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1 Introduction

The design of a transit line and the selection of its technology are complex deci-
sions faced by urban communities and transit operators. Quantitative assessment
methods that are designed to be comprehensive can help reach a consensus among
decision makers, citizens, and other stakeholders. The transit users’ point of view
is usually a complex topic and its modeling requires mathematical solution ap-
proaches. This paper contributes to the practical aim of broadening the scope of
transit line models by considering a high spatial granularity of the travel demand
and its implications on key user quality indices such as in-vehicle crowding. To this
end, we present an optimization model of a transit line where spatial attributes of
the passengers’ boardings and alightings can be finely instantiated, and we com-
pare this new model with another one in which these attributes are synthetically
expressed. We refer to the new model as “spatially disaggregated” and to the other
as “spatially aggregated”. We improve the representation of the in-vehicle passen-
ger crowding of an existing spatially aggregated model, for which we present a
refinement. We compare the new spatially disaggregated and the revised spatially
aggregated models on a scenario that details three technologies of two semi-rapid
transit modes, namely bus rapid transit (BRT) and light rail transit (LRT). By
“mode” we refer to a relatively large set of specific transit implementations that we
identify as “technologies”, and by “semi-rapid” we refer to the modes that require a
right-of-way with partial separation from other traffic (Vuchic, 2005; Vuchic et al.,
2012). The technology scenario is then divided into two variants which correspond
to configurations commonly found in urban public transport systems:

– A radial case, extending between a city center or central business district and
a point towards the edge of the city or in the suburbs, as depicted in Figure 1
for the light rail line in Buffalo, NY.

– A diametrical case, extending between two outlying points via the city center,
as exemplified in Figure 2 for the Valley Metro Rail route in the metropolitan
area of Phoenix, AZ.

The remainder of this paper is structured as follows. Section 2 reviews the
relevant literature. The spatially disaggregated model and its solution method
are described in Section 3. Section 4 introduces a new penalty function for the in-
vehicle passenger crowding to be used in the spatially aggregated model. Numerical
experiments are discussed in Section 5, and we finally draw some conclusions in
Section 6.

2 Literature review

The literature stream relevant to this paper is the structural transit analysis,
where examples of classic contributions are those of Vuchic and Newell (1968);
Byrne (1975); Newell (1979); Wirasinghe and Ghoneim (1981). Of particular in-
terest is the classical stop spacing formula for a non-uniform many-to-many travel
demand derived by Wirasinghe and Ghoneim (1981) by means of a continuous
approximation method. The modeling approach that we follow is rooted in the
micro-economic appraisal of transit, a literature thread reviewed by Jara-Dı́az
and Gschwender (2003). The topological configuration of a transit network is a
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Fig. 1 Example of a radial semi-rapid rail route in Buffalo, NY. The central business district
is at the route end. Source: Robert Schwandl, UrbanRail.Net.

Fig. 2 Example of a diametrical semi-rapid rail route in Greater Phoenix, AZ. The portion of
the route operating on Washington and Jefferson Streets is in central Phoenix. Source: Robert
Schwandl, UrbanRail.Net.
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wider issue which has been studied by Laporte et al. (1994, 1997) and reviewed in
Gutiérrez-Jarpa et al. (2017). More generally, the research question that we pose
— disaggregated versus aggregated models — has been discussed in Daganzo et al.
(2012). In the following we summarize the recent research path that we extend.

Moccia and Laporte (2016) devised a lower convex approximation scheme for
an optimization model of a transit line with fixed demand where the total cost, the
sum of passengers and operator costs, is minimized. This approximation scheme
allowed the authors to enrich the model of Tirachini et al. (2010) with variable
stop spacing and train length over multiple periods while retaining some analytic
treatability as in simpler models. Moreover, the approximation scheme facilitates
numerical solution methods. Moccia et al. (2017) extended the model of Moccia
and Laporte (2016) to a linear elastic demand and devised an equivalence scheme
between the elastic and fixed demand objective functions. This scheme reinforces
the equivalence in the optimality conditions proved by Daganzo (2012), and mo-
tivates a decoupling between system design and demand forecast. Thus, optimal
transit configuration models can increase their level of operational detail while the
demand forecast can be delegated to specialized pricing and policy setting mod-
els. Moccia et al. (2016) elaborated on techno-economic parameters of semi-rapid
transit technologies with the main focus on components and design aspects yield-
ing the best performances under realistic conditions (on this issue, see also Bruun
et al. (2018)). Moccia et al. (2018) improved the model of Moccia and Laporte
(2016) by new aggregate representations of the temporal and spatial variability of
demand, and by refinements of the cost functions for both the operator and the
passengers. This new model remains solvable by the same solution approach, the
lower convex approximation scheme of Moccia and Laporte (2016), and is applied
to two scenarios first outlined in Moccia et al. (2016) for two semi-rapid modes,
namely BRT and LRT. We extend this research thread by devising a new opti-
mization model where passenger demand can be spatially disaggregated. We show
how the solution method of this new model can still rely on approximation for-
mulae. The new model leds to a revised crowding penalty function of the spatially
aggregated model with substantially less crowding underestimation caused by the
average bias intrinsic to an aggregated model.

3 Spatially disaggregated model

This section formulates the new spatially disaggregated model and is structured as
follows. We first present the notation in Section 3.1, and the principal assumptions
in Section 3.2. The optimized variables are introduced in Section 3.3. The cycle
time is detailed in Section 3.4. The passengers’ time value and the operator cost,
which are treated separately and then combined into a total cost, are described in
Section 3.5 and Section 3.6, respectively. The side constraints are detailed in Sec-
tion 3.7, and the resulting optimization model is presented in Section 3.8. Finally,
we propose a solution method in Section 3.9. Our spatially disaggregated model
shares some formulae with the spatially aggregated model of Moccia et al. (2018).
To streamline the presentation, these shared formulae are omitted in this section,
but we report them in Appendix A to offer a self-contained paper.
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3.1 Notation

We denote as transit unit (TU), see Vuchic (2005), a set of n physically linked
vehicles traveling together. For buses, n is equal to one, whereas for rail technology
n can be an integer larger than one. For brevity, we denote the number of vehicles
of a TU as the TU length. Table 1 lists the symbols that express variables. Table 2
summarizes the main symbols used as parameters, indices, and auxiliary functions.
Greek letters are specific to dimensionless parameters. Additional symbols are
derived as explained below. The subscripts min and max specify bounds of a
parameter or of a variable. As it will be detailed in the remainder of this section,
we discretize the service time in periods, the route length in sectors, and the line
length in segments, indexed by p, i, and j, respectively. Parameters and variables
are thus derived by using these indices as subscripts.

Table 1: List of symbols and their units of measure used as variables.

Symbol Definition Unit
d Average distance between stops in a generic sector km
d Vector of the stop spacings km
f Frequency in a generic period TU/h
f Vector of p̂ frequencies TU/h
n Number of vehicles per TU, also denoted as TU length, in a generic period veh
n Vector of p̂ TU lengths veh

Table 2: List of primary symbols and their units of measure used as parameters,
indices and auxiliary functions.

Symbol Definition Unit

ā Average acceleration rate of a TU m/s2

b̄ Average deceleration rate of a TU m/s2

B Deployed fleet of TUs TU
c0l Fixed operator cost related to the transit line $/h
c0s Fixed operator cost related to a stop $/h
c0sv Operator cost related to a stop per extra vehicle $/veh-h
c1t Unit operator cost per TU-hour $/TU-h
c1v Unit operator cost per vehicle-hour $/veh-h
c2v Unit operator cost per veh-km $/veh-km
Ca Access and egress time value $/h
Co Operator cost $/h
Cu Passengers’ time value $/h
Ctot Total cost, sum of Cu and Co $/h
Cv In-vehicle time value $/h
Cw Waiting time value $/h
fl Threshold frequency for timetable behavior TU/h
fm Threshold frequency for platooning TU/h

ḟ Threshold frequency for the high frequency penalty TU/h
f̌max Cap on the maximum frequency TU/h
g0(x) Index of the first segment of the direction where point x belongs -
g1(x) Index of the segment where point x belongs -
H Service hours per year h/year
i Index of the sectors -
j Index of the segments -
k Capacity of a vehicle pax/veh
K Capacity of a TU pax/TU
l Average trip length km
L Length of the route km
p Index of the periods -
p̂ Number of periods -

Continued on next page
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Table 2 – Continued from previous page
Symbol Definition Unit
q Average hourly demand at the peak period pax/h
R Running time in a cycle h
s Access and egress speed km/h
S Commercial speed of the TU km/h
Smax Maximum allowed speed of the TU km/h
Srun Running speed of the TU excluding stop service km/h
ta Average access and egress time of a user h
Ta Time loss caused by acceleration and deceleration phases h
tb Boarding and alighting time per user and vehicle s/pax-veh
Tb Boarding and alighting time per user and TU s/pax-TU
tba Alighting time per user and vehicle s/pax-veh
Tba Alighting time per user and TU s/pax-TU
tbb Boarding time per user and vehicle s/pax-veh
Tbb Boarding time per user and TU s/pax-TU
tc Commercial cycle time h
toc Operating cycle time h
td Time loss caused by opening and closing of doors s
te Average dwell time at stops s
t̂e Maximum dwell time at stops s
te0 Fixed stop clearance time s
tev Stop clearance time for an extra vehicle length s/veh
ti,j TU traveling time at segment j in sector i h
Tl Time loss caused by acceleration, deceleration, and door operations h
ttf Fixed component of the terminal time s
ttv Component of the terminal time variable with the TU length s
tu Average time lost at intersections per unit distance min/km
tv Average in-vehicle time of a user h
tw Average waiting time of a user h
u1(i) Segment index in the first direction of sector i -
u2(i) Segment index in the second direction of sector i -
Va Unit value of the access and egress time $/pax-h
Vv Unit value of the in-vehicle time $/pax-h
Vw Unit value of the waiting time $/pax-h
w Waiting time at a stop when f < fl min
x One-dimension coordinate of a point of the transit line km
y One-stage technical life year
α Fraction of the hourly demand in the most loaded segment of the line -
β Multiplicative factor of the operating cycle time -
γ Ratio of the period demand to the peak demand -
δ Crowding penalty function wrt the instantaneous occupancy rate -
∆,∆2 Crowding penalty functions wrt the average occupancy rate -
ε Rate of the average waiting time to the headway -
ζ Spare capacity factor for the fleet -
η Fraction of the longest dwell time in the maximum frequency formula -
θ Vehicle occupancy rate -
ι Discount rate -
λ Ratio of the average trip length to the length of the route -
Λi Ratio of sector i length to the route length -
µ Discount factor of the waiting time under timetable behavior -
ν Spare capacity factor for the TU -
ξ Parameter of the crowding penalty function δ -
Ξ Ratio of the residual value to the initial value of a capital component -
πj Fraction of the boardings at segment j -
ρ Slope of the linear part of the crowding penalty function δ -
σj Fraction of the alightings at segment j -
τ Ratio of the maximum to the average period demand -
υ(x) Ratio of the sub-segment induced by x to g1(x) -
Υ (x) Cumulative difference between fractional boardings and alightings at x -
Ῡj Cumulative difference between fractional boardings and alightings at the mid-segment j -
φ Ratio of the maximum to the average vehicle occupancy rate -
ψ Ratio of the maximum to the average dwell time -
χ Ratio of the period hours to the total service hours -
ω(1,2) Parameters of the high frequency penalty -
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3.2 Main assumptions

We assume that a bidirectional transit line operates on a route, where by “route”
we designate the physical alignment and the infrastructure, and by “line” we refer
to the service operated. We present the model for a route that connects two termini
with zero passenger flow between the two directions, i.e. the route is not a loop.
This is the most common case and it simplifies the notation.

The route length is L, and the line length between the termini is 2L. The route
is partitioned into m sectors, and a sector i, i ∈ {1, ...,m}, has length ΛiL, where
the Λi parameters are positive real numbers with

∑
i Λi = 1. The route partition

into m sectors induces a line partition into 2m segments. One direction of the line,
called the first direction, consists of segments indexed by j ∈ {1, ...,m}, and the
other direction, called the second direction, is composed of segments indexed by
j ∈ {m+ 1, ..., 2m}. Two functions u1(i) and u2(i) return the segments’ indices of
the first and second direction in sector i, respectively. Function e(j) returns the
sector index of segment j. Thus, a sector i consists of two segments with indices
u1(i) = i and u2(i) = 2m+ 1− i, and e(i) = e(2m+ 1− i) = i. Figure 3 illustrates
these definitions.

Segment i

Segment 2m + 1 − i

Sector i of length ΛiL

Segment m

Segment m + 1

Sector m

Segment 1

Segment 2m

Sector 1

T
er

m
in

u
s T

erm
in

u
s

Fig. 3 Route sectors and line segments.

The transit line serves passengers for p̂ periods in the operation year. The
average bidirectional hourly demand qp in period p is equal to qγp, where p is the
period index in the set {1, ..., p̂}, γp is a positive parameter not larger than one,
and q is the average hourly demand during the peak period. The average hourly
demand in a period indicates that qp boardings and qp alightings per hour occur on
average along the line in that period. We index the periods in non-increasing order
of demand, the peak period is indicated by p = 1 and hence γ1 = 1. The maximum
demand per period is qpτp, where τp > 1. The ratio of a period’s hours to the total
service hours is denoted by χp, and

∑
p χp = 1. These demand parameters must

reflect the total service hours in a year, indicated by H.
In a sector the boardings and alightings per segment and per period can be

assumed as uniform values as explained in the following. We indicate by πj,p and
σj,p the fractions of the average boardings and alightings, respectively, in period
p at segment j, with j ∈ {1, ..., 2m}. Uniform values for boarding and alighting
in a sector i mean that in each period these passenger activities are requested



8 Luigi Moccia et al.

along the sector’s segments with the densities πu1(i),p/Λi, σu1(i),p/Λi, πu2(i),p/Λi,
and σu2(i),p/Λi. For notational simplicity, when we refer to a generic period we
omit the period index. By definition, the fractions of the average boardings and
alightings are such that

∑
j πj =

∑
j σj = 1. The assumption of zero passenger

flow between the two directions implies a boarding and alighting balance for each
direction:

m∑
j=1

πj =
m∑

j=1

σj

2m∑
j=m+1

πj =
2m∑

j=m+1

σj . (1)

The total fractional passenger activity at a sector, indicated by Θi, is the sum of
the fractional boardings and aligthings at the pertaining segments:

Θi = πu1(i) + σu1(i) + πu2(i) + σu2(i). (2)

A point along the line is indicated by a one-dimensional coordinate x, with
0 ≤ x ≤ 2L. Let g0(x) and g1(x) be the indices of the first segment of the direction
and of the segment where the point x belongs, respectively. We denote by υ(x) the
ratio between the length of the sub-segment starting at the extremum of segment
g1(x) closer to g0(x) and ending at x, and that of the segment g1(x). Thus, the
coordinate x can be expressed as

x = L

max {g0(x)−m, 0}+

g1(x)−1∑
j=g0(x)

Λe(j) + Λe(g1(x))υ(x)

 . (3)

The difference between the cumulative fractional boardings and alightings in pe-
riod p and at the point x along the line is indicated by Υp(x), and for a generic
period:

Υ (x) =

g1(x)−1∑
j=g0(x)

(πj − σj) +
(
πg1(x) − σg1(x)

)
υ(x). (4)

By construction, Υ (x) is continuous and piecewise linear, hence its extrema occur
at some segment boundaries. The Υ (x) value occurring at the midpoint in a seg-
ment j, i.e. g1(x) = j and υ(x) = 0.5, is denoted by Ῡj . The maximum Ῡ value is
denoted by α, and a segment where it occurs is defined as “most loaded segment”
(MLS). Figure 4 illustrates an example of these values.

3.3 Variables

The average stop spacing in a sector i is an optimized continuous variable and
is denoted by di. We denote by np the number of vehicles of a TU in period p,
and this an integer variable that we optimize. The frequency f is expressed as the
number of TUs per hour. There is a frequency for each period, namely fp, and
this is also a continuous variable that is optimized.
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Fig. 4 An example of boardings and alightings in a transit line with m = 4. Segment’s frac-
tional boardings, π, and negative alightings, −σ, are depicted as dash-and-dot step functions.
The cumulative difference between fractional boardings and alightings, Υ , is the solid piecewise
linear function with zero value at the termini coordinates, and its mid-segment values, Ῡ , is
the solid step function.

3.4 Cycle time

We distinguish between operating and commercial cycle times. The operating cycle
time is the sum of the running time between stations, including acceleration and
deceleration, of the time lost at intersections, and of the dwell time for boarding
and alighting. The commercial cycle time is determined as a function of the oper-
ating cycle time to include operations at terminals and the provision for running
time variability.

More formally, we model the operating cycle time as the sum of four terms
described in the following. We assume that a TU accelerates up to and decelerates
from a speed Smax which is the maximum allowable speed. The TU loses an
average tu minutes per km. This time loss occurs mainly at intersections and
diminishes with higher investments in runningway improvements and traffic signal
priority (TSP) systems. This phenomenon induces an average speed excluding
user service at stops, Srun, less than Smax, and computed by formula (38) in
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Appendix A. The resulting running time, denoted R, is equal to 2L/Srun and
is the first term of the operating cycle time. We assume that on average a TU
leaves a stop accelerating up to Srun, travels at this speed, and then decelerates
to halt at the next stop. Given the average acceleration and deceleration rates of a
TU, the incremental time loss caused by the acceleration and deceleration phases,
Ta, is computed by (39). We add to the standing time a fixed component td,
which accounts for the opening and closing of the doors, and we denote by Tl the
lost time for acceleration, deceleration, and door opening and closing, see formula
(40). Because the number of stops is equal to 2L

∑
i Λi/di, the second term of

the operating cycle time is 2LTl
∑

i Λi/di. The third term of the operating cycle
time expresses the load-dependent dwell time which is related to Tb, the boarding
and alighting time per user of a TU, and the number of passengers boarding and
alighting a TU, given by q/f . The parameter Tb is sum of two components, Tbb
and Tba, related to the boarding and the alighting activities, respectively. The
boarding and alighting time of a TU depends on the number n of vehicles per TU
and their door configuration. We assume the boarding and alighting service times
per user of a vehicle to be equal to tbb and tba, respectively, hence Tbb = tbn/n and
Tba = tba/n. We introduce a fourth term of the operating cycle time accounting
for extra delays at intersections, links, and stops under high frequencies, where for
high frequencies we mean those exceeding a threshold frequency ḟ , for example 25
TU/h. When this frequency is reached, the design TSP may underperform, and
the interactions between signals and stops, as well as the disturbances induced
by trespassing, may become significant. This term depends on the ratio of the
frequency to this threshold frequency raised to the power ω2, and multiplied by a
coefficient ω1 to the base operating cycle time loss at intersections, which is equal
to 2tuL (Moccia et al., 2018). The operating cycle time toc,p for each period is

toc,p(fp,d, np) = R+ 2LTl
∑
i

Λi

di
+
tbb + tba

3600

qp
npfp

+ ω1
2tuL

60

(
fp

ḟ

)ω2

tbb, tba[s-pax/veh], qp[pax/h], Tl, R[h], tu[min/km], di, L[km],

np[veh/TU], fp, ḟ [TU/h], (5)

where d is the vector of m stop spacings.

The commercial cycle time is obtained by multiplying the operating cycle time
by β, a parameter larger than one that accounts for the schedule time recovery
at the terminals, and by adding the following two terms. First, a fixed terminal
time ttf that accounts for minimum crew rest, securing vehicle keys, and in some
cases navigating a terminal loop. Second, a terminal time proportional to ttv and
variable with the TU length that accounts for the crew walking distance between
the TU ends, and safety checks. The commercial cycle time, hereinafter referred
to as cycle time for brevity, is

tc,p(fp,d, np) = βtoc,p(fp,d, np) +
ttf + ttvnp

3600
toc,p[h], np[veh/TU], ttf [s], ttv[s/veh]. (6)
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3.5 Passengers’ time value

The passenger time value is a monetized value of time composed of three parts:
access and egress, waiting, and in-vehicle time values.

Users access and egress the nearest stop at speed s. The average distance is
di/4 for an access or an egress at segment i, and the average access and egress
time ta,i of a user is

ta,i =
di
4s

d[km], s[km/h]. (7)

The value of one unit of access and egress time is expressed by the parameter Va,
and the average access and egress value Ca for the line is

Ca(d) = Vaq
∑
i

∑
p

Θi,p
di
4s
γpχp. (8)

The waiting time depends on the frequency and we distinguish among low,
medium and high frequencies. In the case of high frequencies, defined as those
above a threshold frequency fm, users arrive at stops at a constant rate but TU
platooning1 starts to occur. Because of platooning, the additional TU capacity
provided by frequencies larger than fm do not yield a further reduction in the
average headway with respect to 1/fm. Thus, the average waiting time tw can be
modeled as a fraction ε ≥ 1/2 of the expected headway. Values of ε strictly larger
than 1/2 can model cases where the headways have a large variance. In the case
of medium frequencies, users arrive at stops at a constant rate and the average
waiting time is ε/f . In the case of low frequencies, users follow timetables and
arrive at stops w minutes before the expected time of service. The waiting time at
the stop saved by this behavior still represents a disutility for the user who may
have to redefine his schedule. This disutility, often referred to as schedule delay,
is discounted by a factor µ less than one, for example µ = 1/3, with respect to
the disutility of waiting at the stop. The threshold frequency for these two former
behavior regimes is defined by fl, for example six TU per hour, which results in
a headway of 10 minutes. The average waiting time tw of a user is computed by
formula (41). The average value of waiting cw(f) borne by q users at the frequency
f is

cw(f) = Vwtw(f)q Vw[$/pax-h], tw[h], q[pax/h], (9)

where Vw is the value of one waiting time unit. The average value of waiting for
the p̂ periods, Cw, is

Cw(f) =
∑
p

cw(fp)γpχp cw[$/h], (10)

where f is the vector of p̂ frequencies.
The in-vehicle time of passengers is modeled as the product of the traveling

time of a TU in a segment and the average passenger flow in that segment. Similarly

1 We use the term “platooning” to indicate the unorganized formation of clumps of vehicles.
This occurrence may also be referred to as “bunching”.
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to the operating cycle time, toc,p, we define the traveling time of a TU in a segment
j belonging to a sector i, in a period p, ti,j,p, as

ti,j,p(fp, di, np) = R
Λi

2
+ Tl

ΛiL

di
+
tbbπj,p + tbaσj,p

3600

qp
npfp

+ ω1
tuΛiL

60

(
fp

ḟ

)ω2

tbb, tba[s-pax/veh], qp[pax/h], Tl, R[h], tu[min/km], di, L[km],

np[veh/TU], fp, ḟ [TU/h].(11)

The value of the in-vehicle travel time is multiplied by a crowding penalty
function δ, which depends on the average occupancy rate θ̄j,p on segment j in
period p. The average occupancy rate depends on the frequency and on the TU
length:

θ̄j,p(fp, np) =
Ῡj,pqp
knpfp

, (12)

where k is the passenger capacity of a vehicle, and hence the capacity K of a multi-
unit TU is equal to k×n. The function δ is piecewise linear as follows: there is no
penalty up to an average occupancy rate of θmin, e.g. it is equal to 0.3, and for
larger values the penalty increases linearly with a slope value ρ. Figure 5 provides
an example of this penalty function. Moccia et al. (2017, 2018) discuss the relevant
literature that supports this approach for in-vehicle passenger crowding.

Formally, the penalty function is

δj,p(fp, np) =

1 + ρ
(
θ̄j,p − θmin

)
= ξ + ρ

Ῡj,pqp
knpfp

npfp ≤
Ῡj,pqp
kθmin

1 otherwise
, (13)

where ξ = 1− θminρ is a parameter introduced for notational compactness.
Let Vv be the value of one unit of in-vehicle time, then the value of in-vehicle

time, Cv, is

Cv(f ,d,n) = Vvq
∑
p

∑
j

χpγpῩj,pδj,p(fp, np)te(j),j,p(fp, de(j), np), (14)

where n is the vector of p̂ TU lengths. The total passengers’ time value Cu is then

Cu = Ca + Cw + Cv Ca, Cw, Cv[$/h]. (15)

3.6 Operator cost

The operator cost consists of six components. The first is the construction and
maintenance of the route and is denoted by c0l. The second and third components
are related to the construction and maintenance costs of the stations. For each
station these costs can be decomposed into a fixed part c0s, and a variable part
c0sv, which depends on the TU length at peak hours. There are 2 + 2L

∑
i Λi/di

one-way stops, including the terminal. The second component is related to the
terminal, and the third to the other stops which depends on the stop spacings.
The fourth component depends on the fleet size and reflects vehicle capital and
administrative costs. Let c1v be the unit operator cost per vehicle-hour which
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Fig. 5 Example of the crowding penalty function with ρ = 1 and θmin = 0.3.

accounts for the capital and administrative costs. The deployed fleet size B of
TUs is the product of frequency and cycle time: B = ftc. The vehicle fleet size
is equal to ζnB, where ζ > 1 provides for O&M spares. The fifth component
expresses the crew costs and depends on c1t, the unit operator cost per TU-hour.
The sixth component accounts for running costs such as energy, tires, lubricants,
etc. Let c2v be the unit operator cost per vehicle-km. The amount of vehicle-km is
the product of the commercial speed S and the fleet size. The commercial speed
is obtained by dividing the total length 2L by the cycle time. Thus, the amount
of vehicle-km is S × nB = 2L/tc × nftc = 2Lnf .

The operator cost Co is then

Co(f ,d,n) = c0l + 2(c0s + c0sv(n1 − 1)) + 2L(c0s + c0sv(n1 − 1))
∑
i

Λi

di

+c1vζn1f1tc,1(f1,d, n1) + c1t
∑
p

χpfptc,p(fp,d, np)

+2c2vL
∑
p

χpnpfp. (16)
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We note that this formula is different from that of the spatially aggregated model
of Moccia et al. (2018) because the second component was not considered in that
model. In the following, when we compare results with the spatially aggregated
model we consider a revised version of the spatially aggregated model which in-
cludes this cost component.

3.7 Side constraints

The frequency is constrained to be equal to or larger than fmin, and less than
or equal to fmax. The value fmin can be set by a “policy headway” rationale,
i.e. there is a minimum guaranteed frequency fpol, or can account for capacity
as follows. Recall that α is the maximum difference between the cumulative frac-
tional boardings and alightings along the line. Henceforth, αqτ is the largest load
served by the line in a generic period. Let ν be a spare capacity design factor. For
example, a value of ν smaller than one accounts for random demand fluctuations
and represents a safety margin, whereas ν larger than one allows some occurrence
of crush loading. The lower bound for the frequency is defined in (42). The fmax

is defined according to general principles from the Transit Capacity and Quality
of Service Manual (TCQSM, 2013). We set a cap f̌max on the value of fmax to
reflect a rail vehicle operation with drivers responsible for maintaining safe sep-
aration. For buses f̌max can attain a larger value, around the double of that for
rail. For BRT and LRT operations within or parallel to urban arterial roadways
the minimum achievable headway depends on the longest dwell time. The longest
dwell time, t̂e, is a function of frequency, stop spacings, and TU length:

t̂e(f,d, n) = td +
q

nf
max

j

(tbbπj + tbaσj)de(j)
LΛe(j)

tba, tbb[s-pax/veh], q[pax/h],

de(j), L[km], n[veh/TU],

f [TU/h]. (17)

The fmax formula for the bus and light rail modes share the following common
form:

fmax(f,d, n) = min

{
f̌max,

3600

te0 + tev(n− 1) + ηt̂e

}
f̌max[TU/h],

te0, tev, t̂e[s], (18)

where te0 is the fixed stop clearance time, tev is the stop clearance time for an
extra vehicle length, and η is a fraction of the longest dwell time.

Finally, we impose side constraints on the average stop spacing. Reaching the
speed Smax requires a stop spacing larger than a threshold value dmin, which
depends on acceleration and deceleration rates according to formula (43). An upper
bound dmax is also defined.

3.8 Optimization model

The total cost Ctot, sum of passengers’ time value and operator cost, is a function
of frequencies, stop spacings, and TU lengths. The model follows:

minimizeCtot(f ,d,n) (19)
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subject to

dmin ≤ di ≤ dmax,∀i ∈ {1, ...,m} (20)

max

{
fpol,p,

αpqpτp
νnpk

}
≤ fp ≤ fmax,p(fp,d, np),∀p ∈ {1, ..., p̂} (21)

nmin ≤ np ≤ nmax, np ∈ N,∀p ∈ {1, ..., p̂} (22)

npfptc,p(fp, d, np) ≤ n1f1tc,1(f1, d, n1),∀p ∈ {2, ..., p̂}. (23)

Constraints (20) set minimum and maximum values for the stop spacings. Con-
straints (21) enforce minimum and maximum values for the frequencies. Con-
straints (22) specify the feasible range of TU lengths, and constraint (23) ensures
that the maximum fleet is deployed at peak times, where for “maximum deployed
fleet” we refer to the number of vehicles needed for the scheduled service (the
reserve that bears a capital cost is accounted in the operator cost function).

3.9 Solution method

The model is solved by an updated version of the algorithm presented in Moccia
and Laporte (2016). We construct a separable lower convex envelope of the ob-
jective function Ctot in the feasible frequency range as follows. First, we use the
lower linear value of the crowding penalty. Second, we assume a discounted waiting
time by the factor µ whenever the minimum frequency is smaller than fl. Third,
we compute the intersection delay in the cycle time at the minimum frequency.
Fourth, we remove non-convex terms by fixing some variables to proper bounds.

Thus, we can define a separable lower convex envelope of the objective function
for a given vector of TU lengths n̄ as

C̃tot(f ,d, n̄) =
Vaq

4s

∑
i

di
∑
p

Θi,pγpχp + Vwq
∑
p

γpχpµp
ε

fp
+

Vvq
∑
p

∑
j

χpγpῩj,p

[
ξ

(
RΛe(j)

2
+
tbbπj,p + tbaσj,p

3600n̄pfp
qp + ω1

tuΛe(j)L

60

(
fmin,p

ḟ

)ω2
)

+

(
ρ
Ῡj,pqp
kn̄pfp

)(
RΛe(j)

2
+
tbbπj,p + tbaσj,p
3600n̄pfmax,p

qp + ω1
tuΛe(j)L

60

(
fmin,p

ḟ

)ω2
)

+(
ξ + ρ

Ῡj,pqp
kn̄pfmax,p

)
TlΛe(j)L

de(j)

]
+

c0l + 2(c0s + c0sv(n̄1 − 1)) + 2L(c0s + c0sv(n̄1 − 1))
∑
i

Λi

di
+

c1vζn̄1f1

(
β

(
R+

2LTl
dmax

+
tbb + tba

3600

q

n̄1f1
+ ω1

2tuL

60

(
fmin,1

ḟ

)ω2
)

+
ttf + ttvn̄1

3600

)
+

c1t
∑
p

χpfp

(
β

(
R+

2LTl
dmax

+
tbb + tba

3600

qp
n̄pfp

+ ω1
2tuL

60

(
fmin,p

ḟ

)ω2
)

+
ttf + ttvn̄p

3600

)
+

2c2vL
∑
p

χpn̄pfp =

= a0 +
∑
i

a1,idi +
∑
i

a2,i
di

+
∑
p

a3,pfp +
∑
p

a4,p
fp

, (24)
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where the coefficients of the previous equation are defined as

a0 = c0l + 2(c0s + c0sv(n̄1 − 1)) + c1vζβq
tbb + tba

3600
+ c1tβq

tbb + tba
3600

∑
p

χpγp
n̄p

+

Vvqξ
∑
p

∑
j

χpγpῩj,p
Λe(j)

2
(R+ tω,p)

a1,i =
Vaq

4s

∑
p

Θi,pγpχp

a2,i = 2LΛi(c0s + c0sv(n̄1 − 1)) +

2LΛiTlVvq
∑
p

χpγp

(
Ῡu1(i),p

(
ξ + ρ

Ῡu1(i),pqp

kn̄pfmax,p

)
+ Ῡu2(i),p

(
ξ + ρ

Ῡu2(i),pqp

kn̄pfmax,p

))

a3,p = 2c2vLχpn̄p +if p=1 c1vζn̄1

(
β

(
2LTl
dmax

+ tω,1

)
+R

′

1

)
+

c1tχp

(
β

(
2LTl
dmax

+ tω,p

)
+R

′

p

)
a4,p = Vwqεγpχpµp + Vvq

∑
j

χpγpῩj,p

[
ξ
tbbπj,p + tbaσj,p

3600n̄p
qp + (25)

(
ρ
Ῡj,pqp
kn̄p

)(
tbbπj,p + tbaσj,p
3600n̄pfmax,p

qp +
Λe(j)

2
(R+ tω,p)

)]
,

and where, for notational compactness, we have used the following notation:

R
′

p = βR+
ttf + ttvn̄p

3600

µp =

{
µ if fmin,p < fl

1 if fmin,p ≥ fl

tω,p = ω1
2tuL

60

(
fmin,p

ḟ

)ω2

. (26)

By calculus, the unconstrained optimal stop spacings, d̃unc,i, and frequencies,
f̃unc,p, of the approximation are

d̃unc,i =

√
a2,i
a1,i

(27)

f̃unc,p =

√
a4,p
a3,p

. (28)

Table 3 reports these formulae.
We now comment on similarities and differences between our approximated

stop spacing formula and that of Wirasinghe and Ghoneim (1981) (equation (10),
page 215). Both formulae are twice the square root of a ratio with two components
at the numerator and a denominator that expresses the product of the access value
of time and the combined demand for boarding and alighting per unit of length. In
both formulae, the two components at the denominator relate to the extra-costs
of a stop for the operator and the on-board passengers. These extra-costs differ



A Spatially Disaggregated Model of a Transit Line 17

between the two formulae as follows. The operator extra-cost in our formula is only
related to the construction and maintenance of a stop whereas that of Wirasinghe
and Ghoneim (1981) is also related to the effect of the stop time loss on fleet costs.
This effect is included in our model, but because of the approximation scheme
based on some variable fixing, it does not appear in the stop spacing formula.
The extra-cost for on-board passengers in our formula includes a quadratic term
in the average occupancy because of the in-vehicle crowding. This effect was not
considered in the model of Wirasinghe and Ghoneim (1981). We further observe
that Vuchic and Newell (1968) in their review of passenger transportation studies
performed between 1915 and 1930 highlighted that these early works were the
first to point that an optimal stop spacing should be a function of the number of
on-board passengers and of those wishing to board it.

4 In-vehicle passenger crowding for the spatially aggregated model

In-vehicle passenger crowding is underestimated when the vehicle occupancy rate
varies along the cycle time and an average vehicle occupancy is used to synthet-
ically gauge crowding. In the following we denote by t the time step belonging
to the cycle time, and we consider for notational brevity a cycle time of unitary
length, i.e. t ∈ [0, 1]. The crowding penalty function δ is that of equation (13) and
it is piecewise linear and convex. Let θ(t) be the instantaneous vehicle occupancy
rate, then, because of the convexity of δ, we have the following Jensen inequality
(Jensen, 1906):

δ(θ̄) = δ

(∫ 1

0

θ(t)dt

)
≤
∫ 1

0

δ(θ(t))dt. (29)

Moccia et al. (2018) introduce a function ∆ that corrects the underestimation
caused by Jensen’s inequality when the occupancy rate can be approximated by a
linear function. Here, we present a further refinement by a new function ∆2 such
that, under the same assumption of linear approximation of the occupancy rate,
the following holds:

θ̄∆2(θ̄) =
∫ 1

0
θ(t)δ(θ(t))dt. (30)

Observe that the integration in the right-hand side of the previous equation is
equivalent to the summation performed in our spatially disaggregated model, and
the left-hand side is the equivalent term in the aggregated model of Moccia et al.
(2018). Henceforth, this new function ∆2 would replace the function ∆ in the
model of Moccia et al. (2018).

As in Moccia et al. (2018), and without loss of generality, we use a non-
increasing function θ(t), i.e. the occupancy rate is ordered in the time index such
that the maximum occurs at t = 0 and its equal to φθ̄, where φ is a parameter
larger than or equal to one. The smaller abscissa such that θ(t) = 0 is indicated
by b, and if this does not occur b is set to one. The users’ time in the unitary cycle
time is an invariant, i.e.

∫ 1

0
θ(t)dt = θ̄. Henceforth, under the above assumptions,

given θ̄ and φ we can uniquely determine the parameters of this function that has
the following general form

θ(t) =

{
φθ̄ − ct t ∈ [0, b]

0 t ∈ (b, 1],
(31)
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where c is the negative of the slope. A value of φ not larger than two causes b
equal to one. First note that b = 1 means that the area under θ, see Figure 4, is

θ(1) +
1

2
(φθ̄ − θ(1)). (32)

Second, recall that the users’ time in the unitary cycle time is an invariant, and
thus we have

θ(1) = θ̄(2− φ) ≥ 0, ∀φ ≤ 2. (33)

0.0 0.2 0.4 0.6 0.8 1.0
Cycle time, t

0.0

0.2

0.4

0.6

0.8

1.0

Oc
cu

pa
nc

y 
ra

te
, θ

(t
)

1
2
(φθ̄− θ(1))

θ(1)
θ̄

φθ̄

θ(1)

θ(t) =φθ̄− 2θ̄(φ− 1)t, t∈ [0, 1]

Fig. 6 Derivation of θ(1) for φ ≤ 2.

A value of φ larger than two may represent strongly unbalanced passenger
flows in radial lines, even though this would imply that a fraction of the cycle time
is represented by zero occupancy rate in the linear approximation.

Let a and A be the abscissa in the domain of θ(t) where this function is at
its minimum distance from the θmin level, and the area under θ(t) in the interval
[0, a], respectively.
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The right-hand side of (30) is then∫ a

0
θ(t)(1 + ρ(θ(t)− θmin))dt+

∫ 1

a
θ(t)dt

=
∫ 1

0
θ(t)dt+ ρ

(∫ a

0
θ2(t)dt− θmin

∫ a

0
θ(t)dt

)
= θ̄ + ρ

(∫ a

0
θ2(t)dt− θminA

)
,

and the function ∆2 is

∆2 = 1 + ρ

(
1

θ̄

∫ a

0
θ2(t)dt− θmin

A

θ̄

)
. (34)

Observe that whenever crowding does not occur, θ(0) = φθ̄ ≤ θmin, a and A are
both equal to zero, and (34) yields ∆2 = 1, as expected. Equation (34) holds for
the other relevant cases that are dealt in the following. First, observe that a < b
for θmin > 0, and ∫ a

0

θ2(t)dt =
∫ a

0

[
(φθ̄)2 + c2t2 − 2cφθ̄t

]
dt

= (φθ̄)2a+
c2a3

3
− cφθ̄a2.

In the case of φ ≤ 2 and θ̄(2 − φ) < θmin < φθ̄ (illustrated in Figure 4), by
simple geometric analysis, we have:

a =
φθ̄ − θmin

2θ̄(φ− 1)

c = 2θ̄(φ− 1)

A =
a

2
(φθ̄ + θmin) =

(φθ̄)2 − θ2min

4θ̄(φ− 1)
.

In the case of φ ≤ 2 and θmin ≤ θ̄(2− φ) (illustrated in Figure 8) we have:

a = 1

c = 2θ̄(φ− 1)

A = θ̄.

In the case of φ > 2 and θmin < θ̄φ (illustrated in Figure 9) we have:

a =
2(φθ̄ − θmin)

φ2θ̄

c =
φ2θ̄

2

A =
a

2
(φθ̄ + θmin) =

(φθ̄)2 − θ2min

φ2θ̄
.

This analysis allows us to define the function ∆2 reported in Table 4. Figure
10 illustrates the difference among the crowding penalty functions δ, ∆, and ∆2.
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Fig. 7 Example of a linear occupancy rate function with φ ≤ 2 and θ̄(2 − φ) < θmin < φθ̄.

5 Numerical experiments

This section is structured as follows. Section 5.1 describes the case study, its pa-
rameters, and the way in which we label the numerical experiments. The results
of the spatially disaggregated and aggregated models are discussed in Section 5.2.

5.1 Parameters and experiment labeling

We present extensions of a scenario introduced in Moccia et al. (2018) and denoted
there as “Scenario 2”. This scenario represents an exclusive at grade right-of-way
where traffic signal priority is provided. Stations are multi-modal transfer points
and allow off-vehicle fare collection, level boarding, and other passenger amenities
as detailed in Moccia et al. (2018). Rail TUs may operate as multiple units with
a number of vehicles ranging from one to four. Buses are either single-articulated
vehicles of 18 m in length, or double-articulated of 24 m in length. The maximum
authorized speed is assumed to be the same for each of the three technologies (75
km/h).
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Fig. 8 Example of a linear occupancy rate function with φ ≤ 2 and θmin ≤ θ̄(2 − φ).

We introduce labels to differentiate among the experiments as follows. A tech-
nology is indicated by three letters, “BRT” or “LRT”, to distinguish between bus
and rail, respectively, and, in the case of a single-unit technology, a number spec-
ifying the length of the vehicle in meters. For example, the label “BRT 18” refers
to the BRT with an 18 m bus. The parameters related to the users and to the
transit line that are common to all scenario variants are listed in Table 5. Table
6 lists the parameters that are mode-specific, and Table 7 reports those that are
technology-specific. Monetary figures are expressed in US dollars for the year 2012.
Capital amortization per hour of service is computed by formula (44) for infras-
tructure and rolling stock. Land capital cost is annualized by multiplying it by the
discount rate, i.e. assuming an infinite service life. We consider four periods, and
the period-related parameters are listed in Table 8. These parameters derive from
the same temporal distribution of the demand used in Moccia et al. (2018), the
difference being that we now discretize the service time by four periods instead of
three as in the previous paper. This is because an even number of periods sim-
plifies the construction of instances for the spatial attributes, as explained in the
following.
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Fig. 9 Example of a linear occupancy rate function with φ > 2 and θmin < θ̄φ.

We introduce two scenario variants for the spatial variability of the demand.
The first, denoted as “diametrical” and abbreviated by the letter “D”, locates the
main traffic attractor in a central sector of the line, and the second, denoted as
“radial” and abbreviated by the letter “R’, locates it at or near one end of the
line. Thus, for example, “D BRT 18” refers to the diametrical scenario variant for
the BRT 18 technology, and “R LRT” refers to the radial scenario variant for the
LRT technology. There are four sectors, m = 4, and the sector lengths are the
same for both scenario variants (Table 9). For each variant we use two spatially
disaggregated profiles such that one can be obtained by a change of direction of
the other. The first of these two profiles is assigned to the periods one and three,
and the second is assigned to the periods two and four — and this is the reason
why for simplicity we have discretized the service time into four periods. Figure
11 and 12 depict for the diametrical case the boarding and alighting parameters
of the first and second profiles, respectively. For the radial case the first profile
is that of Figure 4, which was used to introduce the notation, and the second is
illustrated in Figure 13.

We apply two models to these two scenario variants, the spatially disaggregated
model introduced in this paper, and the spatially aggregated model of Moccia et al.
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(2018) with the new crowing penalty function introduced in Section 4 of this pa-
per. In reporting results we label by the letters “M” and “S” those of the spatially
disaggregated and aggregated models, respectively. For example, “R M BRT 24”
refers to the spatially disaggregated model applied to the radial case for the tech-
nology “BRT 24”. Whenever the model is not indicated we report results for both
models, e.g. “R BRT 24’ refers to the results of both studied models.

The spatially aggregated model does not use the sector- and segment-specific
parameters (Figures 4 and 11–13) and needs other parameters to synthetically
represent the spatial distribution of the demand. These parameters are: α, the
fraction of demand in the most loaded segment of the line; λ, the ratio of the
average trip length to the length of the route; φ, the ratio of the maximum to
the average occupancy rate; and ψ, the ratio of the maximum to the average
dwell time. The first three of these parameters are uniquely determined by the
spatially disaggregated data. Specifically, α is immediately readable from the spa-
tially disaggregated profiles (Figures 4 and 11–13), and λ requires the following
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precomputation:

λ =
∑
j

ῩjΛe(j). (35)

Figures 14 and 15 illustrate the linear approximation of the occupancy rate for
the two scenario variants by the method presented in Section 4, and provide the
values of φ. Note that these figures are constructed by the approximation of the
cycle time to the cycle length, and under this assumption the following holds:

φ =
2α

λ
. (36)

The last parameter, ψ, requires an iterative fine-tuning until a good accord between
the results of the two models is reached in terms of the maximum dwell time. These
four parameters of the spatially aggregated model are listed in Table 10 for the
two scenario variants. The model is executed on 59 peak hour demand levels q
uniformly spaced between 2000 and 60000 pax/h, extrema included.

Table 5 Parameters related to the users and to the transit system that are common to all
scenario variants and all technologies.

Parameter Symbol Unit Value
Unit operator cost per TU-hour c1t $/TU-h 60
Upper bound of the stop spacing dmax km 2.5
Threshold frequency for timetable behavior fl TU/h 6.0

Threshold frequency for the high frequency penalty ḟ TU/h 25
Number of service hours per year H h/year 5940
Route length L km 20.0
Land acquisition unitary cost - m$/hectare 10.7
Maximum allowed speed Smax km/h 75
Unit value of access time Va $/h 20.05
Unit value of waiting time Vw $/h 16.71
Unit value of in-vehicle time Vv $/h 13.37
Waiting time at a stop when f < fl w min 5
One-stage infrastructure technical life (route and stations) y year 40
Moltiplicative factor of the operating cycle time β - 1.07
Rate of the average waiting time to the headway ε - 0.5
Spare capacity factor for the fleet ζ - 1.20
Average occupancy rate up to δ = 1 θmin - 0.3
Discount rate ι - 0.03
Discount factor of the waiting time under timetable behavior µ - 0.3
Spare capacity factor for the TU ν - 0.95
Ratio of the residual value to the initial value of the rolling stock Ξ - 0.05
Ratio of the residual value to the initial value of the infrastructure Ξ - 0.00
Slope of the linear part of δ ρ - 1.0
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Table 6 Mode-specific parameters.

Parameter Symbol Unit BRT LRT
Route width (two-ways) m 10 9
One-stage vehicle technical life y year 12 25
Average acceleration rate ā m/s2 1.00 1.15
Average deceleration rate b̄ m/s2 1.15 1.00
Threshold frequency for platooning fm TU/h 40 -
Cap on the maximum frequency f̌max TU/h 80 40
Parameter of the high frequency penalty ω1 - 0.075 0.135
Exponent of the high frequency penalty ω2 - 1.25 1.40
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Table 8 Period-related parameters common to all scenario variants and all technologies.

Ratio Symbol p = 1 p = 2 p = 3 p = 4
Period average demand to average peak demand γp 1.00000000 0.61421007 0.39064449 0.13704000
Maximum to average peak period demand τp 1.27952633 1.35324947 1.21027921 2.40126798
Period hours to total service hours χp 0.08009259 0.13043981 0.20509259 0.58402778

Table 9 Sector-related parameters common to all scenario variants and all technologies.

Ratio Symbol i = 1 i = 2 i = 3 i = 4
Fraction of the route length Λi 0.35 0.25 0.20 0.20
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Ῡ

Fig. 11 Diametrical scenario variant, spatially disaggregated demand profile, periods one and
three.

Table 10 Parameters for the spatially aggregated model.

Parameter Symbol Value for the Value for the
diametrical case radial case

Fraction of demand in the most loaded segment of the line α 0.175 0.365
Ratio of the average trip length to the length of the route λ 0.187 0.215
Ratio of the maximum to the average occupancy rate φ 1.869 3.399
Ratio of the maximum to the average dwell time ψ 1.550 2.100

5.2 Results

We now report results of the spatially disaggregated and aggregated models for
the three technologies and two scenario variants presented in Section 5.1. Because
the two scenario variants differ in the average journey length, we report results
according to a passenger travel density (PTD) index which expresses the amount
of traveled distance by passengers per unit of route length. This index is defined
as

PTD = Hqλ
∑
p

χpγp, (37)



A Spatially Disaggregated Model of a Transit Line 31

1 .. .. m m + 1 .. .. 2m
Segments

0.2

0.1

0.0

0.1

0.2

0.3

0.4

Fr
ac

tio
ns

 o
f t

he
 p

er
io

d 
de

m
an

d

Direction change

MLS

α= 0.17

π

−σ
Υ

Ῡ

Fig. 12 Diametrical scenario variant, spatially disaggregated demand profile, periods two and
four.

and its unit of measure is pax-km/year-km, where the “km” in the numerator refers
to the unitary distance traveled by a passenger, and the “km” in the denominator
expresses the unitary route length. The studied range of peak hour demands and
the other parameters of the two scenario variants yield PTDs between ∼ 7× 105

and ∼ 2× 107 pax-km/year-km.

We first compare the total cost and its two components, user and operator
costs, of the two models. We compute the percent absolute difference between
these costs as | C1 − C2 | /C1 × 100, where the subscripts “1” and “2” indicate
the disaggregated and aggregated models, respectively. Box and whisker plots of
Figures 17–22 illustrate this comparison for the six technology-scenario combina-
tions. These box and whisker plots use the following data visualization scheme.
The box represents the interquartile range (IQR), i.e. it extends from the first to
the third quartile values of the data. The band inside the box is the median. The
whiskers represent the lowest datum still within 1.5 IQR of the first quartile, and
the highest datum still within 1.5 IQR of the third quartile. The data outside the
whiskers’ range are the outliers and are indicated by circles. The average value
is indicated by a triangle. In terms of total cost, the third quartile is very small,
below 1% for all but one results’ set, and also the outliers are small. In terms of
user and operator costs, there are few significant outliers but the upper whisker
remains below 4% for all results’ sets. This allows us to conclude that the spa-
tially aggregated model suffices with respect to a more involved and data-intensive
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Fig. 13 Radial scenario variant, spatially disaggregated demand profile, periods two and four.

spatial disaggregation when the total cost is the metric of interest, as in the case
of technology selection. This high accuracy of the spatially aggregated model is
due to the new crowding penalty function introduced in Section 4. For brevity,
and for the reasons explained in the following, we omit the results of the spatially
aggregated model with the penalty function ∆ of Moccia et al. (2018). First, ob-
serve that the previous crowding penalty function is defined for φ not larger than
two, and therefore would not be appropriate to use for the radial case where φ
is larger than two. Second, even limiting the comparison to the diametrical case,
where φ is smaller than two, the previous penalty function would have yielded
percent absolute differences between the total costs of the two models larger than
the double of what previously reported. These results are available upon request
from the corresponding author. Figures 23 and 24 illustrate the average crowding
penalty under the diametrical scenario variant for the spatially disaggregated and
aggregated models, respectively. These figures allow us to conclude that an excel-
lent agreement exists between these two models for the average crowding penalty
under the diametrical scenario variant. Figures 25 and 26 allow us to reach the
same conclusion for the radial case.

Figures 27–32 depicts the stop spacings of the six technology and scenario
variant combinations yielded by the spatially disaggregated model. The average
stop spacings obtained by the spatially aggregated model are in good accord with
those of the spatially disaggregated model, and therefore these figures are omitted
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Fig. 14 Diametrical scenario variant, an example of occupancy rates in decreasing order and
the linear approximation for the spatially aggregated model.

for the sake of brevity. As expected, the range of sector-specific stop spacings
is larger under the radial than under the diametrical scenario variant. However,
also under the diametrical case the differences between the sector-specific stop
spacings and the average is of importance. This allow us to conclude that spatial
disaggregation significantly increases accuracy when the main focus is line design
instead of technology selection.

We now show the usefulness of the spatially disaggregated model for bench-
marking. Vehicle occupancy is a key index to assess the under- or the over-
utilization of a transit line. It is intuitive that this index should depend on vehicle
capacity, passenger travel density, and spatial characteristics of the demand. Our
model allows this type of analysis. Figures 33 and 34 illustrate the average vehi-
cle occupancy (AVO) per unitary vehicle length of the three studied technologies
under the diametrical and radial scenario variants, respectively. The radial case
shows lower AVOs for a given PTD than the diametrical case, as may be expected
from a system offering the improved connectivity of trips across the densest parts
of the city. Figure 16, representing Edmonton’s LRT system in 2008 when it had
a basic diametrical configuration, exemplifies how symmetry of the passenger load
profiles can appear in such a case.
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Fig. 15 Radial scenario variant, an example of occupancy rates in decreasing order and the
linear approximation for the spatially aggregated model.
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Fig. 17 Diametrical scenario variant and the BRT 18 technology: box and whisker plot of
the percent absolute difference of the objective function and its two components of the two
studied models.
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Fig. 18 Diametrical scenario variant and the BRT 24 technology: box and whisker plot of
the percent absolute difference of the objective function and its two components of the two
studied models.
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Fig. 19 Diametrical scenario variant and the LRT technology: box and whisker plot of the
percent absolute difference of the objective function and its two components of the two studied
models.
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Fig. 20 Radial scenario variant and the BRT 18 technology: box and whisker plot of the
percent absolute difference of the objective function and its two components of the two studied
models.
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Fig. 21 Radial scenario variant and the BRT 24 technology: box and whisker plot of the
percent absolute difference of the objective function and its two components of the two studied
models.
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Fig. 22 Radial scenario variant and the LRT technology: box and whisker plot of the percent
absolute difference of the objective function and its two components of the two studied models.
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Fig. 23 Diametrical scenario variant and spatially disaggregated model: average crowding
penalty of the three studied technologies by passenger travel density in logarithmic scale.
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Fig. 24 Diametrical scenario variant and spatially aggregated model: average crowding
penalty of the three studied technologies by passenger travel density in logarithmic scale.
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Fig. 25 Radial scenario variant and spatially disaggregated model: average crowding penalty
of the three studied technologies by passenger travel density in logarithmic scale.
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Fig. 26 Radial scenario variant and spatially aggregated model: average crowding penalty of
the three studied technologies by passenger travel density in logarithmic scale.
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Fig. 27 Diametrical scenario variant, spatially disaggregated model and technology BRT 18:
average stop spacing and sector-specific stop spacings by passenger travel density in logarithmic
scale.
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Fig. 28 Diametrical scenario variant, spatially disaggregated model and technology BRT 24:
average stop spacing and sector-specific stop spacings by passenger travel density in logarithmic
scale.
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Fig. 29 Diametrical scenario variant, spatially disaggregated model and technology LRT:
average stop spacing and sector-specific stop spacings by passenger travel density in logarithmic
scale.
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Fig. 30 Radial scenario variant, spatially disaggregated model and technology BRT 18: av-
erage stop spacing and sector-specific stop spacings by passenger travel density in logarithmic
scale.

6 Conclusions

We have presented an optimization model for the technology selection and design
of a transit line where the demand is spatially disaggregated by segments. In spite
of some notational complexity, the model was solved by a method based on ap-
proximation formulae, as in the case of spatially aggregated demand. The approx-
imation formula for stop spacing shares similarities with that of Wirasinghe and
Ghoneim (1981) derived by a different method. The comparison between the spa-
tially disaggregated and aggregated models has led us to devise a refinement of the
crowding penalty function of the spatially aggregated model. We have presented
numerical experiments that point to three main conclusions. First, the revised
spatially aggregated model suffices when the main focus is technology selection.
Second, the spatially disaggregated model show its usefulness for design purposes,
because the average stop spacing may be not always representative. Third, the spa-
tially disaggregated model may be used for benchmarking on transit performance
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Fig. 31 Radial scenario variant, spatially disaggregated model and technology BRT 24: av-
erage stop spacing and sector-specific stop spacings by passenger travel density in logarithmic
scale.

indices such as the average vehicle occupancy, which are strongly influenced by
the type of spatial demand profile.
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Fig. 32 Radial scenario variant, spatially disaggregated model and technology LRT: average
stop spacing and sector-specific stop spacings by passenger travel density in logarithmic scale.

Appendix A — Formulae shared by the spatially disaggregated and
aggregated models

Here we report formulae that are common to the spatially disaggregated model presented in
this paper and in the spatially aggregated model of Moccia et al. (2018).

The average speed excluding user service at stops, Srun, is

Srun =
1

1
Smax

+ tu
60

Smax[km/h], tu[min/km]. (38)

Let ā and b̄ be the average acceleration and deceleration rates of a TU. The incremental
time loss caused by the acceleration and deceleration phases is denoted by Ta, and is equal to

Ta =
Srun

25920

(
1

ā
+

1

b̄

)
Srun[km/h], ā, b̄[m/s2], (39)

(see e.g. Vuchic and Newell, 1968).
The lost time for acceleration, deceleration, and door opening and closing, Tl, is

Tl = Ta +
td

3600
Ta[h], td[s]. (40)
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Fig. 33 Diametrical scenario variant and spatially disaggregated model: average vehicle occu-
pancy per unitary vehicle length of the three studied technologies by passenger travel density
in logarithmic scale.

The average waiting time tw of a user is

tw(f) =



w

60
+ µ

ε

f
if f < fl

ε

f
if fl ≤ f ≤ fm,

ε

fm
if f > fm f [TU/h], w[min]

. (41)

The lower bound for the frequency, fmin, is

fmin = max
{
fpol,

αqτ

νkn

}
fpol[TU/h], q[pax/h], k[pax/veh], n[veh/TU]. (42)

The threshold value of the stop spacing, dmin, depends on acceleration and deceleration
rates as follows

dmin =
S2
max

25920

(
1

ā
+

1

b̄

)
Smax[km/h], ā, b̄[m/s2], (43)

(see e.g. Vuchic and Newell, 1968).
The capital amortization per hour of service is computed as

P (1 − Ξ)ι

H(1 − (1 + ι)−y)
, (44)
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Fig. 34 Radial scenario variant and spatially disaggregated model: average vehicle occupancy
per unitary vehicle length of the three studied technologies by passenger travel density in
logarithmic scale.

where P is the purchase price, H is the number of service hours in a year, ι is the discount
rate, Ξ is the fraction of the residual value, and y is the one-stage technical life. The one-stage
technical life is lower than a typical service lifetime because it expresses the equivalent years
including the cost of a mid-life rebuild at the prevalent discount rate.
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