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Microbial diversity 
in Mediterranean sponges 
as revealed by metataxonomic 
analysis
Nadia Ruocco1,7, Roberta Esposito1,2,7, Giacomo Zagami3, Marco Bertolino4, 
Sergio De Matteo3, Michele Sonnessa5, Federico Andreani5, Stefania Crispi1,6, Valerio Zupo1 & 
Maria Costantini1*

Although the Mediterranean Sea covers approximately a 0.7% of the world’s ocean area, it represents 
a major reservoir of marine and coastal biodiversity. Among marine organisms, sponges (Porifera) 
are a key component of the deep-sea benthos, widely recognized as the dominant taxon in terms of 
species richness, spatial coverage, and biomass. Sponges are evolutionarily ancient, sessile filter-
feeders that harbor a largely diverse microbial community within their internal mesohyl matrix. In 
the present work, we firstly aimed at exploring the biodiversity of marine sponges from four different 
areas of the Mediterranean: Faro Lake in Sicily and “Porto Paone”, “Secca delle fumose”, “Punta San 
Pancrazio” in the Gulf of Naples. Eight sponge species were collected from these sites and identified 
by morphological analysis and amplification of several conserved molecular markers (18S and 28S 
RNA ribosomal genes, mitochondrial cytochrome oxidase subunit 1 and internal transcribed spacer). 
In order to analyze the bacterial diversity of symbiotic communities among these different sampling 
sites, we also performed a metataxonomic analysis through an Illumina MiSeq platform, identifying 
more than 1500 bacterial taxa. Amplicon Sequence Variants (ASVs) analysis revealed a great 
variability of the host-specific microbial communities. Our data highlight the occurrence of dominant 
and locally enriched microbes in the Mediterranean, together with the biotechnological potential of 
these sponges and their associated bacteria as sources of bioactive natural compounds.

Several marine organisms, such as macro and microalgae, sponges and fishes have developed various defence 
mechanisms during their evolution, including the exploitation of a large variety of natural molecules. In addi-
tion to their ecological roles, these compounds display several biological activities, such as anticancer, anti-
inflammatory, antioxidant, antimicrobial, antihypertensive, making them good candidates for biotechnological 
applications in the pharmaceutical, nutraceutical and cosmeceutical fields1. Marine sponges are multicellular, 
benthic and generally sessile organisms, spread throughout the seabed, from the tropics to the poles. In the 1950s, 
the interest in sponges was relighted thanks to the discovery of new bioactive nucleosides (spongotimidine and 
spongouridine) in the marine sponge Tectitethya crypta (i.e., Tethya cripta)2. These nucleosides were the basis 
for the synthesis of Ara-C, the first marine antitumor agent and antiviral drug3. It is important to consider that 
marine sponges are known for hosting microbial communities whose composition can be quite complex4. These 
symbiotic bacteria are usually involved in carbon and nitrogen fixation, nitrification, anaerobic metabolism, stabi-
lization of the sponge skeleton, protection against UV. However, they are mainly responsible for the production of 
bioactive metabolites5. For example, it has been demonstrated that a Alphaproteobacteria symbiotic of the sponge 
Dysidea avara produce an inhibitor of angiogenesis 2-methylthio-1,4-naphthoquinone6. The structural classes of 
natural products commonly associated with microbial sources include non-ribosomal peptides (penicillin and 
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vancomycin), polyketides (erythromycin and tetracycline) and hybrid peptide polyketides (cyclosporin A and 
rapamycin). Some of these molecules are synthesized by non-ribosomal peptide synthases (NRPSs) and polyke-
tide synthases (PKSs), which are encoded by genes clustered in the genome7,8. Several studies have highlighted 
the biotechnological potential of bacterial communities in marine sponges through the identification of PKSs 
and NRPSs genes, encoding for secondary metabolites9–13.

Concerning the phylum Porifera, the Mediterranean is known to host a huge biodiversity, counting about 700 
species14 and more than half of these live in the coralligenous (a hard bottom of biogenic origin mainly produced 
by the accumulation of calcareous encrusting algae)15–17. Unfortunately, anthropogenic activities together with 
climate changes are strongly impacting the biodiversity of the Mediterranean18,19 and, as a consequence, this facili-
tates the spreading of alien species20. Examples of these environmental events are Paraleucilla magna, a sponge 
firstly described in 2004 off the Brazilian waters and now widespread in many areas of the Mediterranean21.

In the present work, we aim at deeper exploring the microbial communities associated with sponges in the 
Mediterranean Sea. Eight species of sponges were collected from four different areas of the Mediterranean, 
in Italy: Faro Lake (in Sicily) and “Porto Paone”, “Secca delle fumose”, “Punta San Pancrazio” (in the Gulf of 
Naples). Species characterization was performed by morphological observation of the skeleton and amplification 
of several conserved molecular markers (18S and 28S rRNA, ITS and CO1), with the only exception of Geodia 
cydonium, which has been previously characterized22–24. In order to analyse the biodiversity of symbiotic com-
munities among different sampling sites, we performed a metataxonomic analysis of sponge samples through an 
Illumina MiSeq platform. More than 1500 bacterial isolates from eight samples were phylogenetically identified 
to understand if they were host-specific and/or site-specific. The ASVs analysis was then discussed to evaluate 
the biotechnological potential of sponges under investigation, in view of literature data.

Results
Morphological identification.  All eight studied sponges belong to the class Demospongiae (Table  1). 
Seven species commonly live in the Mediterranean Sea, while Oceanapia cf. perforate (Sarà, 1960) is a rare spe-
cies distributed in the western Mediterranean.

Molecular characterization.  BLAST similarity search corresponded with the morphological identifica-
tion achieved with two (S.spi and E.dis) of the three sponge samples collected in the Faro Lake (Sicily; see 
Tables S1-S2). In particular, molecular analyses confirmed S.spi as Sarcotragus spinosulus and E.dis as Erylus 
discophorus. ITS region displayed the best alignment for the identification of S.spi specimen with 98% of iden-
tity. Concerning the sample O.per, collected in the same site, the sequence of the species Oceanapia cf. perforata, 
identified by morphological analysis was not available in GenBank. Nevertheless, 18S and 28S rRNA primer 
pairs allowed a partial identification at the genus level, with high similarity to Oceanapia isodictyiformis, plus 
several hits annotated as Oceanapia sp. at low percentage of identity (Tables S1-S2).

In the case of sponges collected from “Porto Paone” in the Gulf of Naples, CO1 and 18S rRNA were the best 
molecular markers since they allowed the identification of sponges at the species level. Concerning T.aur sample, 
the species Tethya aurantium was identified (95% of identities) by CO1, whereas the sample A.dam, collected in 
the same site, was well identified as Axinella damicornis by 18S rRNA primers, producing a high percentage of 
sequence similarity (99%) (Tables S1-S2).

Molecular analysis confirmed the samples A.acu and A.oro, as Acanthella acuta and Agelas oroides, respec-
tively, with 28S and 18S rRNA reporting the highest percentage of sequence similarity (100%) (Tables S1-S2). 
Alignments are reported in Figures S1-S7.

Diversity analysis.  Alpha rarefaction on the observed features and three diversity indices (Chao1, Shannon 
and Simpson), were used to determine whether each sample was sequenced up to a sufficient depth. Rarefaction 
curves indicated that the majority of taxa was captured, since all samples under analysis reached a plateau (Fig. 1; 

Table 1.   Sample IDs, taxonomy, sampling depth (m) and sites, geographical coordinates and type of substrate.

Sample IDs Sponge taxonomy Sampling depth (m) Sampling site Coordinates Substrate

O.per Oceanapia cf. perforata
(Sarà 1960) 2–3 Faro Lake 38°16’N, 15°38’E Rocks, coralligenous concretions and 

caves

S.spi Sarcotragus spinosulus (Schmidt 1862) 2–3 Faro Lake 38°16’N, 15°38’E Hard substrates, coralligenous concre-
tions and caves

E.dis Erylus discophorus
(Schmidt 1862) 2–3 Faro Lake 38°16’N, 15°38’E Rocks, coralligenous concretions and 

caves

A.oro Agelas oroides
(Schmidt 1864) 7–9 Punta San Pancrazio 40°42ʹN, 13°57ʹE Rocks, sand and coralligenous concre-

tions

T.aur Tethya aurantium
(Pallas 1766) 15–17 Porto Paone 40°47ʹN, 14°9ʹE Sand, mud, rocks, and coralligenous 

concretions

A.dam Axinella damicornis
(Esper 1794) 15–17 Porto Paone 40°47ʹN, 14°9ʹE Rocks, mud, coralligenous concretions 

and caves

A.acu Acanthella acuta
(Schmidt 1862) 7–9 Punta San Pancrazio 40°42ʹN, 13°57ʹE Rocks, sand and coralligenous concre-

tions

G.cyd Geodia cydonium (Jamenson 1811) 20 Secca delle Fumose, Parco Sommerso 
di Baia 40°49ʹN, 14°5ʹE Roks, sand, mud, coralligenous con-

cretions, Posidonia meadows and caves
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Figure S8). Alpha diversity within each sample, measured through diversity indices at the family, genus and spe-
cies levels, revealed a considerable bacterial diversity for all sponges under analysis, particularly when the species 
were considered (Table S3). When the impact of the abiotic features (temperature, pH and salinity) was exam-
ined, no statistical differences were observed between the groups. Overall, PERMANOVA analysis revealed that 
the environmental features did not affect the species composition or abundance in the symbiotic community.

Further, a principal component analysis (PCA) was performed to reveal the bacterial species that greater 
contributed to the clustering of samples (Fig. 2). PCA showed seven components, with eigenvalues of 87.57, 
21.42,19.12, 11.49, 10.82, 8.48, and 8.11. The first two components, including around 65.2% of the inertia of 
data, were used for further analyses, in order to detect the most interesting patterns. Firstly, PCA displayed three 
major groups, with 167 bacterial species that particularly influenced the clustering (Fig. 2).

Moreover, the sponge A. acuta (indicated as A.acu) clearly segregated, with several bacterial species (red 
vectors) contributing to the clustering (Fig. 2). Several taxa, such as Proteobacteria, Bacteroidia, Actinobacteria, 
Gracilibacteria, Cyanobacteria, Flavobacteria, Verrucomicrobiae, Campylobacteria, Planctomycetacia, Phyci-
sphaerae, Nitrososphaeria, greatly affected the separation from the other sponges under analysis (Fig. 2). On the 
other hand, G. cydonium, T. aurantium and A. damicornis (reported as G.cyd, T.aur and A.dam, respectively), 
clustered into another group, where the bacteria belonging to the classes Anaerolineae, Alphaproteobacteria 
(Rhodobacteraceae, Hyphomicrobiaceae, Hyphomonadaceae, Kiloniellaceae, Magnetospiraceae families) and 
Gammaproteobacteria (Colwelliaceae and Vibrionaceae families) particularly contributed to the divergence 
(Fig. 2). The third cluster, corresponding to O. cf. perforata, S. spinosulus, E. discophorus and A. oroides (indicated 
as O.per, S.spi, E.dis and A.oro, respectively), was chacterized by an abundance of bacteria included into the 
phyla Proteobacteria, Chloroflexi, Tectomicrobia and Acidobacteria (Fig. 2).

Taxonomic profiling.  ASVs analysis was performed on those reporting a confidence percentage ≥ of 75%. 
The full taxonomy of sponge samples was reported in Tables S4-S11. Among the sponges collected in the Faro 
Lake (Sicily) was found i. the largest number of features (142) in E. discophorus, especially Acidimicrobiia, Gem-
matimonadetes, Nitrospira, Acidobacteria and Gammaproteobacteria (Fig.  3); ii. 111 ASVs in S. spinosulus, 
with a greater abundance of Dehalococcoidia, Anaerolineae, Acidimicrobiia, Dadabacteriia, Rhodothermia and 
Gammaproteobacteria (Fig. 3); iii. 109 ASVs in Oceanapia cf. perforata, where Verrucomicrobiae, Clostridium, 
Deltaproteobacteria, Nitrospirae, Dehalococcoidia, Anaerolineae, Thermoanaerobaculia, Acidimicrobiia, Gem-
matimonadetes and Deltaproteobacteria were highly represented (Fig. 3).

In sponges T. aurantium and A. damicornis, both collected in the Porto Paone, in the Gulf of Naples, 76 and 98 
ASVs were detected, respectively. The most abundant bacterial classes in T. aurantium were Alphaproteobacteria, 
Gammaproteobacteria, Acidimicrobiia and Dadabacteriia, whereas bacterial community of A. damicornis was 
dominated by Gammaproteobacteria, Nitrospira and Deltaproteobacteria (Fig. 3).

Among the sponges collected in Punta San Pancrazio (Ischia island, Bay of Naples), A. acuta, showed 316 fea-
tures, with a few abundant classes (Gammaproteobacteria, Nitrospira, Alphaproteobacteria and Acidimicrobiia) 
and a long tail of extremely low ASVs (Fig. 4; Figure S9). In contrast, A. oroides mainly revealed five bacterial 
groups (Dehalococcoidia, Anaerolineae, Gammaproteobacteria, Dadabacteria and Deltaproteobacteria), with 
a total of 198 ASVs (Fig. 4; Figure S9).

G. cydonium, collected in “Parco Sommerso” of Baia (Bay of Naples), showed 144 ASVs with a significant 
abundance of Gammaproteobacteria, Poribacteria and Nitrospira (Fig. 3).

Figure 1.   Alpha rarefaction of the observed features for each sponge sample under analysis. Sample IDs: 
O.per = Oceanapia cf. perforata, S.spi = Sarcotragus spinosulus, E.dis = Erylus discophorus, A.oro = Agelas oroides, 
T.aur = Tethya aurantium, A.dam = Axinella damicornis and A.acu = Acanthella acuta.
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Specifically, the taxonomic composition revealed an abundance of Proteobacteria and Cloroflexi found in O. 
cf. perforata (4%, respectively), S. spinosulus (3% and 4%, respectively) and A. oroides (3% and 4% respectively) 
(Fig. 4; Figure S9).

Differently, a high percentage (17–20%) of Actinobacteria and Proteobacteria were detected in E. discophorus. 
In addition, T. aurantium revealed 14% of an unknown phylum, and low percentages (5%) of another phylum 
(Proteobacteria) (Fig. 4; Figure S9). The sponge A. damicornis revealed 12% of Gammaproteobacteria class, while 
a low percentage (1%) of Nitrospirae phylum. The sponge A. acuta revealed 16% of Proteobacteria phylum and 
1% of Nitrospirae phylum. Interestingly, this sponge was the only species revealing a certain abundance of Archea 
belonging to the phylum Thaumarchaeota (Fig. 4; Figure S9). Concerning G. cydonium, the most abundant class 
was Dehalococcoidia with 29.1% and Gammaproteobacteria with 19.4% (Fig. 4; Figure S9).

As reported above, the sponges O. cf. perforata, S. spinosulus, A. oroides and G. cydonium revealed a similar 
composition in bacterial species distribution. In fact, a high abundance of Cloroflexi and Proteobacteria was 
observed in these species (Fig. 4; Figure S9).

The absolute abundance of each bacterial phylum retrieved from the eight sponge samples was reported in 
Table S12.

Discussion
In this study we analyzed the biodiversity of marine sponges in the Mediterranean, focusing on four sampling 
sites: one in the Messina Strait (North–East of Sicily) and three in the Gulf of Naples. This work represents an 
important step forward in the investigation of the Mediterranean, being considered as a biodiversity hotspot25. 
Long-term variations of biodiversity are significant signs of environmental change. Concerning the Mediterra-
nean sea, data are available to compare possible variations in the species richness and faunal compositions, which 
are responsible of loss or turn-over of biodiversity18,19,26. Moreover, enclosed saline coastal basins, such as the case 
of the Faro Lake, represent good models of aquatic system to study temporal variation of sponge biodiversity26.

Firstly, we identified seven sponges, complementing the traditional identification by morphological fea-
tures using a molecular approach, based on DNA sequencing of 28S and 18S rDNA, ITS and CO1. Our results 

Figure 2.   PCA analysis—Biplot of individuals (n = 8) and explanatory variables (n = 167) of two principal 
components (PC1 and PC2) of metataxonomic data. The majority of species diversity is explained by the first 
three PCs (76.7%), with PC1 and PC2 having the highest contribution (PC1 = 52.4% and PC2 = 12.8%). Biplot 
shows the PCA scores of the explanatory variables as vectors (in red) and individuals grouped for salinity class 
(S38 = Gulf of Naples, S31 = Strait of Messina). The circle represents the equilibrium of variables contribution. 
The importance of each variable is reflected by the magnitude of the corresponding values in the eigenvectors 
(higher magnitude-higher importance). Vectors pointing towards similar (small angle) and opposite directions 
(0 to 180 degrees) indicate positively or negatively correlated variables, and vectors at approximately right angles 
(90 to 270 degrees) suggest a low correlation. Sample IDs: O.per = Oceanapia cf. perforata, S.spi = Sarcotragus 
spinosulus, E.dis = Erylus discophorus, A.oro = Agelas oroides, T.aur = Tethya aurantium, A.dam = Axinella 
damicornis and A.acu = Acanthella acuta.
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demonstrated that none of the molecular markers alone was able to define the sponges under analysis up to the 
lowest taxonomic level. Indeed, molecular markers were found to be suitable depending on the species of sponge 
to be classified. However, it must be considered that the barcoding analysis could be negatively affected by the 
lack of curated sequences collection.

Among these used molecular markers, 28S and 18S rRNA are characterized by sufficiently heterogeneous 
regions useful to address phylogeny at different levels27,28. Because of their rapid evolution, ITS regions are 
considered markers at high resolution29. The COI mitochondrial DNA locus, despite the high variability at the 
sequence level, it is easy to amplify for its conservation across multicellular animals and abundant in eukaryotic 
DNA30,31. In fact, it resulted to be the most successful molecular marker to discriminate sponges at various 
taxonomic levels32,33. According to these literature data, no single marker exists for all sponge species, having 
each marker its strength and limitations34. This difficulty is also linked to the incomplete sequences annotated 
in database, so limiting phylogeny-based molecular taxonomic approaches that are commonly used for species 
identification. For this reason, a multi-locus-based molecular approach is recommended for the reliability in the 
case of sponge identification34. This was in complete agreement with our experimental strategy for the identifica-
tion of sponges under analysis.

An important finding achieved by this study regarded the fact that, among the three sponges collected at 
Faro Lake, only E. discophorus was recorded in 2013 during a survey on the long-term taxonomic composition 
and distribution of the shallow-water sponge fauna from this meromictic–anchialine coastal basin26. The other 
two species, O. cf. perforata and S. spinosulus, were not reported so far, suggesting them to be new colonizers of 
this lake. Recently, the significant number of first reports of species from several biogeographic regions found 
in the Faro Lake35–38 is probably related to the import of bivalves from Atlantic and Mediterranean sites, for 
aquaculture activities. All three sponges usually live on rocks, coralligenous concretions and marine caves in 
the Mediterranean. In addition, O. cf. perforata is a rare species in the Mediterranean. Concerning the other 
sponges collected in the Gulf of Naples, T. aurantium, A. damicornis, A. acuta and A. oroides, represent typical 
species for the Mediterranean, as well as, G. cydonium.

Furthermore, through metataxonomic analysis, we also investigated the bacterial diversity among these 
Mediterranean sites. Recent advances in molecular ecology techniques, such as the sequencing of bacterial 16S 
rRNA gene, led to a clear picture of the taxonomic and functional composition of marine microbiota, including 
associated symbionts39.

Our results showed that sponges under analysis host diverse bacterial communities. Surprisingly, sponges 
collected in the Faro Lake were characterized by a more diversified composition of phyla in comparison to those 
collected in the Gulf of Naples (Fig. 4; Figure S9). Moreover, G. cydonium revealed a little sequencing depth 
(Fig. 1), probably related to the uniqueness of the collecting site (Table 1), which has strictly influenced the 
symbiotic community by selecting a few species of well adapted bacteria. In fact, Secca delle Fumose represents a 

Figure 3.   Heat-map comparing the abundance of the most representative bacterial classes identified from O. 
cf. perforata (O.per), S. spinosulus (S.spi), E. discophorus (E.dis), A. oroides (A.oro), T. aurantium (T.aur), A. 
damicornis (A.dam), A. acuta (A.acu) and G. cydonium (G.cyd). Color code: green = high number of features, 
pink = low number of features. Taxonomy code: R = regnum, P = phylum, C = class. Heat-map was performed 
using GraphPad Prism V. 9 (GraphPad Software, San Diego, CA, USA).
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good case study, due to the variations in seawater pH and gas-rich hydrothermal vents40. As reported in literature, 
extreme environments are well-known to inhabit a macro- and micro-biota with high biotechnological value41–44.

Moreover, PCA analysis suggested interesting results for the sponges collected from Punta San Pancrazio 
(Ischia Island). In fact, A. oroides revealed considerable similarities to the sponges retrieved in the Strait of 
Messina, since they clustered in the same group (Fig. 2). On the other hand, A. acuta separated from the other 
sponges under analysis, revealing a completely different symbiotic community that needs to be taken into con-
sideration (Fig. 2).

The phylogeny of sponges must also be considered in our analysis, because it probably influenced the commu-
nity structure. In fact, S. spinosolus, A. oroides, E. discophorus belonging to Dictyoceratida, Agelasida, Tetractinel-
lida orders, respectively, were recorded as High Microbial Abundance (HMA) species, while T. aurantium, A. 
damicornis and A. acuta were instead indicated as Low Microbial Abundance (LMA) species45–47. HMA sponges 
hosted a more diversified symbiont community than LMA, which were discovered to be extremely stable over 
seasonal and inter-annual scales46. The correlation of sponge taxonomy to the abundance and diversification of 
microbial communities was evident in the heat-map, since the HMA species displayed higher values of bacterial 
features (Fig. 3). Moreover, these considerations could justify the clustering obtained through the PCA analysis, 
where T. aurantium and A. damicornis separated from S. spinosolus, A. oroides and E. discophorus (Fig. 2).

Many studies reported about the sponge associated-bacteria as good candidates for the isolation of natural 
compounds, useful in biotechnological applications. This study represents a first evaluation of the biotechno-
logical potential of the aforementioned sponges. For this reason, we will further discuss the known bioactivities 
of the most abundant bacterial phyla identified in the considered sponges, according to the available literature.

The symbiotic community of the five sponges from the Gulf of Naples, mainly in T. aurantium, A. damicornis, 
A. acuta, A. oroides and G. cydonium was dominated by Proteobacteria, classes Alphaproteobacteria, Deltapro-
teobacteria and Gammaproteobateria (Figs. 3, 4; Figure S9).

Figure 4.   Krona Plot representing the most abundant phyla for each sponge under analysis. Sample code: 
T.aur = T. aurantium; A.dam = A. damicornis, A.acu = A. acuta, O.per = O. cf. perforata, S.spi = S. spinosulus, 
E.dis = E. discophorus, A.oro = A. oroides and G.cyd = G. cydonium.
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Alphaproteobacteria were commonly found in the Mediterranean, mainly in the sponges Sarcotragus fascicu-
latus, Ircinia oros and Ircinia strobilina48,49. Overall, proteobacteria are known to produce N-acyl homoserine 
lactone (AHL) signal molecules involved in bacterial quorum sensing50. In fact, several species belonging to 
Alpha- and Gamma-proteobacteria, isolated from the Mediterranean sponges Halichondria panicea, Ircinia 
fasciculata, Axinella polypoides, and Acanthella sp.51 and from the Red sea sponge Suberea mollis52 showed anti-
microbial activities, making them suitable tools for pharmacological purposes53–57.

The phylum Actinobacteria (class Acidimicrobiia) was the most abundant in S. spinosulus and E. discopho-
rus (Figs. 3, 4; Figure S9), also found in T. aurantium and A. acuta. Actinobacteria are Gram positive, mostly 
aerobic, mycelial and primarily soil organisms, but recent studies revealed that some Actinobacteria taxa were 
also well-adapted to marine environments. Moreover, these bacteria were attracting interest as key producers of 
therapeutics, for their great potential in extracellular enzyme production, as well as in the synthesis of a variety 
of bioactive metabolites with antimicrobial and antifungal activity11,58,59. In fact, Actinobacteria together with the 
already discussed Proteobacteria, showed antagonistic activity against bacterial belonging to the genera Bacillus, 
Pseudovibrio, Ruegeria, Staphylococcus aureus, Escherichia coli K12, and fungi Fusarium sp. P25, Trypanosoma 
brucei TC 221, Leishmania major, Aspergillus fumigatus, Candida glabrata and C. albicans13,52,60–71. Furthermore, 
this group of bacteria, also isolated from Suberites domuncula and Dysidea sp., showed antimicrobial, antifungal 
and cytotoxic activity against different cell lines as HeLa cells and pheochromocytoma (PC12) cells53–56.

Dehalococcoides and Anaerolineae (a class of the phylum Chloroflexi) seem to be peculiar species of both 
collection sites, being detected in S. spinolosus, E. discophorous, and A. oroides (Figs. 3, 4; Figure S9). This was an 
interesting finding, because both bacterial groups were isolated for the first time from Mediterranean sponges. 
In fact, Anaerolineae were found most abundant in Aaptos suberitoides and Xestospongia testudinaria collected 
in South East Misool, Raja Ampat, West Papua (Indonesia)72,73. No data were reported so far for marine bio-
technology applications. In contrast, the anaerobic Dehalococcoides showed surprising capabilities to transform 
various chlorinated organic compounds via reductive dechlorination. For this reason, Dehalococcoides were 
extensively used for the restoration of environments contaminated by chlorinated organics, which are normally 
released through industrial and agricultural activities74,75. ASVs analysis showed a peculiar abundance of the 
phylum Verrucomicrobia (class Verrucomicrobiae) in the sponge O. cf. perforata (Figs. 3, 4; Figure S9). Little 
information was reported on the abundance and ecology of aquatic Verrucomicrobia, being prevalent in lakes 
characterized by nutrient abundance and phosphorus availability76,77. These bacteria play an important role in 
global carbon cycling, processing decaying organic materials and degrading various polysaccharides78–81. It was 
found that the sponge-symbiotic Verrucomicrobiae bacteria (e.g. Petrosia ficiformis) exhibited enrichment of 
the toxin-antitoxin (TA) system suggesting the hypothesis that these bacteria use these systems as a defense 
mechanism against antimicrobial activity deriving from the abundant microbial community co-inhabiting their 
host77. Rubritalea squalenifaciens (strain HOact23T; MBIC08254T) is a rare marine bacterium belonging to 
the phylum Verrucomicrobia, isolated from Halichondria okadai (collected in Japan), from which a novel acyl 
glyco-carotenoic acids, diapolycopenedioic acid xylosyl esters A, B, and C, were isolated as red pigments with 
a potent antioxidative activity82.

Furthermore, Nitrospirae (class Nitrospira) was the most abundant bacterial phylum in the three sponges 
from the Gulf of Naples, A. damicornis, G. cydonium and A. acuta, as well as, in O. cf. perforata and E. discophous 
from the Faro Lake (Figs. 3, 4; Figure S9). The first described Nitrospira species was N. marina, isolated by Watson 
et al.83 from water collected in the Gulf of Maine. In particular, Nitrospira spp. play pivotal roles in nitrification as 
anaerobic chemolithoautotrophic nitrite-oxidizing bacterium84. These bacteria also have been found in several 
sponge species such as Theonella swinhoei and Geodia barretti85,86. Concerning their biotechnological potential, 
very little information is available so far. A recent work, using BLASTp search against the Integrated Microbial 
Genomes (IMG) database, identified a Pseudoalteromonas luteoviolacea gene encoding for a L-amino acid oxidase 
(LAAO) with antimicrobial properties in a strain belonging to the phylum Nitrospinae87.

Summarizing, our data pointed out the attention on the species biodiversity of the Mediterranean Sea and 
on 16S rRNA sequence datasets, which allowed to the detection of several signature resident microbial fauna. 
In addition, data reported on the biotechnological potential of the bacteria identified in the eight sponges under 
analysis, suggest the need for further validations through bioassay-guided fractionation to identify novel metabo-
lites useful for the pharmaceutical, cosmeceutical and nutraceutical fields.

Methods
Sponge collection.  The size of sponge samples ranged from 10 to 20 cm in diameter. Three sponge samples, 
O.per, S.spi and E.dis were collected at Faro Lake (Messina, Sicily; depth = 2–3 m; 38°16’N, 15°38’E, Fig. 5A; 
temperature 20 °C, pH 8.25, salinity 31 PSU) in October 2019.

The site Faro Lake (0.263 Km2) is the deepest coastal lake in Italy located within the Natural Reserve of “Capo 
Peloro” (NE Sicily). The Faro Lake is characterized by a funnel-shape profile, with a steep sloping bottom reach-
ing the maximum depth of 29 m in the central area and a wide nearshore shallow waters area. In the deepest 
part, the Faro Lake shows typical features of a meromictic temperate basin, with an oxygenated mixolimnion 
(the upper 15 m) and a lower anoxic and sulphidic monimolimnion88. Two channels, a northern and a north-
eastern, connect the lake to the Tyrrhenian Sea and the Strait of Messina. Salinity ranges are from 26 to 36 PSU, 
temperature from 10 to 30 °C and pH ranges from 7.0–8.626. Four samples were collected in the Gulf of Naples 
in September 2019 by scuba diving of Stazione Zoologica Anton Dohrn of Naples (temperature 23.9 °C, pH 8.3, 
salinity 38 PSU): two samples, reported as T.aur and A.dam, were collected at Porto Paone (depth = 15–17 m; 
40°47ʹN, 14°9ʹE, Fig. 5B); A.acu and A.oro were retrieved from Punta San Pancrazio (depth = 7–9 m; 40°42ʹN, 
13°57ʹE, Fig. 5C); G.cyd (Geodia cydonium) was harvested at Secca delle Fumose, Parco Sommerso di Baia 
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(depth = 20 m; 40°49ʹN, 14°5ʹE, Fig. 5D). All collecting sites were selected on the basis of some data reporting 
on the great biodiversity and, in some cases, the presence of alien species26,89,90.

Collected samples were immediately washed at least three times with filter-sterilized natural seawater. A 
fragment of each specimen was preserved in 70% ethanol for taxonomic identification; another fragment was 
then placed into individual sterile tubes and kept in RNAlater© at − 20 °C used for molecular analysis. Details 
on sampling were reported in Table 1.

Morphological analysis of the sponges.  For the taxonomic analysis, the spicules of each sponge speci-
men, spicule complement and skeletal architecture, were examined under light microscopy following published 
protocols91,92. Taxonomic decisions were made according to the classification present in the World Porifera 
Database (WPD)14. The sponge samples were all identified at the species level.

DNA extraction and PCR amplification.  About 10  mg of tissue was used for DNA extraction by 
QIAamp® DNA Micro kit (QIAGEN), according to the manufacturer’s instructions. DNA quantity (ng/μL) was 
evaluated by a NanoDrop spectrophotometer. PCR reactions were performed on the C1000 Touch Thermal 
Cycler (BioRad) in a 30 µL reaction mixture final volume including about 50–100 ng of genomic DNA, 6 µL 
of 5X Buffer GL (GeneSpin Srl, Milan, Italy), 3 µL of dNTPs (2 mM each), 2 µL of each forward and reverse 
primer (25 pmol/µL), 0.2 µL of Xtra Taq Polymerase (5 U/µL, GeneSpin Srl, Milan, Italy) as follows (for primer 
sequences, see also Table S13):

	 i.	 for 18S and 28S, a denaturation step at 95 °C for 2 min, 35 cycles denaturation step at 95 °C for 1 min, 
annealing step at 60 °C (A/B93,94), 57 °C (C2/D295), 55 °C (18S-AF/18S-BR, NL4F/NL4R96,97), 52 °C 
(18S1/18S298) for 1 min and 72 °C of primer extension for 2 min, a final extension step at 72 °C for 10 min;

	 ii.	 ITS primers (RA2/ITS2.294,99), a first denaturation at 95 °C for 2 min, 35 cycles denaturation step at 95 °C 
for 1 min, annealing step at 67 °C for 1 min and 72 °C of primer extension for 2 min, a final extension 
step at 72 °C for 10 min;

	 iii.	 CO1 primers (dgLCO1490/dgHCO2198100), a first denaturation at 94 °C for 3 min, 35 cycles of denatura-
tion at 94 °C for 30 s, annealing at 45 °C for 30 s and primer extension at 72 °C for 1 min.

PCR products were separated on 1.5% agarose gel electrophoresis in TAE buffer (40 mM Tris–acetate, 1 mM 
EDTA, pH 8.0) using a 100 bp DNA ladder (GeneSpin Srl, Milan, Italy) and purified by QIAquick Gel Extraction 
Kit (Qiagen) according to the manufacturer’s instructions. PCR amplicons were then sequenced in both strands 
through Applied Biosystems (Life Technologies) 3730 Analyzer (48 capillaries). Sequences produced were ~ 650 
bases long in average with more than 97.5% accuracy, starting from PCR fragments. Each 18S, 28S and CO1 
PCR products were aligned to GenBank using Basic Local Alignment Search Tool (BLAST) and then aligned 
with highly similar sequence using MultiAlin (http://​multa​lin.​toulo​use.​inra.​fr/​multa​lin/, see Figures S1-S7).

Figure 5.   Sampling sites of sponge species collected in Faro Lake (Messina, A), Porto Paone (B), Punta San 
Pancrazio (C) and Secca delle fumose (D). Picture was created by Google Earth Software.

http://multalin.toulouse.inra.fr/multalin/


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21151  | https://doi.org/10.1038/s41598-021-00713-9

www.nature.com/scientificreports/

Metagenomic DNA extraction, Illumina MiSeq sequencing and diversity analysis.  About 
250 mg of tissue were weighted and used for DNA extraction by using DNeasy® PowerSoil® Pro Kit (QIAGEN), 
according to the manufacturer’s instructions. DNA quantity (ng/μL) and quality (A260/280, A260/230) were 
evaluated by a NanoDrop spectrophotometer. DNA samples were separated by 0.8% agarose gel electrophoresis 
in TAE buffer (40 mM Tris–acetate, 1 mM EDTA, pH 8.0) to check DNA integrity. 30 ng/μL (final concentration) 
of sample was used for metataxonomic analysis performed by Bio-Fab Research (Roma, Italy). Illumina adapter 
overhang nucleotide sequences were added to the gene‐specific primer pairs targeting the V3-V4 region (S-D-
Bact-0341-b-S-17/S-D-Bact-0785-a-A-2), with the following sequences:

Forward = 5’ TCG​TCG​GCA​GCG​TCA​GAT​GTG​TAT​AAG​AGA​CAG​CCT​ACGGGNGGC​WGC​AG-3’,
Reverse = 5’-GTC​TCG​TGG​GCT​CGG​AGA​TGT​GTA​TAA​GAG​ACA​GGA​CTACHVGGG​TAT​CTA​ATC​C-3′101.
For 16S PCR amplification, 2.5 µL of microbial genomic DNA (5 ng/µL in 10 mM Tris pH 8.5), 5 µL of each 

Forward and Reverse primer and 12.5 µL of 2 × KAPA HiFi HotStart ReadyMix to a final volume of 25 µL were 
used. Thermocycler conditions were set as follows: initial denaturation at 95 °C for 3 min, 25 cycles of 95 °C 
(30 s), 55 °C (30 s), 72 °C (30 s), final extension at 72 °C for 5 min, hold at 4 °C.

After 16S amplification, a PCR clean-up was done to purify the V3-V4 amplicon from free primers and primer 
dimer species. This step was followed by another limited‐cycle amplification step to add multiplexing indices and 
Illumina sequencing adapters by using a Nextera XT Index Kit. A second step of clean-up was further performed 
and then libraries were normalized and pooled by denoising processes (Table S14), and sequenced on Illumina 
MiSeq Platform with 2 × 300 bp paired-end reads. Taxonomy was assigned using "home made" Naive Bayesian 
Classifier trained on V3-V4 16S sequences of SILVA 132 database102. Frequencies per feature and per sample 
are shown in Figures S10-S11.

QIIME 2 (Quantitative Insights Into Microbial Ecology) platform103 was used for microbiome analysis from 
raw DNA sequencing data. QIIME 2 analysis workflow was performed by demultiplexing, quality filtering, 
chimera removal, taxonomic assignment, and diversity analyses (alpha and beta).

Taxonomy BarPlot (Figure S9) was generated through a R version 4.1.1104 using Cairo graphics library105.
Species diversity was estimated by i. Chao 1 index106, which is qualitative species-based method; ii. 

Shannon107,108 and iii. Simpson109 indices, which are quantitative species-based measures. All these indices were 
estimated at three taxa levels (Level 5 = Family, Level 6 = Genus, Level 7 = Species). For alpha and beta diversity, 
significant differences were assessed by Kruskal–Wallis test and pairwise PERMANOVA analysis, respectively. 
Moreover, Bray–Curtis and “un-, weighted” UniFrac metrics were used to calculate a distance matrix between 
each pair of samples, independently from the environmental variables.

Data availability
The full dataset of raw data was deposited in the SRA database (Submission ID: SUB8692761; BioProject ID: 
PRJNA683751).
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