration of a large com-
binatorial space efficient. This is indeed a fundamental computer
science problem and an exhaustive discussion of this topic is
beyond the scope of our paper. Perhaps not too distant from our
applicative field are the topological methodologies used in [50],
the branch-and-bound solvers used in [51,52] for layout embed-
ding and tetrahedralization, and the hill climbing approach used
in [26] to explore polycube segmentations. Our enumeration of
the motorcycle graphs has also tight analogies with the beam
search strategy used in [53] to decompose a complex shape into
3D printable chunks. Decomposition for digital manufacturing is
indeed an application where similar problems often arise, and are
solved greedily [54,55], via sampling of the solution space [56] or
with other techniques. We point the reader to the recent tutorial
at Eurographics for a comprehensive presentation of these and
other methodologies [57].

3. Exploration of motorcycle graphs

Our method inputs a hexahedral mesh M and outputs a fam-
ily of alternative partitions of it into non conforming cuboidal
domains. We operate by systematically exploring the space of
partitions so that, given an application-dependent quality metric,
we can select the best suited for it as the best one among the
partitions that were created by our algorithm.

In practice, a partitioning can be thought of as a labeling
of the hexahedral elements in M, such that hexahedra having
the same label belong to the same domain. Internal edges and
faces of M that are incident to hexahedra with different labels
define the boundaries of the cuboidal domains, jointly forming a
Motorcycle Graph of M [9]. The motorcycle graph is a superset
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Fig. 2. Left: a hexahedral mesh with color coded elements that reflect its
topological structure. Right: cutting sheets separating cuboidal domains are sets
of contiguous quadrilateral faces whose incident hexahedra have different colors.

of the singular structure of M, which is fully contained in it.
Consequently, hexahedral cells belonging to the same cuboidal
domain are always arranged as a regular grid.

Considering that the space of alternative partitionings is ex-
ponential w.r.t. the number of singularities in the input mesh,
exhaustively exploring all possible solutions to locate the global
optimum is often not feasible. Our major difficulty is therefore
to devise computationally feasible methods that allow to explore
a portion of the space of solutions that is big enough and that
likely contains either the global or a good local optimum. Note
that our enumeration approach is remarkably different from the
philosophy of [9], which greedily constructs a partitioning and
then tries to locally modify its structure to reduce the number of
blocks. By construction, such an approach can only explore the
small fraction of the space of solutions located around the local
optimum that was greedily identified, which can be arbitrarily
bad for the application at hand.

In the remainder of the section we first explain how to gener-
ate a superset of the Motorcycle Graph starting from the singular
structure of the hexahedral mesh M (Section 3.2) and then intro-
duce our two novel strategies to navigate the space of solutions,
one based on enumeration (Section 3.3) and the other based on
swapping (Section 3.4).

3.1. Motorcycle graph superset

The topological structure endowed in the connectivity of a
hexahedral mesh M is entirely defined by its singularities. A mesh
edge is said to be irregular, or singular, if its number of incident
cells is different from 4 in the interior or different from 2 at the
boundary [15]. Singular lines in the mesh are chains of adjacent ir-
regular edges that traverse the volume from one boundary vertex
to another, form closed loops, or meet at an internal (irregular)
vertex that is incident to three or more such chains. The number
of hexahedra incident to each edge in a singular line determines
its valence.

A singular line ¢ with valence v defines precisely v cutting
sheets that emanate from it and, following the mesh connectivity,
contribute to partition the volume into disjoint cuboidal com-
ponents. Cutting sheets, which are propagated from all singular
lines separately, can be easily computed with a flooding approach
[9,49]: given a singular edge e € ¢ and a quadrilateral face q
incident to it, the whole cutting membrane can be computed by
progressively conquering the quadrilateral faces that are adjacent
to g through a regular edge and that are not faces of a hexahedron
that is also incident to q (Fig. 2). For singular edges exposed on
the surface, applying the tracing to boundary quads does not
hurt but it can be avoided, because it simply reduces to flood
a portion of the outer surface of M without contributing to its
actual decomposition.

Cutting sheets emanating from different singular lines may
intersect orthogonally at inner regular edges (in a topological
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(b)

(d)

Fig. 3. Intersection types for two cutting sheets (in different colors). Black
continuous and dashed lines depict singular lines and intersections, resp.

sense). Tracing them all and accounting for their intersections
yields a conforming cuboidal decomposition of M. This construc-
tion, called the base complex, can be thought of as the coarsest
conforming hexahedral mesh derived from the connectivity of
M [47,49] (i.e., each domainisa 1 x 1 x 1 grid).

The base complex of M is a superset of all its motorcycle
graphs, which are obtained by stopping the propagation of some
of the cutting sheets at the intersection with other cutting sheets
propagating from different singular lines [9].

As shown in Fig. 3 intersections may be of different types.
Breaking ties at each intersection, deciding which cutting sheet
should be propagated and which one should be stopped, defines
the structure of the Motorcycle Graph and its suitability for
downstream applications. This will be the subject of the two
methodologies discussed in the next subsections.

3.2. Search space for motorcycle graphs

Our tools are designed to explore the space of motorcycle
graphs that can be generated via a serial sheet insertion strat-
egy [9], that is, cutting sheets are inserted one after the other
while maximally expanding them until they hit a previously
existing sheet. Compared to a simultaneous sheets insertion strat-
egy, where two intersecting sheet may both be propagated past
their intersection, the selected search space is obviously nar-
rower. Fig. 4 illustrates possible cutting sheet configurations ex-
plored using the serial approach: (a) two orthogonal sheets in-
tersect; (b) two coincident sheets (cyan and red) intersect a third
one (yellow) orthogonally; (c) two orthogonal sheets (red and
yellow) intersect a third sheet (green) orthogonal to both of
them. In (d) we show configurations that cannot be obtained
using our serial insertion strategy, because they involve partial
propagation of a cutting sheet past an intersection line. Note
that configurations in (d) are instead supported by [9] through a
wall retraction mechanism, possibly obtaining solutions that are
not in our search space. Nevertheless, propagating (partially or
entirely) two sheets past their mutual intersection leads to denser
decompositions that, as confirmed by our experiments, tend to
be less optimal than configurations obtained with serial sheet
insertion.

3.3. Enumeration

Now that the main decomposition tool (cutting sheet) has
been introduced, it becomes easier to understand why the search
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Fig. 4. Cutting sheet configurations: (a) two orthogonal sheets, (b) a sheet (yellow) orthogonal to two collapsing sheets (cyan and red), (c) two orthogonal sheets
(red and yellow) and a sheet (green) not orthogonal to one of them (red). The configurations in (d) are not generated by the proposed methods in this paper.

Base Complex Motorcycle Graph #1 Motorcycle Graph #2

. Spm = S1a

So 83 S22 83 S2 83

Fig. 5. Resolving intersections between separatrices at regular vertices (white
circles) amounts to take a binary decision on which one should stop and which
one should proceed. These decisions globally impact the resulting motorcycle
graph. In the middle column s; stops s, as a result the domain changes and the
intersection between s, and s, does not exist anymore. In the right column s,
stops sy, as a result the domain changes in a different way and the intersection
between s; and s; does not exist anymore. These domain changes after each
local binary choice design an exponential space of alternative solutions.

space for the motorcycle graphs of a hexahedral mesh M is expo-
nential. To fix concepts we consider a simple 2D example shown
in Fig. 5. Let us consider two cutting sheets sq, s, that intersect
along a chain of regular edges. Stopping one of the two at their
intersection lines and letting the other continue to separate the
mesh elements implies a binary choice (s; or s;?). Now, let us
consider other two cutting sheets s3, S4, one intersecting s; and
the other intersecting s, both after the intersection between s;
and s, occurs. If we go for s, then s, will not intersect with s4
anymore. If we go for s,, then s; will not intersect s3 anymore.
In both cases, the choice s; or s, changes the domain for the sub-
sequent choices, thus leading to a combinatorial explosion in the
number of alternative solutions. Not only this, but also the impact
that each local decision has on the global final decomposition
makes it very hard to take wise local choices to optimize a global
desiderata, disqualifying greedy incremental approaches.

Conflict graph. To embrace all possible solutions in our search
space, we start from a graph representation of the father of all
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motorcycle graphs, the base complex, and process it in order
to enumerate all our candidate solutions. Hence we construct a
graph G as follows:

e Nodes: we create a graph node for each cutting sheet em-
anating from a singular line, associating a unique identifier
to it;

e Arcs: we connect two nodes n;, n; with an arc a; if the
associated cutting sheets intersect orthogonally at a chain
of regular mesh edges in one of the configurations shown in
Fig. 3a, b, d. The configuration in Fig. 3c does not produce
an arc in the graph because, as already observed in [9], the
two associated cutting sheets do not block each other.

For aligned cutting sheets (i.e., sheets sharing same quadrilat-
eral faces), two separate nodes (one for each) are created in G.
The arcs of G encode all the possible conflicts between pairs of
cutting sheets, which should be resolved with binary choices as
discussed at the beginning of this section. It should be noted that
only one arc is added for sheets intersecting each other multiple
times, hence the local ordering between two intersecting sheets is
always the same at each of their intersections. Starting from this
graph we can now proceed enumerating all the possible solutions,
which is done as described in the next paragraph.

Top-down strategy. Alternative motorcycle graphs are defined as
leaves of a solution tree T, which we build incrementally with
a top-down approach. We first initialize T with an isolated root
node, associating the (un-partitioned) mesh M and the conflict
graph G to it. The tree is then iteratively populated by expanding
its leaf nodes as far as they can expand. New nodes in T also
inherit a copy of the mesh M from their ancestors, enriching it
with new cutting sheets that contribute to the volume decompo-
sition. Eventually, each leaf node in T will contain an alternative
decomposition of M (Fig. 6). As observed at the beginning of
Section 3 decompositions are fully encoded by per element labels.
Therefore, to minimize the memory footprint only per element
labels are stored, while the original mesh and its topology are
memorized only once.
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Fig. 6. Tree representation of the space of solutions for the base complex shown at the top left corner. Cutting sheets emanating from mesh singularities are
numbered from 1 to 8. For each tree node, the conflict graph G encodes the sheets that intersect to one another. Sheets with at least one active conflict are explored
in a dedicated branch, where they receive higher priority with respect to the other sheets in the graph. Nodes highlighted in orange are tested for mutual conflicts
and are inserted only if no intersections are detected. Expanding tree branches until no conflicts are found yields the full space of solutions (leaves at the bottom
of the tree). Note that duplicated solutions may exist (center and bottom right leaves).

Node expansion. Let us consider a generic leaf node n and the
conflict graph G, associated to it. Notice that since the global
conflict graph G at the root of T encodes all conflicts in the base
complex, the conflict graph G, will be G at the root and a (possibly
empty) subgraph of G at any other leaf node of T. All nodes in G,
that have at least one conflict (i.e. at least one incident arc in the
graph) become children of n in T. For each child, we enrich the
decomposition of M stored in n by tracing the associated cutting
sheet first. Tracing is performed with the flooding approach de-
scribed in Section 3.2, but flooding stops whenever a previously
existing cutting sheet is intersected or the mesh boundary is
reached. All the cutting sheets associated to the remaining nodes
in G, are traced afterwards. Sheets corresponding to isolated
nodes in G, are guaranteed intersection-free and are readily
traced. Sheets corresponding to nodes in G, with at least one
conflict are traced only if they do not conflict with each other. In
case conflicts are found, they are encoded in a novel conflict graph
that will be associated to the current child. If no intersections are
found, the conflict graph is set to ¥ and the current child will be
a leaf. Since each node expansion in the tree resolves all conflicts
with its associated sheet, the conflict graph of a child node is
guaranteed to be a sub-graph of the conflict graph of its ancestor
and will eventually become empty, ensuring convergence. The
process stops when the conflict graphs associated to all leaf nodes
of T do not contain any conflict. Intuitively, paths in the tree
T define orderings between conflicting cutting sheets, meaning
that sheets at the higher levels of T have priority w.r.t. the ones
at the lower levels. Note that the so generated decompositions
are not unique (Fig. 6). Duplicated solutions are removed in post
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processing. The final decomposition can be eventually chosen
as the one that minimizes the application-dependent metric of
choice. An example of exhaustive motorcycle graph exploration
for a given hexahedral mesh is shown in Fig. 7.

Multiple conflict graphs. The full conflict graph G associated to
the base complex is not necessarily connected, as the mesh may
contain isolated clusters of intersecting sheets. If this is the case,
one solution tree T is generated for each connected component
separately. An exhaustive enumeration can still be computed by
merging all leaf nodes with a cross-over blending, that is, taking
each leaf from a cluster and merging it with each copy of all the
leaves of all other existing clusters. Note that this costly operation
is necessary only if one wants to explicitly create the whole space
of solutions. Conversely, for the sake of detecting the best solution
overall, one may exploit the fact that cutting sheets in different
trees do not conflict to one another, therefore merging the best
solution in each tree always yields the global optimum.

Pruning. The methodology described so far allows to fully enu-
merate all possible serial motorcycle graphs associated with a
given input hexahedral mesh M. Considering the combinato-
rial explosion in the number of solutions, a full exploration is
computationally feasible only for meshes with a simple singular
structure such as the Bone model in Fig. 7. Similarly to recent
beam search and branch-and-bound approaches [51,53] we often
pruned the space of solutions, deciding to not expand all leaf
nodes at all levels in order to reduce the amount of computa-
tion. There are different strategies that one can use to decide
which nodes should be expanded and which ones not. In our
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Fig. 7. Exhaustive enumeration of the motorcycle graphs of the Bone model. The base complex (top left) contains four conflicts (top right, yellow lines). Since
conflicts are independent to one another, there exist 2* alternative solutions, here encoded with 4 bits (b, by, by, b3) and shown in the figure both in terms of
motorcycle graph (middle) and color coded volume decomposition (bottom).
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Table 1
Model names.
Models Names
1 2019 - Dual Sheet Meshing: An Interactive Approach to Robust Hexahedralization_bone
2 2019 - Selective Padding for Polycube-Based Hexahedral Meshing_Chamfer_L4
3 2019 - Selective Padding for Polycube-Based Hexahedral Meshing_Column
4 2012 - All-hex Meshing Using Singularity-restricted Field_fandisk
5 2020 - Cut-enhanced PolyCube-Maps for Feature-aware All-Hex Meshing_drill-trace1_1-hh-sat_size4
6 2012 - All-hex Meshing Using Singularity-restricted Field_hanger
7 2012 - All-hex Meshing Using Singularity-restricted Field_joint
8 2019 - Selective Padding for Polycube-Based Hexahedral Meshing_Bearing
9 2015 - Practical Hex-Mesh Optimization via Edge-Cone Rectification_block_out
10 2020 - LoopyCuts: Practical Feature-Preserving Block Decomposition for Strongly Hex-Dominant Meshing_cactus
11 2015 - Practical Hex-Mesh Optimization via Edge-Cone Rectification_cap_out
12 2019 - Selective Padding for Polycube-Based Hexahedral Meshing_Double_hinge_NH
13 2015 - Practical Hex-Mesh Optimization via Edge-Cone Rectification_dragon_out
14 2017 - A global approach to multi-axis swept mesh generation_Example_1
15 2012 - All-hex Meshing Using Singularity-restricted Field_impeller
16 2020 - LoopyCuts: Practical Feature-Preserving Block Decomposition for Strongly Hex-Dominant Meshing_impeller
17 2016 - All-hex meshing using closed-form induced polycube_joint-hex
18 2016 - All-hex meshing using closed-form induced polycube_kitten-hex
19 2020 - LoopyCuts: Practical Feature-Preserving Block Decomposition for Strongly Hex-Dominant Meshing_lever_arm
20 2012 - All-hex Meshing Using Singularity-restricted Field_rod
21 2016 - Polycube Simplification for Coarse Layouts of Surfaces and Volumes_hand-model_out
22 2019 - Selective Padding for Polycube-Based Hexahedral Meshing_Gear
23 2019 - Selective Padding for Polycube-Based Hexahedral Meshing_Wrench
24 2012 - All-hex Meshing Using Singularity-restricted Field_rockerarm
25 2017 - A global approach to multi-axis swept mesh generation_Example_3 (partial mesh)

£

Enans
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A
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Fig. 8. Swapping the priority of sheets i and j yields two alternative decomposi-
tions. Our swapping strategy iteratively attempts local swaps, accepting only the
moves that improve the quality of the decomposition, here measured in terms
of number of cuboidal domains.

experiments we explored both a randomized approach and a pre-
liminary evaluation of the optimization metric, discovering that
randomization provides a better balance between computational
cost and quality of the decomposition (Section 4).

3.4. Swapping

In addition to the enumeration strategy, we propose here
an alternative greedy strategy, which is based on the intuition
that modifying the binary decisions at the intersection between
pairs of cutting sheets may increase the quality w.r.t. a tar-
get application. We call this strategy swapping, because indeed
this operation amounts to swap the local priority between the
two involved cutting sheets. In details, the swapping strategy is
implemented as follows: we start from a randomly generated
motorcycle graph. This can be selected among the ones produced
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by our enumeration algorithm or just created from scratch by
growing all sheets together (akin [9]). We then list all the cutting
sheet intersections it contains and go through this list. For each
intersection, we attempt to locally switch the priority, extending
the sheet that stopped and stopping the other one instead. If the
so generated decomposition has a higher quality than the original
one the move is accepted, it is reverted otherwise (Fig. 8). Quality
assessment is performed according to the specific target applica-
tion. In the experimental part we considered both the number
of cuboidal elements and the compression rate achieved by the
decomposition. Nevertheless, this strategy is also compatible with
alternative quality metrics and applications. Note that in case
the enumeration we compute is exhaustive, the global optimum
is guaranteed to be found and the swapping strategy cannot
improve the obtained result. In case pruning is used because the
space of solutions was too large, swapping proved to effectively
improve the quality of the output decomposition.

4. Results and discussion

Results of the methods proposed in this paper are obtained us-
ing 15 alternative hexahedral meshes retrieved from Hexalab [58]
(Table 1). The following sub-sections describe cost functions used
to drive the block partitioning, experimental details and process-
ing times required by the algorithms.

4.1. Cost functions

While our method is agnostic to the specific metric used to
evaluate the quality of a decomposition, we focused our attention
on two practically relevant quality criteria: the number of blocks
(En) and the extent of the compression rate that can be achieved
on the decomposition (Eg ). In both cases optimal decompositions
are the minimizers of such metrics. E,, denotes the total number
of blocks and is trivial to compute. E; denotes the number of bits-
per-vertex which are necessary to encode the decomposed mesh
and is computed as follows.

Given an M x N x T block with eight block-corners (blue dots
in Fig. 9), the position of a vertex pli, j, k] (in red) is predicted
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p[O,N,T]
p[i,j,k ‘* Pc
plo.n,0] _ _Plltemememmalt
i.. B N, T
||. N,0]
A .
A .... D
@
p[0,0,0] .l.. p[M,0,T]
Pa

Fig. 9. 3D Coons-based prediction for a vertex pl[i, j, k] (red) in a M x N x T grid
(corners in blue). Auxiliary points used for the computation are cyan.

using 3D Coons patches [59]. Auxiliary vertices pq, Pp, Pc, Pq (in
cyan) are first found

pa = pl0,0,0] +i M

(p[M, N, 0] — p[O,N, 0
Dy = pl0.N. 0] + l(p[ ]M pl 1

(p[M,N,T] —p[O,N, T
o — plo.N.T] + i P! ]M pIO, N, T1)

.(pIM,0,T] —pl[0,0, T
pa = pl0,0.T] +1(p[ 1—pl )

M

then, the coordinates of p[i, j, k] are computed as
plij. k] = pap + kEL P, (1)

where py, = po + j27 and py = pc + jP5. To compute
the geometry compression rate E, the actual and predicted vertex
coordinates are quantized using 12-bit integers by bounding the
interval in which the coordinates lie [60]. For each vertex coor-
dinate: (1) a bit z is computed, which indicates whether the two
quantized values agree (i.e., perfect prediction or not). If they do
not agree, (2) a bit s indicating the sign of the error (i.e., sign of
the correction vector coordinate) and (3) the magnitude m of the
error (i.e., absolute value for the correction vector coordinate) are
calculated. The Shannon entropy E, of z, Es of s, and E,,, of m are
then computed as follows:

Q-1
E|E|En = ) —(Pilogy(P)

i=0

(2)

Here, Q denotes the number of values encountered, which is
2! — 1 for E, and E;, while is 22 — 1 for E,. P; denotes the
fraction of population (probability) of a value, i. log, is the binary
logarithm. Eventually, E; is expressed in bit-per-vertex (bpv) and
is defined as

3E, + 1 (Es + En)
s= (3)

where r is the number of vertex coordinates with wrong (imper-
fect) predictors among the three vertex coordinates and n, is the
number of mesh vertices.

4.2. Experiments
We tested hexmeshes in Table 1 with various combinations of

the strategies described in Section 3. Specifically, we considered
various versions of the enumeration algorithm, applying more
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Table 2
Results of block partitioning based on number of blocks, E,.

Model MC3D Swap E100 E500 E1000 E5000 E10000 E500+Swap
1 12 12 12 12
2 11 11 11 11
3 17 18 17 17
4 22 20 23 22 20 21 21 20
5 51 60 73 69 65 64 59 54
6 22 21 22 24 24 21 21 21
7 28 28 41 28 28 28 28 28
8 66 58 68 62 63 60 60 58
9 98 98 100 99 99 99 99
10 41 43 45 44 43 44 43
11 85 84 105 114 110 95
12 35 33 37 36 36 34 34 33
13 220 191 246 230 241 194
14 153 154 198 183 189 143
15 124 102 102 101 104 101
16 148 146 146 146 156 146 146
17 22 22 24 24 22 22 21 21
18 57 60 100 62 60 60
19 53 54 67 64 62 62 62 54
20 27 22 34 30 37 22 22 22
21 71 71 75 75 74 73 72 71
22 45 39 41 41 41 39 39 39
23 30 29 29 29 29 29 29 29
24 119 123 130 133 135 113
25 168 167 175 175 175 169

or less aggressive pruning strategies to bound the number of
solutions explored. We denote with Ex all such experiments,
where x is an integer number denoting the maximum number
of leaf nodes expanded at each tree level (chosen randomly
among the existing leaves). Note that this corresponds to a beam
search strategy with beam width x, with the only difference that
the x expanded nodes are not the best ones according to some
metric but are randomly chosen. For the swapping strategy, we
applied it both to a randomly generated initial decomposition
(Swap column in the tables) and we used it in combination
with enumeration, selecting the best decomposition in the tree
leaves and further processing it with swapping (E500 + Swap
columns in the tables). For comparative analysis we also con-
sidered the 3D motorcycle complex algorithm (MC3D), which
we used launching the original implementation' with a wall re-
traction option (i.e., “~-mc -allow-selfadjacent —keep-singularity-
walls”). Note that MC3D only allows to optimize for the number
of blocks and it does not permit to minimize alternative quality
metrics such as compression rate.

Results based on E, and E, are arranged in Tables 2 and 3, re-
spectively, which were considered in the experiments separately.
Red values indicate the minimum (i.e., best) cost found for the
decomposition. Perhaps not surprisingly, the combination of enu-
meration and swapping (E500+Swap) achieves the best result in
the vast majority of cases, outperforming alternative approaches.
When E; is utilized as a quality metric, our method produces
a better decomposition in 23 out of 25 cases, whereas MC3D
was superior in just one case and equivalent in one other case.
When E, is the reference metric, our method performs better
than MC3D in 16 out of 25 cases. Setting larger beam widths
for the enumeration algorithm enables listing more motorcycle
complexes, hence better solutions could be obtained. Note that
since random pruning is used to limit the number of solutions
computed, exploring a higher number of solutions is only likely
to yield a better decomposition, but this is not guaranteed to
happen. As a counterexample, for model 4 E1000 outperforms
E5000 and E10000. Since MC3D does not allow to optimize for
compression, its performances for E; were worse than the ones

1 https://github.com/HendrikBrueckler/MC3D.
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Fig. 10. Motorcycle graphs obtained with MC3D [9] and our swapping algorithm. MC3D does not currently support alternative metrics and it only allows to reduce
the domains’ count. For our method, for Rocker Arm (top) we optimized the geometric compression, expressed in bits-per-vertex. For the impeller (bottom) we

optimized the number of domains.

Table 3

Results of block partitioning based on geometry compression rates, Eg, in bit-per-vertex (bpv).

Models MC3D Swap E100 E500 E1000 E5000 E10000 E500+4-Swap
1 23.1 23.05 23.05 23.05
2 30.6 30.6 30.6 30.6
3 28.77 28.44 28.44 28.44
4 33.2 31.26 32.34 31.47 31.03 31.26 31.3 31.09
5 319 30.05 32.62 31.75 30.39 30.1 30.04 30.06
6 22.07 20.25 20.47 20.38 20.27 19.5 19.77 19.5
7 15.58 13.08 14.92 13.87 13.87 134 13.44 13.57
8 26.24 21.36 24.32 23.18 22.32 20.78 21.24 20.45
9 37.53 37.69 38.07 37.69 37.69 37.69 38.07
10 35.72 34.86 38.13 37.23 35.57 35.07 34.72
11 44,07 37.08 39.36 39.06 39.35 37.42
12 29.81 29.25 29.03 28.99 29.3 28.85 28.8 28.66
13 31.13 28.81 30.77 30.81 31.18 26.23
14 37.65 34.51 38.01 36.73 37.46 33.67
15 28.75 20.04 23.45 24.49 20.63 18.74
16 41.47 29.52 34.19 36.35 34.36 32.28 33.0
17 21.18 18.58 18.49 18.42 18.15 18.15 18.15 18.15
18 30.15 26.8 27.64 28.4 27.69 27.03
19 35.62 34.66 36.89 36.75 36.36 36.36 3591 36.17
20 31.62 30.61 30.93 30.52 29.77 29.75 29.64 30.05
21 36.96 34.97 35.45 35.09 35.08 35 34.67 33.86
22 19.93 17.44 18.72 18.41 18.58 17.38 17.45 17.38
23 25.54 24.4 24.83 24.49 24.38 24.49 24.47 2461
24 33.22 28.29 30.49 32.12 29.34 28.29
25 33.35 31.51 32.12 32.09 31.98 31.16

for E,. Pictorial illustrations of our results are also reported in
Figs. 1, 7, 10.

4.3. Computational time

Running times of the proposed algorithms are reported in
Table 4. Swap_n and Swap_g refer to the fire swapping algorithm
executed based on the cost functions E, and Eg, respectively. Since
Swap is purely greedy it has shorter processing time compared to
the enumeration algorithm, which forms a tree graph structure
and looks for the best solution in it. Running times highly depend
on mesh resolution, which directly affects the number of faces
participating in each cutting sheet. As a general rule, the higher
the number of faces, the higher the computational cost hence the
running time. An additional source of complexity is linked to the
singular structure of the mesh. Meshes with a cleaner singular
structure yield less cutting sheets and therefore design a smaller
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combinatorial space of solutions. Meshes with a dense singular
structure (e.g., produced with grid-based approaches [20]) are
much heavier to process.

4.4. Impact of randomization

Both the enumeration and the swapping algorithm employ
randomization to prune the space of solutions or to perturb an
existing decomposition. In this section we report on two exper-
iments that aim to study the impact of randomization in the
output solutions.

In the first experiment we launch the enumeration and swap-
ping algorithms ten times on the Fan disk (model 4 in Table 1).
This serves to evaluate how much variance in the results is
introduced by randomization. For enumeration we considered
a fixed beam width of 1000. For swapping we started from a
randomly generated volume decomposition. For each method
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Table 6
Results for cost-based enumeration (¢t : processing time in seconds).

Table 4
Running times (in seconds) for all our enumeration strategies. Models Cost E10 E100 E1000
Models Swap_n Swap_g E100 E500 E1000 E5000 E10000 4 E, 21 21 20
4 6 5 7 10 11 69 188 ¢ 5 11 37
6 23 31 17 60 110 623 1917 6 E, 21 21 21
8 155 224 116 364 710 9067 52218 t 179 1247 7676
12 7 9 19 96 192 1383 5036
17 4 5 5 19 28 152 424 8 fn 235 2?04
20 17 26 53 295 553 3015 9911
21 288 347 279 839 1489 3108 60724 17 E, 22 22 22
22 96 106 419 251 381 1939 4498 t 19 65 389
23 45 47 49 59 61 138 288 20 E, 22 22 22
t 86 562 2594
Table 5 21 fn §§4 ;(8)40
E, and E; values for a fan disk model after multiple runs of the swapping and
enumeration algorithms. 2 E, 40 39
Run# Swap_n Swap_g E1000_n E1000_g t 458 4970
1 20 3347 20 31.39 23 Ey 30 29 29
2 21 3256 20 31.20 t 65 117 386
3 22 31.26 21 31.09
4 26 31.26 20 31.23
5 20 32.14 21 31.02
6 21 32.02 20 31.02
7 23 32.77 21 31.40
8 25 31.19 21 31.40
9 25 31.39 21 31.19
10 20 31.57 20 31.40

we attempted to minimize both the number of blocks (E,) and
the approximation error (Eg). As can be noticed from Table 5
results were very similar across the 10 runs, especially for the
enumeration algorithm (E, € [20, 21], E; € [31.02, 31.4]) which
explores a good portion of the solution space and is therefore
less affected by randomization. Higher but still acceptable (in
our opinion) fluctuations were reported for the swapping method
(Eq € [20, 26], Eg € [31.19, 33.47]).

In the second experiment we evaluate the impact of random-
ization in the beam search strategy. We considered beam widths
of 10, 100, 1000 and substituted our random leaf expansion policy
with an alternative policy that is based on ranking leaves at
each level according to the energy to be minimized. Results are
summarized in Table 6 and can be compared with the ones in
Tables 2 and 3 to assess differences with the random expansion
strategy. Overall, it can observed that optimal decompositions
obtained with a cost-based expansion strategy are only slightly
better than the ones computed with a randomized approach.
However, the cost to pay for this modest increment is a higher
computational cost, which is due to the fact that the selected cost
metric needs to be evaluated a high number of times, introducing
a significant computational overhead.

4.5. IGA-based domain decompositions

As a final experiment with an alternative metric we considered
the problem of computing a block decomposition for IsoGeomet-
ric Analysis (IGA), which prefers domains close to regular cubes.
We fulfilled this requirement by using a novel quality metric,
which is the ratio between the longest and shortest sides of each
candidate domain, giving higher score to domains where this
ratio is closer to one. This cost function was integrated into Swap
and tested for models 4 and 8. Cost values for the generated block
decompositions by Swap were, respectively, 86.71 and 247.82. On
the other hand, these values were 92.33 and 531.6 when using
MC3D. Fig. 11 shows the blocks of model 8 obtained using our
Swap strategy and MC3D [9]. As can be noticed, MC3D intro-
duced several elongated domains, whereas our method produced
better-shaped (i.e., cubic) blocks.
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Fig. 11. Blocks obtained using MC3D and Swap for Iso-Geometric Analysis
applications. Thanks to a customized quality metric our block decomposition
discourages the presence of elongated domains, which are instead present in
the MC3D result.

5. Conclusion and future works

This paper introduces two methods to explore 3D motorcycle
complexes for a given hexahedral mesh. Inspired from simi-
lar works on exploration of motorcycle graphs for quadrilateral
meshes [3,11] we introduced an algorithm for the exhaustive
enumeration of all possible solutions, with pruning possibilities
to reduce the computational effort and a greedy local swapping
algorithm that allows to explore the solution space nearby a
given starting solution that can be either randomly generated
or come from a previous partial enumeration. The results of the
proposed methods are validated and compared with those of
Bruckler et al. [9], obtaining superior results in the majority of
the cases and also opening for the use of customized application
dependent quality metrics.

While we are satisfied with the results we obtained in our
experiments, we also believe that the enumeration approach we
implemented creates a useful basis to explore novel heuristics to
prune the space of solutions in a smarter way, possibly obtain-
ing even superior results. To this end, our future works will be
focused on exploring this interesting research direction.
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