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ABSTRACT

In this work, we explore how to classify asteroids in co-orbital motion with a given planet using Machine Learning. We consider
four different kinds of motion in mean motion resonance with the planet, nominally Tadpole at Ly and Ls, Horseshoe and
Quasi-Satellite, building three data sets defined as Real (taking the ephemerides of real asteroids from the JPL Horizons system),
Ideal and Perturbed (both simulated, obtained by propagating initial conditions considering two different dynamical systems)
for training and testing the Machine Learning algorithms in different conditions. The time series of the variable 6 (angle related
to the resonance) are studied with a data analysis pipeline defined ad hoc for the problem and composed by: data creation and
annotation, time series features extraction thanks to the TSFRESH package (potentially followed by selection and standardization)
and the application of Machine Learning algorithms for Dimensionality Reduction and Classification. Such approach, based on
features extracted from the time series, allows to work with a smaller number of data with respect to Deep Learning algorithms,
also allowing to define a ranking of the importance of the features. Physical interpretability of the features is another key point
of this approach. In addition, we introduce the SHapley Additive exPlanations for Explainability technique. Different training
and test sets are used, in order to understand the power and the limits of our approach. The results show how the algorithms are

able to identify and classify correctly the time series, with a high degree of performance.

Key words: methods: numerical — celestial mechanics —minor planets, asteroids: general.

1 INTRODUCTION

In the last decades, the use of Artificial Intelligence (AI) for data
analysis has significantly increased in scientific applications, in
particular thanks to its sub-field known as Machine Learning (ML),
where an algorithm is said to improve its performance on a specific
task by experience (e.g. Hastie et al. 2009b; Jordan & Mitchell
2015). More recently, many authors started to use such methods
in astronomy and Solar system science (e.g. Ball & Brunner 2010;
Ivezi¢ et al. 2014). Although well-known and broadly applied in
several contexts, we recall here the general concepts of Al and ML,
for the sake of completeness. With Al we mean methods by which a
computer makes decisions or discoveries that would usually require
human intelligence, while with ML we mean automated processes
that learn by examples in order to classify, predict, discover or
generate new data. Part of ML is the class of algorithms known as
Deep Learning (DL) which is based on artificial neural networks (e.g.
LeCun, Bengio & Hinton 2015; Goodfellow, Bengio & Courville
2016). ML and DL are the key of the success of Al nowadays. There
are three classes of ML algorithms (see e.g. Hastie, Tibshirani &
Friedman 2009a for more details): supervised learning, where a
labelled data set is used to help to train and tune the algorithm, with
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the goal to create a map that links inputs to outputs; unsupervised
learning, where no labels are provided and the goal is to discover
hidden patterns allowing the data to speak for itself; reinforcement
learning, where an agent learns by interacting with an environment
and modifying its behaviour to maximize its reward. It is important to
keep in mind that this line between classes can occasionally become
hazy and fluid because numerous applications frequently combine
them in inventive and unique ways (e.g. self-supervised learning, see
Liu et al. 2021).

These approaches are firmly established in astronomy and an
important survey of the state of art can be found in Fluke & Jacobs
(2020), who analyse the published articles in the last years. They
highlight applications in many sub-fields of astronomy where ML
could be used for several activities, as classification, regression,
clustering, forecasting, generation of data, discovering, development
of new scientific insights. Fluke & Jacobs (2020) also classify the
different fields of astronomy where ML is used as ‘emerging’,
‘progressing’, and ‘established’, depending on the progress of its
use.

The first approach in astronomy to Principal Component Analysis
(PCA), an algorithm devoted to Dimensionality Reduction, which
is nowadays a standard technique, was introduced in the 1980s for
morphological classification of spiral galaxies (e.g. Whitmore 1984),
in the 1990s for quasar detection (e.g. Francis et al. 1992) and spectral
classification (e.g. Singh, Gulati & Gupta 1998), while more recent
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applications with ML have been done for discovering extra-solar
planets (e.g. Shallue & Vanderburg 2017; Pearson, Palafox & Griffith
2018), for studying gravitationally lensed systems (e.g. Lanusse et al.
2017; Pourrahmani, Nayyeri & Cooray 2018; Jacobs et al. 2019)
and for discovering and classifying transient objects (e.g. Connor &
van Leeuwen 2018; Farah et al. 2018). For a complete and detailed
bibliography about all the ML applications in the astronomical fields
we suggest a careful reading of Fluke & Jacobs (2020).

The analysis of motion of the Solar system bodies is considered
one ‘progressing’ field of application of ML. Several authors in
the last years studied problems related to Solar system objects as,
for example, applications to TransNeptunian objects (e.g. Chen et al.
2018), or detection and classification of asteroids through taxonomies
of spectrophotometry, as studied in Erasmus et al. (2017, 2018).

One ‘emerging’ field concerns asteroid dynamics (e.g. Carruba
et al. 2022). Indeed, the numerical propagation of asteroids’ orbits,
based on continuous improved information, implies a large volume
of data, that requires fast and novel methods to be analysed. For
example, in Smirnov & Markov (2017), the authors use ML methods
to identify three-body mean motion resonance asteroids in the
main belt without requiring numerical integration. They use proper
elements which are quasi-integral of motion that are stable for a long
time (e.g. Knezevic & Milani 1994; Knezevic, Lemaitre & Milani
2002), and use four different supervised ML methods as reported
in Hastie, Tibshirani & Friedman (2009a). The authors compare
their results with the ones of the previous paper by Smirnov &
Shevchenko (2013) remarking that, with the new approach, the
identification of the objects trapped in mean motion resonance is very
good and the procedure requires few seconds, while the numerical
integration requires days and weeks. Very recently, Smirnov (2023)
provides a new open-source package for identifying objects trapped
in mean motion resonances (MMR). The main objective they have
is to distinguish resonant and non-resonant orbits, but they do not
aim at distinguishing different classes of 1:1 MMR, like we will
do here.

Other new works comparing results from ML algorithms with
previous known asteroid classifications are, for example, Smullen &
Volk (2020), where the authors classify objects of the Kuiper belt
into four classes based on their dynamics Carruba, Aljbaae &
Lucchini (2019), where hierarchical clustering algorithms for su-
pervised learning are applied to identify 6 new families and 13 new
clustering of asteroids (Carruba et al. 2020), where ML classification
algorithms are used to identify new families of asteroids based
on the orbital distribution in the parameters [a, e, sin (i), where
a, e, i are, respectively, the semimajor axis, the eccentricity, and
the inclination of the asteroid orbit] of previous known family
objects.

Some other very interesting and recent works explore the use of
ML to classify regular or chaotic motions. For example, Kamath
(2022) studies and classifies orbits in Poincaré maps: the major
challenge of this problem is solved by creating high-quality training
sets with few mislabelled orbits and converting the coordinates of
the points into features that are discriminating, despite the apparent
similarities between orbits of different classes. Celletti et al. (2022)
use DL methods, such as convolutional neural networks (CNNSs), to
show how it is possible to classify different types of motion, starting
from time series, without any prior knowledge of the dynamics.
Indeed, the identification of a motion usually requires a knowledge
and the solution of the differential equations governing the dynamical
system. Instead using CNNs trained on one dynamical model, the
type of motion could be predicted, for example, from observational
data.
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All these examples show how ML algorithms are increasingly used
in astronomy, as well as in dynamical systems and in particular in
celestial mechanics.

The aim of the study is to classify the co-orbital behaviour that
can be described within the planar approximation of the Circular
Restricted Three-Body Problem (CR3BP). Leveraging on the recent
work (Di Ruzza, Pousse & Alessi 2023), we focus on asteroids that
are in 1:1 MMR with a given planet of the Solar system. The data
considered are ephemerides of real asteroids that are catalogued
by the Minor Planet Center or different works (e.g. Mikkola et al.
2004; Kinoshita & Nakai 2007; Wajer 2010; Christou & Asher 2011;
Cuk et al. 2012; De la Fuente Marcos & De la Fuente Marcos
2012; Wajer & Krolikowska 2012; De la Fuente Marcos & De
la Fuente Marcos 2014; Qi & Qiao 2022) in the same way as
Tadpole, Horseshoe, or Quasi-Satellite, and ephemerides created
ad hoc by propagation of the CR3BP equations of motion and
equations of motion corresponding to a more complex dynamical
model, starting from well-defined initial conditions. We apply ML
methods to classify, through specific features, the time series of a
specific angular variable obtained in this way. In the spatial case, the
dynamics is much richer and more complex, because transitions and
compound motions can occur (as explained for instance in Namouni
1999; Christou 2000). This is why we prefer to leave it for the next
phase of the work.

The current paper is organized as follows: In Section 2, we recall
the averaged problem of circular restricted three-body problem for
the co-orbital motion in the planar case and how the approximation
can be applied to classify co-orbital objects in the Solar system.
In Section 3, it is explained how the training and testing data are
generated. In Section 4, the whole algorithmic pipeline is detailed,
while in Section 5 the results are given together with a critical analysis
on the procedure. In Sections 6 and 7, a possible future direction is
proposed and the conclusions are drawn.

2 COPLANAR CO-ORBITAL ASTEROIDS IN
THE SOLAR SYSTEM

The main idea considered by Di Ruzza, Pousse & Alessi (2023) was
to show how an integrable approximation of the restricted three-
body problem can be applied to describe the dynamics of real natural
objects and the goal was to provide a general catalogue of co-orbital
objects in the Solar system in the coplanar case and a tool to visualize
them.

We recall here the general setting and main features that will be
important for the present work. More details can be found in Pousse &
Alessi (2022) and Di Ruzza, Pousse & Alessi (2023). The theoretical
model is the Planar Circular Restricted Three-Body Problem where
a massless body is interacting by gravitational attraction with two
massive bodies. The Hamiltonian describing the motion of the
massless body can be written as

N L N R L
L) e [r=rp (o)l
+wtuper-ry (i), (D)

where r, i € R* are, respectively, the heliocentric position and
velocity vectors of the massless body (the asteroid); u, u, are the
mass parameters of the massive primary body (the Sun) and of the
massive secondary body (the planet), respectively;

HMp
E = ——
J 1 T
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Figure 1. In red, a sketch of the tadpole motion (left), horseshoe motion (centre), quasi-satellite motion (right), in the synodic reference system. The yellow

circle represents the Sun and the green one the planet.

is adimensionless parameter characterizing the mass ratio of the Sun—
planet system; the heliocentric vector r,(4,) denotes the position of
the planet, for a given value of the mean longitude A, which follows
the solution of the two-body problem for the Sun—planet system.
Usually, the Hamiltonian (1) is analysed in the synodic reference
frame rotating with the planet. It is well-known that the problem
admits five equilibrium points, called Lagrangian points and denoted
by L; for j = 1,...,5. If & is small enough, we could rewrite the
Hamiltonian (1) as

H(rvi'7kp)ZHK(r’i')+(M+Mp)8HP(ra)"p)y

where Hy is the unperturbed Kepler motion of the massless body
(around the Sun) and Hp is the perturbation depending on the
gravitational influence of the planet and, then, we consider the
averaged problem with respect to the fast angle A, obtaining the
new Hamiltonian

H = Hg + Hp,

where Hp is the average over the period of revolution of the planet
with respect to the fast angle A,,.

We assume that the particle and the secondary are in a 1:1 MMR,
that is, their orbits have the same value of semimajor axis. Within
this approximation, the problem can be studied by means of the
action-angle variables (0, u), defined as follows:

0:=A—2p
is the resonant angle (being A the mean longitude of the asteroid) and

u = 4 1
ap
is its conjugated action whose modulus measures the distance to the
exact Mean Motion Resonance, with a and g, being the semimajor
axis of the asteroid and of the planet orbit, respectively; the exact
1:1 MMR is obtained for (4, u) = (0, 0). Note that the angle 6 is
the same used in other works on co-orbital dynamics, e.g. Morais
(1999), Nsvorny et al. (2002), Mikkola et al. (2006), and Qi & Qiao
(2022).
In this system, the quantity

r=va(1-vVi-e)

is a firstintegral of the problem, being e the eccentricity of the asteroid
orbit. For different values of T" € [0 : ,/a,], the phase portrait in
resonant variables (6, u) allows to understand the whole co-orbital
motion structure. In the planar circular case we can have three types of
co-orbital motion, depicted in Fig. 1 in the synodic reference system.
The tadpole (TP) motion (on the left) stemming from L; withj =4, 5
is such that 6 experiences a periodic oscillation around a given 6;(I")

-150  -100  -50 0 50 100 150
0 (deg)

Figure 2. The (6, e)-map of the co-orbital motion defined by the section u =
0. The black and red thick curves stand, respectively, for the singularity of
collision and the crossing of the separatrices that originate from L3 (thick
red curve). They divide the map in three regions. The QS domain is between
the dark curves; the HS region, split in two parts, is between the separatrix
(red curve) and the dark curve; the TP regions are inside the separatrices
(respectively, TPL4 for positive values of the angle 6 and TPLS for negative
values of the angle 6).

satisfying 23.9° < (—l)féj(F) < 180°; the horseshoe (HS) motion
(in the middle), stemming from L; is such that 6 oscillates around
180° with a large amplitude that decreases as long as I increases;
the quasi-satellite (QS) regime (on the right) is such that 6 librates
around zero for I' > 0.

In the given phase space, the co-orbital trajectories are solutions
located in the neighborhood of # = 0 and such that 6 oscillates around
the given value. The crossing with the section u = 0, that corresponds
to a = a,, provides a way to understand the global evolution of the
dynamics at varying I', or equivalently, the eccentricity e of the
asteroid’s orbit. In this way it is possible to derive a (8, e)-map,
represented in Fig. 2, that allows to classify the different domains of
co-orbital motion. We remark that, in first approximation, this map
is invariant with respect to the mass parameter ¢, so it has the same
features for all the planets.

In the upper panels of Fig. 3, the graphs of the evolution of the time
series (z, 6) of the three real examples of asteroids in the different
regimes TP, HS, QS are plotted. In these cases, the evolution appears
very regular, while in bottom panels, three less regular cases are
reported for comparison.

MNRAS 527, 6439-6454 (2024)
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Figure 3. Upper: evolution of the angle 6 versus time of three real asteroids in a regular co-orbital motion; from left to right, respectively, TP with Jupiter, HS
with Earth, QS with Jupiter. Bottom: evolution of the angle 6 versus time of three real asteroids in co-orbital motion with non-regular oscillations; from left to

right, respectively, TP with Earth, HS with Jupiter, QS with Venus.
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Figure 4. The (0, e)-maps for the three planets; from left to right, respectively, Venus, Earth, and Jupiter. The points in magenta represent the distribution of
co-orbital asteroids in the (6, e)-map at a reference date, while the two horizontal lines stand for the eccentricities of an object in co-orbital motion with the
considered planet P when it crosses the orbit of the inner and the outer planet (respectively in green and purple) with respect to P. The figures are already used

in Di Ruzza, Pousse & Alessi (2023).

It is important to underline that the analysis done in the current
work, and described in the next Sections, takes specifically into
account the time evolution of the resonant angle 6. Subsequently, we
will exploit the time series (¢, 0) in order to recognize the different
kinds of co-orbital regime as shown in Fig. 3.

In Di Ruzza, Pousse & Alessi (2023), co-orbital asteroids of
Venus, Earth, and Jupiter have been analysed to show a practical
application of the (6, e)-map just explained. After a suitable filtering
on the asteroid orbital elements in order to fulfil the resonance
condition and the quasi-coplanar configuration at a given epoch,
the ephemerides of asteroids have been computed by means of JPL
HORIZONS API service (Giorgini et al. 1996; Giorgini & Yeomans
1999; Standish 1999; NASA 2022) for an interval of time of about
900 yr. The ephemerides data of real asteroids have been compared
with the theoretical model and a very good correspondence has been
found. Asteroids in quasi-coplanar co-orbital motion with Venus,

MNRAS 527, 6439-6454 (2024)

Earth, and Jupiter have been catalogued according to their co-orbital
dynamics and their representation can be seen in Fig. 4. A very
refined analysis has been done checking by hands if the time series
(t, ) of each asteroid (as represented in Fig. 3) was in agreement
with its position in the (6, e)-map (Fig. 4). The results presented in Di
Ruzza, Pousse & Alessi (2023) are very promising for TP, HS, and QS
motion: under given assumptions, data of real observations fit very
well with theory. The analysed series comprised also transitions (TR)
between different co-orbital regimes as well as the compound (CP)
motion (a particular combination between QS and HS dynamics).!
In this case, the map was not able to accurately catch the behaviour,

'We refer to Namouni (1999) and Namouni, Christou & Murray (1999) for
more details about the appearance of these kinds of motion.
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Table 1. Summary of the data available.

Series HS QS TPL4 TPL5 Total
Real 14 15 11 10 50

Ideal simulated 668 528 581 222 1999
Perturbed simulated 61 54 147 85 347

as expected, since TR and CP are proper of the three-dimensional
model, not of the planar one.

At this point, an automatic tool capable of distinguishing the
different co-orbital regimes becomes essential in order to improve
our study. Indeed, in the future we aim to extend the analysis for a
longer time span (order of thousands of years or more), to consider
the spatial problem including asteroids with very high inclination
and to understand better and classify TR and CP motions. All these
information would be desirable to create a complete catalogue of
asteroids in co-orbital motion with all the planets in the Solar system.

For these reasons, an ML approach in this problem is highly
recommended in order to deal with a huge number of very long
time series that can exhibit very rich dynamical behaviours. The aim
of the present and coming works is to become able to manage any
kind of ephemerides data of real asteroids, for short, medium, and
long time-scales also when transitions between different co-orbital
motions occur or when new kinds of motion appear, as, for example,
the compound motions. In what follows, we will consider only TP,
HS, and QS orbits since the foundations of the work are the results
obtained in Di Ruzza, Pousse & Alessi (2023). In particular, we will
classify co-orbitals motions belonging to the four classes QS, HS,
TPL4 (a tadpole around the equilibrium position L,), and TPLS5 (a
tadpole around the equilibrium position Ls).

3 DATA

Let us underline that our final goal is to be able to recognize,
through the use of ML, co-orbital dynamics of real asteroids for
short, medium, and long time-scales also when transitions between
different co-orbital motions occur or when new kinds of motion
appear, as, for example, the compound motions.

The data described in this section are the basis to outline the work
done by the ML algorithms. As mentioned before, the information
used in this work is the time evolution of the angle 8, computed
considering three different sources of data, as summarized in Table
1.

In general, training an ML algorithm requires large amounts of
data in order to provide accurate predictions. In our case, obtaining
numerous time series of real asteroids with regular trends and
clearly attributable to a single class (QS, HS, TPL4, TPL5) is not
straightforward as real cases may present some complex behaviours,
sometimes making labelling difficult and unclear. In particular, a
high number of asteroids among those considered can escape from
the given resonance or experience a co-orbital transitions.

We start our work by using the time series of asteroids reported in
table 3, 4, 5 of the paper Di Ruzza, Pousse & Alessi (2023), that refer
to ephemerides of real asteroids, obtained through the JPL Horizons
system with a full dynamical model.

Looking at those tables, it is evident that most of the asteroids
exhibit motions with different co-orbital dynamics and, as previously
stated, these cases must be excluded so that, as shown in Table 1, the
real cases data set used in the current work turns out to be composed
by only 50 series, that is an absolutely insufficient number for a
training set.

Co-orbital motion classification through ML
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To overcome this issue, a data set containing simulated data of
ideal cases is introduced. This kind of data can be produced by using
suitable model and initial conditions (as depicted in the following) in
order to get the four desired classes. It is possible to obtain as many
cases as we need and we produced a total number of 1999 time series
of ideal cases. This data set allows us to train the ML models with
a consistent number of cases with well-known labels (i.e. motion
clearly attributable to a single class), leaving the real cases data set
for testing purposes.

On the other hand, to have more data to evaluate the performance
of our pipeline, we decided to increase the number of cases that can
be used. To this aim, we generated time series deviating from the
ideal ones by perturbing the model used to generate ideal cases. This
process only partially enlarges the number of cases to be used; in fact,
by adding perturbations, the time series become more similar to real
cases and most of them must be eliminated because escapes from the
resonance or transitions between different co-orbital regimes appear.
For this reason, the number of perturbed cases can not be as large
as the ideal ones. As reported in the last row of Table 1, the total
number of produced perturbed series is 347.

A detailed description of how the data are obtained is provided
below.

(1) Ephemerides data of real asteroids are obtained from the JPL
HORIZONS system (Giorgini et al. 1996; Giorgini & Yeomans
1999; Standish 1999; NASA 2022), following the approach adopted
in Di Ruzza, Pousse & Alessi (2023). In this case, from the data
base analyzed in Di Ruzza, Pousse & Alessi (2023), we have
selected 50 asteroids that exhibit a regular tadpole, horseshoe, quasi-
satellite behaviour, that is, we excluded the compound motions and
transitions. In this case, the simulated data cover an interval of time
equal at most to 900 yr. We refer to these data as real data. Note
that from this set we have excluded the cases that are catalogued in
a different way by the Minor Planet Center or other authors (see Di
Ruzza, Pousse & Alessi 2023, section 4.3 or Greenstreet, Gladman &
Juric® 2023).

(2) Ideal cases of TP, HS, QS motions are generated by propagat-
ing the equations of motion of the Circular Restricted Three-Body
Problem with initial conditions obtained from the (6, e)-map in the
corresponding orbital domain (see Fig. 2). In this case, the initial
condition in the synodic reference system is computed starting from
the heliocentric orbital elements (a, e, i, w, 2, M) in the inertial
system, by assuming the initial semimajor axis an equal to 1, the
eccentricity e given by the map, the initial inclination i, the longitude
of the ascending node €2, and the mean anomaly M equal to O and the
argument of pericentre w equal to 6. In this case, the simulated data
cover an interval of time equal to 3000 yr. We refer to these data as
ideal simulated data and we produced a total number of 1999 time
series of such cases.

(3) Perturbed cases from the ideal cases are computed by prop-
agation by means of the REBOUND software (Rein & Liu 2012),
considering a dynamical model that accounts for Sun, Moon, and
the planets from Mercury to Mars. We have assumed physical units
and the ecliptic plane at J2000 as the reference plane and initial
conditions for the massive bodies from the JPL Horizons system
at tp = JD 2305537.5. Since we are interested in orbits that are in
co-orbital motion with a given planet in a coplanar approximation,
the easiest choice is to assume that the planet is the Earth, so that
we can take as initial condition for the virtual asteroid a = 1 AU
and i = Q = M = 0. The other orbital elements e, w are computed
using the theoretical (0, e¢) —map. That is, assuming, for instance,
a quasi-satellite orbit, we know from the map that § and e should

MNRAS 527, 6439-6454 (2024)
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Figure 5. Data analysis workflow. The first step is the time series preparation, followed by the TSFRESH python package block where features are extracted
and possibly selected and standardized. The final step regards the Machine Learning analysis performed using Dimensionality reduction algorithms (PCA and

t-SNE) and classification algorithms (SVM, Random Forest, and XGBoost).

belong to a well-defined range (see Fig. 2). So, 6 = 6* is given by
this range and

0" =1 — )\planet = A — AEurth
by definition. The unknown is thus A, that is,
A =0" + Agarh = 0" + WEarh + QLEarth + MEarth-

Since by definition A = w + Q + M, and we assume Q2 =M = 0, we
get

® = 0" + Agarth = 0" + Wgarth + Larth + MEarh-

The simulated data cover an interval of time equal to 3000 yr. We refer
to these data as perturbed simulated data and we produced a total
number of 347 time series for this data set. They present variations to
the ideal cases that resemble the behaviour of real objects, although
no further perturbations have been added.

We are aware that if we had included Jupiter, the dynamics would
have been more realistic in the long term. But, many orbits would
have escaped from the resonant regimes or moved to a different one.
It is certainly fundamental to develop a tool that can handle the co-
orbital dynamics to the maximum extent, but we believe that research
advances step by step. Without understanding how to develop an
effective tool for the simplest, although not trivial, case, it is not
possible to pave the way for a general tool, that will be able to
classity all the possible situations in an accurate way and this is why
we have considered this data set as an augmented data set to test the
algorithms.

We note that data produced as described in point (2) and (3) above
could be also interpreted as a good test of the results obtained in the
previous paper Di Ruzza, Pousse & Alessi (2023). Indeed, we have
chosen initial conditions (0, e) in the (8, e)-map and propagated them
in order to obtain the desired kind of co-orbital motion.

4 DATA ANALYSIS WORKFLOW

As shown in Fig. 5, our data analysis workflow can be conceptually
divided in three macro blocks. The first step consists in preparing
and labelling the data described in Section 3, i.e. the output of
the propagation of orbital elements of the asteroids. The data are
collected in out format files: each file is associated with a single
asteroid and it contains seven columns corresponding, respectively,
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to time (in Julian date), elapsed time in years (starting from ¢;),
semimajor axis a, eccentricity e, inclination i, resonant angle 6,
and associated action u. The filenames contain acronyms useful to
recognize the name of the asteroid, the kind of co-orbital motion,
the planet that the asteroid is in resonance with and the kind of
propagation used to get the data [points (1), (2), and (3) in Section
3]. In this way, files can be easily shared if required. It is important
to stress that in this work we focus only on the time evolution of the
variable angle 6, but the other information can turn out to be useful
for future analysis.

These tabular data are passed to the next block, where the TSFRESH
python package (e.g. Christ et al. 2018) provides a systematic time
series feature extraction thanks to the combination of established
algorithms from statistics, time series analysis, signal processing,
and non-linear dynamics.

Before giving the extracted features to the Machine Learning clas-
sification algorithms, two additional steps can be applied: selection
and standardization. Selection can be performed thanks to TSFRESH,
which represents a robust feature selection algorithm (e.g. Li et al.
2017), while standardization can be obtained by any kind of library
such as SCIKIT-LEARN pre-processing functions (e.g. Pedregosa et al.
2011).

The final classification step (last two blocks in Fig. 5) is performed
in two parallel branches, with two classes of ML algorithms involved,
namely, Dimensionality Reduction and Classification algorithms.

Before moving into a deeper explanation of all the details regarding
the steps involved in the data analysis workflow, it is worth noting
how our approach based on features extraction and standard Machine
Learning algorithms is very well suited for our case where we have
two constraints: data numerosity and physical interpretability. Both
these constraints encourage an approach based on Machine Learning
algorithms where the requirement on the number of data to train the
algorithm is less tight with respect to Deep Learning. At the same
time, thanks to the features extraction, a time series of any length can
be converted into a finite number of features, all of them holding
a physical meaning. This physical meaning is deeply important,
because not only at the end of the whole data analysis workflow
it is possible to identify the most important features responsible for a
good time series classification (Feature Importance), but in addition
we can look at the discriminating features between the different
classes of signals, recovering a physical understanding of such
processes.
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4.1 Features extraction and selection: the TSFRESH open-source
package

In order to train an ML model, features need to be extracted from the
data. In our case a total of 789 features are extracted from each time
series representing the time evolution of the angle 6(¢) by the Python
package TSFRESH (e.g. Christ et al. 2018). For a detailed description
of the meaning of each feature please refer to Christ et al. (2023).
After feature extraction, usually, it is worth to introduce a step of
Feature Selection. This step can be performed in different ways or
not performed at all. However, in general, it has been demonstrated
(e.g. Guyon, Elisseeff & Kaelbling 2003) that Feature Selection can
improve ML performances. Therefore, we decided to implement
such step in our workflow using a built-in function of TSFRESH,
which provides a feature selection method based on Mann—Whitney
Test. In our case, this step reduces the number of features to 239.

4.2 Features standardization

Again, pre-processing data is an essential step to achieve good clas-
sification performance, with the importance of data standardization
(or normalization) for improving the performance of ML algorithms
described in many studies as stated in Singh & Singh (2020). In
our study, features are standardized using the SCIKIT-LEARN function
StandardScaler (e.g. Pedregosa et al. 2011).

4.3 Dimensionality reduction

The process of transforming data from a high-dimensional space
into a low-dimensional space with the goal of keeping the low-
dimensional representation as close as possible to the inherent
dimension of the original data is known as Dimensionality Reduction.
There exist many different ML algorithms able to perform such
transformation on data. In this work, we focus on two of them,
namely, Principal Components Analysis (e.g. Cozzolino, Power &
Chapman 2019) and t-distributed Stochastic Neighbor Embedding (t-
SNE; e.g. Van der Maaten & Hinton 2008; Arora, Hu & Kothari 2018;
Kobak & Berens 2019). PCA and t-SNE operate in two different
ways: PCA is a linear method that seeks to preserve as much variance
as possible and the global structure of the data, while t-SNE is a
non-linear optimized technique that concentrates on preserving local
similarities between data points. Additionally, PCA uses a well-
known transformation making it a deterministic technique. On the
other hand, t-SNE is a stochastic optimized method, which tend
to preserve points which are close to each other. However, the
method does not construct an explicit function that maps high-
dimensional points to a low-dimensional space, but it just optimizes
low-dimensional positions of the data points directly. Since it does
not define a data transformation function, the method cannot be
applied to newer data, but a newer optimization must run.

Both algorithms are Dimensionality Reduction techniques partic-
ularly well suited for the visualization of high-dimensional data sets
as in this case, where, after the feature selection step, the number of
features is still above 200. The utility of such kind of algorithms
is twofold: on the one hand they can be used as unsupervised
learning methods which allow to visualize the data distribution in two
dimension, providing a deep insight on whether and, in case, how the
data can be divided in the higher dimensional space. Moreover, they
usually can give an idea of how the classifiers will perform. Indeed,
well clustered data visualized by Dimensionality Reduction methods
are usually well classified by ML algorithms, whereas the contrary is
not necessarily true, meaning there could be data with a low degree
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of clustering where the classification algorithms still perform very
well.

4.4 ML classification

We use three ML algorithms: Support Vector Machine (SVM; e.g.
Cervantes et al. 2020), Random Forest (RF; e.g. Biau & Scornet
2016), and XGBoost (XGB; e.g. Chen & Guestrin 2016). We evaluate
the performances of these algorithms with different combinations of
training and test sets, as reported here:

(i) trained on real data and tested on real data;

(ii) trained on ideal simulated data and tested on real data;

(iii) trained on ideal simulated data and tested on perturbed
simulated data;

(iv) trained onideal simulated data and tested on real and perturbed
simulated data.

4.4.1 Cross-Validation

When evaluating the performances of an ML model, it is highly
important to validate its stability. This step is called validation and it
consists in making sure that the model has learned the right patterns
of the data and it is not picking up too much noise. In other words, it
evaluates the model’s ability to generalized on unseen data.

In Machine Learning, the most used validation technique is Cross-
Validation (CV). It consists in splitting the data set into multiple
subsets, usually called ‘folds’, then training the model on some of
the folds and evaluating it on the remaining fold. This process is
repeated multiple times, each time changing the remaining fold. The
result is the mean score of all the performed tests. This allows to train
and test the model on different data partitions, providing a robust and
unbiased estimate of a model’s performance.

There are many types of Cross-Validation; for this work we use a
technique named k-folds Cross-Validation (e.g. Fushiki 2011), where
the data set is divided in & folds and k — 1 folds are used as training
set and the remaining one as test set.

4.4.2 Hyperparameters tuning

When dealing with an ML model, one of the main aspects of de-
signing the structure is a step called Hyperparameters Tuning, which
consists in finding the best combinations of hyperparameters’ models
in order to achieve the best performance. Unfortunately, there are no
rules or formulas to calculate these parameters, and an approach
based on an extensive exploration of the hyperparameters’ space
along with some experience is the only way to find them, making
hyperparameters tuning a computationally long and tedious process.
In Python, many techniques have been developed to automate the
tuning of hyperparameters and in this work we apply two of them:
GridSearchCV and RandomizedSearchCV. Both these techniques
make use of k-fold Cross-Validation.

4.4.3 SHAP: features interpretability

Machine Learning models are frequently considered ‘black boxes’,
which make their interpretation challenging. In order to understand
the main features that affect the output of the model, we can leverage
on Explainable Machine Learning techniques that can unravel some
of these aspects (e.g. Roscher et al. 2020). One very promising
technique is the SHapley Additive exPlanations, more commonly
known as SHAP (e.g. Lundberg & Lee 2017; Lundberg et al. 2018,
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Figure 6. PCA and t-SNE of selected and standardized features extracted from: real data (a) and (b); ideal simulated data (c) and (d); overlapping between ideal
simulated and real data clusters (e) and (f). In this last case it is worth to note as the orange points representing the real TPL4 cases overlap the yellow points
representing the simulated TPL4 cases; the red points representing the real TPLS cases overlap the light-red points representing the simulated TPLS5 cases; the
purple points representing the real HS cases overlap the violet points representing the simulated HS cases; the blue points representing the real QS cases overlap
the light-blue points representing the simulated QS cases.
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Table 2. Machine Learning multi-class classifiers results obtained with different combinations of training and test sets divided by algorithm. Because this is a
multi-class classification, AUC, Recall, Precision, and f1 are averaged. In the Average AUC the acronym ‘ovo’ stands for one-versus-one and it computes the

average AUC of all possible pairwise combinations of classes.

Accuracy
Training set Test set (per cent) Balanced Acc. (percent) ‘ovo’ Average AUC  Average recall Average precision Average fl
Support Vector Machine
Real Real 100 100 1.0 1.0 1.0 1.0
Ideal Real 98.0 98.3 0.995 0.980 0.981 0.980
Ideal Perturbed 100 100 1.0 1.0 1.0 1.0
Ideal Real + perturbed 99.7 99.7 0.999 0.997 0.998 0.997
Random Forest
Real Real 100 100 1.0 1.0 1.0 1.0
Ideal Real 98.0 98.3 0.998 0.980 0.981 0.980
Ideal Perturbed 100 100 1.0 1.0 1.0 1.0
Ideal Real + perturbed 99.5 99.2 1.0 0.995 0.995 0.995
XGBoost

Real Real 100 100 1.0 1.0 1.0 1.0
Ideal Real 98.0 97.7 1.0 0.980 0.981 0.980
Ideal Perturbed 100 100 1.0 1.0 1.0 1.0
Ideal Real + perturbed 99.7 99.8 1.0 0.997 0.998 0.997

2020; Van den Broeck et al. 2022; Mitchell, Frank & Holmes 2022).
It is based on Shapley values, which use game theory to assign credit
for a model’s prediction to each feature or feature value, increasing
the transparency and the interpretability of Machine Learning models
(e.g. Molnar 2022). In particular SHAP is known for its ‘Consistency’
property. SHAP values do not change when the model changes unless
the contribution of a feature changes. This means that even when the
model architecture or parameters change, SHAP values still offer a
coherent interpretation of the behaviour of the model.

In our case, SHAP is applied to the ML models used for time series
classification.

5 RESULTS

The results are presented in the following, according to the considered
techniques.

5.1 Unsupervised ML: PCA and t-SNE

As stated in Section 4.3, Dimensionality Reduction techniques can
be used to discover whether a high-dimensional data set presents
separate clusters when projected in lower dimensional space (e.g.
bi-dimensional). Therefore, the first step of our analysis has been
to perform PCA and t-SNE on the features extracted from the
real time series (real data) to see if they would cluster into four
separated groups corresponding to four classes: QS, HS, TPL4, TPL5
(described in Section 2). PCA and t-SNE visualizations show four
well separated clusters, as can be appreciated in Figs 6(a) and (b),
respectively, where real data are considered.

Next, we performed PCA and t-SNE on the ideal simulated data
to determine whether the trend of clustering in the four groups was
also present in this data set. As it can be appreciated in Figs 6(c) and
(d), clusters are still well visible.

Finally, given the positive results of the previous tests, we have
applied the Dimensionality Reduction techniques on a data set
containing both the real and ideal simulated data expecting an
overlap between the real and simulated clusters for each class.
The encouraging results of this analysis are reported in Figs 6(e)
and (f). It is worth to observe that in these plots, PCA and t-SNE

show the overlapping between real and simulated data clusters. In
particular, the orange points representing the real TPL4 cases overlap
the yellow points representing the simulated TPL4 cases; the red
points representing the real TPLS cases overlap the light-red points
representing the simulated TPLS5 cases; the purple points representing
the real HS cases overlap the violet points representing the simulated
HS cases; finally, the blue points representing the real QS cases
overlap the light-blue points representing the simulated QS cases.
This overlapping between clusters of real and simulated data in the
reduced space confirms that the features extracted from these two data
sets are similar and meaningful. In particular, these results confirm
our expectations that both data sets are extracted from the same data
distribution, making them suitable for the deeper machine learning
analysis shown hereafter.

5.2 Supervised ML

While Dimensionality Reduction techniques allow to visualize high-
dimensional data and eventual clusters within them, supervised ML
algorithms provide an actual classification of the data. In our case,
six classification metrics are considered to evaluate the supervised
ML algorithms performances: Accuracy, Balanced Accuracy, ROC
AUC, Recall, Precision, fl. A full description of the metrics can be
found in SCIKIT-LEARN (2023a)

It is worth to note how some ML algorithms do not require features
normalization, such as Random Forest, while for some others,
such as Support Vector Machine, the normalization step strongly
improves the classification performances (e.g. Singh & Singh 2020;
Ozsahin et al. 2022). This peculiarity can be ascribed to the intrinsic
differences in the working principles at the basis of each algorithm.

As was already noted, another crucial step that is typically (but not
always) necessary to enhance classification performances is features
selection. Our data shows that this is not the case; the outcomes
are unaffected by the pre-processing stage. It should be highlighted,
nevertheless, that this step generally needs to be preserved in the
data analysis workflow. This is not the case for our data, results not
being affected by this pre-processing step. However, it should be
noted that in general such step must be kept in the data analysis
workflow, evaluating its importance case by case. Concerning our
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Figure 7. Confusion matrix for SMV (a), RF (b), and XGB (c) algorithms when trained and tested on real data. Confusion matrix for SMV (d), RF (e), and
XGB (f) algorithms when trained on ideal simulated data and tested on real data. Confusion matrix for SMV (g), RF (h) and XGB (i) algorithms when trained
on ideal simulated data and tested on perturbed simulated data. Confusion matrix for SMV (j), RF (k), and XGB (1) algorithms when trained on ideal simulated
data and tested on real and perturbed simulated data.
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Table 3. Machine Learning selected hyperparameters. A full description of their meaning can be found, for
instance, in xgboost (2023a) and SCIKIT-LEARN (2023b, c).

Training set — test set

Algorithm hyperparameters Real — real Ideal — real Ideal — pert. Ideal — real + pert.
Support Vector Machine
C 0.0001 1 0.001 1
Gamma 0.0001 0.001 0.1 0.001
Kernel linear linear linear linear
Random Forest
n° estimators 190 100 300 300
XGBoost
Colsample bytree 0.668 0.668 0.668 0.668
Learning rate 0.0765 0.0765 0.0765 0.0765
Max depth 5 5 5 5
Min child weight 1 1 1 1
n° estimators 70 70 70 70
Subsample 0.409 0.409 0.409 0.409

work, the results reported in this section are then relative to data sets
containing all the extracted features.

5.2.1 Test results

The classification performances of the three used supervised ML
algorithms (SVM, RF, and XGB, see Section 4.4) are reported
in Table 2 for four different combinations of training and test
sets. Although the motivations behind the chosen approach have
already been partially described above, we remark the following
observations. First of all, the real cases data set is limited, therefore
it is impossible to give a clear answer regarding the generalization
capability of our models to unseen data when trained and tested
on real data. For this particular reason we introduced the ideal and
perturbed simulated data sets, where the ideal one is intended for
training purposes leaving the perturbed one to testing ones.

The hypothesis regarding the use of the ideal simulated as training
set is confirmed by the fact that the classifiers trained in this
way classity correctly the real series with an accuracy that reach
98 per cent. Lastly, classifiers trained on ideal simulated data and
tested on perturbed simulated data obtain an accuracy of 100 per cent
for all algorithms, while a slightly lesser accuracy is achieved testing
on real and perturbed data.

All classification results are reported in Fig. 7, where confusion
matrices for each performed test are presented. A Confusion Matrix
is a type of visualization particularly well suited for evaluating the
performance of an ML algorithm. The rows of the matrix represent
the actual labels of the test set while the columns represent the labels
predicted by the algorithm. Accordingly, the corrected predictions
can be found along the diagonal of the matrix and the wrong ones
outside of it.

In Table 3, they are reported all the selected hyperparameters for
each performed test divided by algorithm.

5.2.2 Cross-Validated results

As introduced in Section 4.4.1, Cross-Validation is a crucial step
to evaluate the model’s ability to generalize on unseen data and it
provides a more accurate evaluation of the model’s performance.

Results obtained with a five-fold Cross-Validation are reported in
Table 4, where we test on different combinations of the three data
sets described in Section 3.

The mean accuracy relative to the real cases data set is quite high,
but as already mentioned in the previous paragraph this may be due
to the very limited dimensions of the data set. In fact, this case is
the one with the highest CV error score (4 percent) appearing on
the table. Adding the ideal simulated data set, not only increases the
mean accuracy (up to 99.9 per cent for XGB) but it also decreases the
CV error score by an order of magnitude (0.09 per cent for XGB).

The third row of Table 4 is relative to the combination of the two
simulated data sets, where we reach extremely high accuracy and
quite low CV error score for all algorithms.

Finally, the algorithms’ performances is cross-validated using all
the available data. Although this is the case with the highest number
of series and highest variability we still achieve remarkably good
results with a mean accuracy that reaches 99.9 per cent (for RF and
XGB) and overall low CV error score.

It is important to note how in the current section we report
extremely good results, sometimes reaching up to 100 percent
accuracy, but these high numbers should not mislead the reader. The
main purpose of this work is to demonstrate that our approach based
on features extraction and Machine Learning algorithms works. For
this reason, we have considered about 2400 series with quite regular
trends and belonging to only four possible classes. Increasing the
number of series, the number of classes or the irregularity of the
series trends may lead to a worsening of the performances.

In other words, in this work we establish that our approach
perfectly works in the most basic settings and, considering the
extremely satisfactory results obtained, we plan to extend our goal
to a more complete analysis increasing the complexity of the data in
future works.

5.2.3 Features importance

Features Importance is one of the key points when using a Machine
Learning algorithm for an application, where the interpretation
and/or explanation of the results are as much important as finding
good classification/regression results. The term Features Importance
relates to methods for scoring each input feature given to the model
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Table 4. Machine Learning multi-class classifiers results obtained in five-fold Cross Validation. Training sets and test sets contain, respectively, 80 per cent and
20 per cent of the data set. Standard deviation reported in parentheses. In the Average AUC the acronym ‘ovo’ stands for one-versus-one and it computes the

average AUC of all possible pairwise combinations of classes.

Accuracy Balanced acc.
Data set Train Test (per cent) (per cent) ‘ovo” AUC Precision Recall fl
Support Vector Machine
Real 40 10 98.0 (£ 4.0) 98.3 (£ 3.3) 0.994(£0.011)  0.987(£0.027)  0.980 (& 0.040)  0.980 (% 0.040)
Real + ideal 1639 410 99.3 (£ 1.3) 99.4 (£ 1.0) 0.999(£0.001)  0.993(£0.012)  0.993 (£ 0.013) 0.993 (£ 0.014)
Ideal + pert. 1877 469 99.95 (£ 0.09) 99.97 (£ 0.07) 0.999(£0.001)  0.999(£0.001)  0.999 (£ 0.001) 0.999 (£ 0.001)
Real + Ideal 4 pert. 1917 179 99.42 (£ 1.17) 99.53 (£ 0.94) 0.999(£0.001)  0.994(£0.010)  0.994 (£ 0.010) 0.994 (+ 0.010)
Random Forest
Real 40 10 98.0 (£ 4.0) 98.3 (£ 3.3) 0.995 (£ 0.009) 0.985 (£ 0.030) 0.980 (£ 0.040) 0.979 (& 0.041)
Real + ideal 1639 410 99.9 (£ 0.2) 99.9 (£ 0.2) 1.0 (£ 0.0) 0.999 (£ 0.002) 0.999 (£ 0.002) 0.999 (& 0.002)
Ideal + pert. 1877 469 100.0 (£ 0.0) 100.0 (£ 0.0) 1.0 (£ 0.0) 1.0 (£ 0.0) 1.0 (£ 0.0) 1.0 (£0.0)
Real + ideal + pert. 1917 179 99.92 (£ 0.17) 99.92 (£ 0.17) 1.0 (£ 0.0) 0.999 (£ 0.002) 0.999 (£ 0.002) 0.999 (& 0.002)
XGBoost

Real 40 10 98.0 (£ 4.0) 98.3 (£3.3) 1.0 (£ 0.0) 0.985 (£ 0.030) 0.980 (£ 0.040) 0.979 (£ 0.041)
Real + ideal 1639 410 99.95 (£ 0.10) 99.96 (£ 0.08) 1.0 (£ 0.0) 0.999 (£ 0.001) 0.999 (£ 0.001) 0.999 (& 0.001)
Ideal + pert. 1877 469 100.0 (£ 0.0) 100.0 (£ 0.0) 1.0 (£ 0.0) 1.0 (£ 0.0) 1.0 (£ 0.0) 1.0 (£0.0)
Real + Ideal 4 pert. 1917 179 99.96 (£ 0.08) 99.97 (£ 0.07) 1.0 (£ 0.0) 0.999 (£ 0.001) 0.999 (£ 0.001) 0.999 (& 0.001)
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Figure8. Common important features of the three supervised ML algorithms
ranked by SHAP and Feature Importance tools.

based on how useful they are when predicting a target variable; the
scores indicate what we call ‘importance’ of each feature. A higher
score indicates that the particular feature will have a greater impact on
the model. There are many ways to assign scores to the features; in our
case we have used two different approaches: one based on a function
provided by the algorithm library (e.g. SCIKIT-LEARN 2023b, 2023d;
xgboost 2023b) and the other based on Shapley Values calculated by
the SHAP package.

It is important to keep in mind that each algorithm has a tendency
to weight features in a different way, even though some of them may
be the same across all algorithms. In our case, it appears that there
are no features common to all three algorithms, although we can find
some common ones when comparing the algorithms two at a time.
These common features are reported in Fig. 8.
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Let us recall that, in this work, we have used three different
classification algorithms: Random Forest, Support Vector Machines
and XGBoost. Our results, reported in Figs 9(a)—(d), show that, for
RF and SVM, most features are quite difficult to interpret, while
the features ranking provided by XGBoost (Figs 9e and f) propose a
more straightforward and interpretable explanation of the model. For
XGBoost in particular, the two approaches for Features Importance
point out two similar pools of features, where 7 out of 10 are the
same. In addition, as shown in Figs 9(e) and (f), both approaches
rank in the top positions features whose physical meaning is quite
easy to deduct from their name, such as theta sum values, theta
standard deviation, theta mean, and theta variance. Additionally, for
XGBoost in Fig. 10, two other SHAP plots are shown: a summary
plot where each feature’s bar has a division into colours based on
importance for each class and a beeswarm plot. A beeswarm plot
is a data visualization tool used to display a summary of how the
top features impact the model’s output. Each point in the scatterplot
represents a data point from the data set, the vertical line represents
the baseline value, which may be the model’s average prediction
or the expected value of the output. The position of the point in
relation to the vertical line reveals whether a feature makes a positive
(increasing the prediction) or negative (decreasing the prediction)
contribution to the prediction and this position is determined by the
Shapley value of the data point. What is important to understand is
that the farther a point is from the vertical line, the higher its impact
will be on the output of the model, regardless of whether it is on the
left or on the right side of the plot. For a more detailed explanation
of the plot please refer to SHAP (2023).

6 FUTURE PERSPECTIVE: TIME SERIES
WITH TRANSITION BETWEEN TRENDS, AN
APPROACH BASED ON SLIDING WINDOWS

We are aware that the general case of time series observed could
comprise different kinds of motion (such as the ones described and
used in this work) due to transitions. In order to move towards this
more complex real scenario, we have begun to work to identify
regions in the time series where the kind of motion is of the same
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Figure 9. Feature Importances for the three different Machine Learning Algorithms, evaluated with SCIKIT-LEARN packages, and SHAP. In SHAP plots, the x-axis

shows the features average impact on model output magnitude.

type. This capability would allow our data analysis pipeline to deal
with any kind of scenario. As first approach, we have decided to
leverage on standard packages for time series data analysis in the
case of segmentation of non-stationary signals (e.g. Truong, Oudre &
Vayatis 2020) and anomaly detection (e.g. Gensler & Sick 2018). We
have performed some preliminary tests and some results are reported
in this section and in the figure below. Our aim here is to give a
possible direction for the next works.

The results show that it is possible to arrange a semi-automatic
division of the time series in the different trends, looking for example
at the average over a fixed window length (in this case made of 8500
points) sliding over the |6(f)| signal. The signal’s mean of a window
is compared to the mean of the following window; if the difference
between those two values exceeds a certain threshold (empirically
determined), a transition is detected.

However, despite the results can be useful and sometimes impres-
sive (see Fig. 11), we have to investigate further how to generalize
the definition of the time windows. This will be left to a future
work.

7 CONCLUSIONS

This work deals with the problem of classification of asteroids in
co-orbital motion with a given planet using a Machine Learning
approach. The main parameter analysed to determine the type of
co-orbital motion is a suitable angle 0, that is defined following the
assumption of the Planar Circular Restricted Three-Body Problem
and its averaged approximation. The time evolution of 6 allows to
identify if the asteroid is in Tadpole motion, distinguishing between
TPL4 (around the equilibrium point L;) and TPL5 (around the
equilibrium point Ls), HS motion or QS motion. We produce three
different kinds of data set called real, ideal simulated, and perturbed
simulated in order to apply Machine Learning algorithms. The data
sets are formed by time series of the angle 6, that consist in its
evolution in time for short and medium time-scale (about 900 yr for
ephemerides data of real asteroids and 3000 yr for simulated cases).

The Python package TSFRESH is applied to such time series,
extracting meaningfully features, which are selected and, if needed,
standardized. Then, a Machine Learning pipeline based on algo-
rithms for Dimensionality Reduction and Classification, is built, with
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Figure 10. SHAP results for XGBoost algorithm. On the top the summary plot while on the bottom the beeswarm plot.

the features extracted as input. The results show the power of such
approach, with very well evident clusters in Dimensionality Reduc-
tion visualization plot and classification accuracy above 99 per cent.
This paper aims to define a methodological approach to such kind of
data, serving as a backbone model for further studies, where more
and more complex cases are faced.

Our motivation was to develop a tool that can support an improve-
ment and refinement of the theoretical method proposed in Di Ruzza,
Pousse & Alessi (2023). To verify that the averaged approximation
of the Circular Restricted Three-Body Problem can catch the real
dynamics of co-orbital objects over significant time spans, under
well-defined assumptions, we need a fast and automatic tool that can
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classify given time series. In this way, we will be able to compare
the prediction of the averaged approximation with ephemerides data.
The approach proposed here is to analyse time series obtained by
propagation under different dynamical models. In general, the same
ML pipeline can be applied to clone orbits and to longer and more
complex time series, on condition that transitions can be identified.
This aspect will be the focus of a future work.

Finally, we would like to remark that the short-term analysis can
be useful to the space engineering field, in particular to select good
candidates for a scientific mission, given the very high interest that
asteroids are now receiving, not only for planetary defense purposes,
but also as possible natural resources larders.
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