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A B S T R A C T   

Land degradation is a critical issue at a global level and its progressive increasing greatly reduces soil ecosystem 
services. In this context, the 2030 Agenda for Sustainable Development, adopted by all United Nations Member 
States in 2015, defined the Sustainable Development Goals (SDGs) and indicated some targets of particular in
terest for a territory to be integrated into short- and medium-term national programs. Target 15.3, which aims to 
end desertification and restore degraded lands, is currently monitored by indicator 15.3.1, measured as the 
combination of three sub-indicators (trends in land cover change, land productivity and carbon stocks) as sug
gested by the United Nations Convention to Combat Desertification (UNCCD), the custodian agency for the SDG 
indicator. In our opinion, this assessment shows some weakness that are generally caused by a lack of infor
mation from direct field observations. The greatest limitation regards land productivity dynamics linked to the 
NDVI trajectory adopted by the UNCCD methodological approach. For this reason, the paper proposes an 
alternative approach that consists of using annual maximum NDVI value assessments instead of annual mean 
values for trajectory calculation. To come to these conclusions, the study addresses a reliability assessment by 
using remote sensing techniques via the Google Earth Engine (GEE) and analysing the NDVI evolution over time 
at 450 locations spread around the Campania region (southern Italy). To this end, a customised Graphical User 
Interface (GUI) was built on the GEE platform and a Google Earth time slider tool was applied to visualize land 
cover changes which occurred at each location over a period of 18 years (2001–2018). The survey was carried 
out on MODIS and Landsat 7 collections and showed that the new approach had a better performance than the 
UNCCD approach (90 % vs 62 % of successful reliability tests, up to 96 % considering results from Landsat 
images). The application of maximum NDVI values to assess productivity dynamics spatially shows, with regard 
to UNCCD data, more than double the percentages of degraded and stable lands and a drastic reduction in 
improved areas within the Campania region. Overall, this innovative approach appears to agree more closely 
with ground truth and the use of finer resolution data is more suitable for investigating land degradation pro
cesses within a regional context.   

1. Introduction 

Land degradation is one of the biggest global challenges with sig
nificant consequences for both ecosystems and human populations. It is 
defined as the many human-caused processes that are causing the 
decline in or loss of biodiversity, ecosystem functions or ecosystem 
services in any terrestrial and associated aquatic ecosystem (IPBES, 
2018). The definition has changed over time moving from 

“desertification” (UNCCD, 1994) to the concept of “land degradation” 
(UNCCD, 2017), which takes into account a much wider approach and 
includes land cover dynamics as a main driver of degradation. The 
complexity of land degradation processes and the interplay of bio
physical and socioeconomic causes (climate change, soil depletion, 
landscape modifications and biodiversity decline) make assessment of 
the phenomenon particularly challenging (Salvati, 2022). 

In October 2015, the UNCCD (United Nations Convention to Combat 
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Desertification) adopted the concept of Land Degradation Neutrality 
(LDN) as a part of the 2030 Agenda within the Sustainable Development 
Goals (SDGs). LDN is defined as “a state whereby the amount and quality 
of land resources necessary to support ecosystem functions and services 
and enhance food security remain stable or increase within specified 
temporal and spatial scales and ecosystems (Decision 3/COP.12, 
UNCCD, 2015). Target 15.3 aims, by 2030, to “combat desertification, 
restore degraded land and soil, including land affected by desertifica
tion, drought and floods, and strive to achieve a land degradation- 
neutral world”: it is monitored through the evolution of degraded land 
as a percentage of total land area (SDG indicator 15.3.1). This indicator 
is measured as a combination of three sub-indicators which were 
adopted at the eleventh session of the UNCCD Conference of the Parties: 
1) status and change in land productivity; 2) land cover and land cover 
change, 3) change in above- and below-ground carbon stocks (with the 
stock of soil organic carbon -SOC- as the initial metric). The indicator 
result is derived from a classification of land condition (i.e., degraded, 
stable or not degraded) and is based primarily, and to the largest extent 
possible, on comparable and standardized official national data sources. 
As a result, changes in the sub-indicators are depicted as positive or 
improving; negative or declining, stable or unchanging (UN, 2022, Sims 
et al., 2017). 

The UNCCD recommends using global datasets to estimate the sub- 
indicators in the absence of reliable national estimates (Sims et al., 
2019). Global datasets, although freely available, are not so appropriate 
for LDN policy action at country level because of, amongst other limi
tations, their coarse resolution. For this reason, the UNCCD recommends 
a ‘tiered approach’ for countries to compute the three indicators, which 
can use data from three levels (Global Mechanism, 2016; UNCCD, 
2018), namely i) Earth observations, geospatial information and 
modelling, ii) national statistics and iii) field surveys and ground 
measurement. 

In addition, the recent proposal for a Directive on Soil Monitoring 
and Resilience in Europe (Soil Monitoring Law) also encourages earth 
observation in order to support Member States in monitoring the rele
vant soil descriptors (COM (2023) 416 final). 

Earth observation (EO) is most frequently employed to monitor the 
above-ground vegetation processes by using the readily available sat
ellite time-series data covering the past three decades and nearly all the 
world (Mbow et al., 2015). Thus, remote sensing has become a crucial 
tool in the mapping of land degradation and, to this purpose, vegetation 
productivity indicators derived from time-series satellite images may be 
the most useful proxy for assessing land degradation on regional or 
global scales (Veron S.R. et al., 2006, Fensholt et al., 2013, Huang S. 
et al., 2016). However, the volume of remote sensing big data (RSBD 
sensu Ma et al., 2015) far exceeds the capacity of standalone storage 
hardware so major geo-big data analytics are currently developing on 
cloud platforms, an efficient way of storing, accessing and analysing 
datasets on very powerful servers which “virtualize supercomputers” for 
the user (Amani et al., 2020; P. Perez-Cutillas et al., 2023). To tackle 
these issues and bridge the gap between users’ expectations and current 
Big Data analytical capabilities, EO Data Cubes (EODC) are a new 
paradigm revolutionizing the way users can interact with EO data and a 
promising solution to store, organize, manage and analyse EO data 
(Giuliani G. et al., 2019). 

Among free cloud EODC computing services, the Google Earth En
gine (GEE) stands out as it allows an analysis-ready data catalogue of 
several petabytes with a high-performance computational service. The 
public data catalogue hosts over 40 years of remotely sensed data, such 
as Landsat, Modis, National Oceanographic and Atmospheric Adminis
tration Advanced Very High-Resolution Radiometer (NOAA-AVHRR), 
Sentinel 1, 2, 3 and 5-P; and Advanced Land Observing Satellite (ALOS) 
data (Gorelick et al., 2017). 

Within Modis collections, an additional ready-to-use vegetation 
index, NDVI, is also available not requiring the download of raw images 
(Kumar and Mutanga, 2018; Tamiminia et al.,2020, Tucker, 1979). This 

index is calculated by the difference of near infrared (NIR) and red (R) 
reflectance and normalized by their sum: it shows a high correlation 
with the vegetation cover percentage and green leaf biomass (Purevdorj 
et al., 1998, Gitelson et al., 2003). 

For computation of SDG indicator 15.3.1, it is common to use Trends 
Earth, a free open-source QGIS plugin that exploits EO data in a desktop 
and cloud-based system.1 On this platform, a single sub-indicator or all 
three sub-indicators combined may be assessed through global default 
data or a specific national dataset (Sims et al., 2021). This approach is a 
reference element, that becomes the standard for preparation of the 
reporting process established by the UNCCD (PRAIS - Performance Re
view and Implementation System2). A broad range of users (Girma et al., 
2023, Kust et al., 2023, Paredes-Trejo et al., 2023, Cherif et al., 2023, 
Assennato et al., 2020, Gonzalez-Roglich et al., 2019, Bayouli et al., 
2021) is currently applying Trends.Earth in projects ranging from the 
planning and monitoring of restoration efforts to tracking urbanization 
and developing official national reports for submission to the UNCCD 
every four years (decision 15/COP.13). All these elements strive to help 
in the monitoring and evolution of the landscape, supporting decision- 
makers in identifying and mapping current and future land degrada
tion problems (IPBES, 2018). 

As stated before, the methodology proposed by the UNCCD assesses 
degraded, stable or improved areas by considering land productivity, land 
cover change and change in carbon stocks. 

In the present work, we focus on the “land productivity” criteria and 
ignore the second and third sub-indicators. This has been done for the 
following reasons:  

• The “land productivity“ is the biological productive capacity of the 
land, the source of all the food, fiber, and fuel that sustains humans. 
To assess this indicator, Net Primary Production (NPP) is usually 
used. However, it is time-consuming and costly to estimate (Giuliani 
et al., 2020). Hence, remotely sensed proxies are commonly used to 
derive indicators of NPP with a rather objective approach, i.e., by 
exploiting the measurement and monitoring of primary production 
through the evaluation of NDVI dynamics that can be quantified and 
spatialized. On the contrary, the second and third sub-indicators are 
classified through a much more empirical approach which assumes 
that changes in land use classification are linked to SOC stock vari
ations and thus connected either to land degradation or land 
improvement as a consequence of the “change direction” (Minelli 
et al., 2017, Orr et al., 2017, Sims et al., 2020).  

• Land cover dynamics widely depend on the classification system and 
acquisition scale of data; the matrix for identifying stable, improving 
or degraded areas might be ambiguous and needs to be adapted to 
different contexts (Sims et al., 2021): only those situations leading to 
an evident ecosystem reduction, such as vegetation loss or urban 
expansion, are classified as “degraded”, but all changes involving a 
new management system or switching crop production have to be 
investigated through the repeated collection of soil sampling data 
over a time interval to establish possible degradation/improvement 
phenomena.  

• The monitoring of carbon stock changes lacks a harmonized topsoil 
dataset and suffers from a scarcity of soil profiles and the absence of 
soil samples collected in the same period (FAO, 2018).  

• Land productivity greatly affects the final assessment of land 
degradation, while land cover and carbon stock have minor impacts; 
in this sense, the “one out all out” approach enhances the great 
weight of land productivity changes (see next chapter). 

On the basis of these premises, the general objective of this study was 

1 https://docs.trends.earth/en/latest/index.html.  
2 https://www.unccd.int/news-stories/stories/prais-4-reporting-platfor 

m-live. 

M.D. Leginio et al.                                                                                                                                                                                                                              

https://www.unccd.int/news-stories/stories/prais-4-reporting-platform-live
https://www.unccd.int/news-stories/stories/prais-4-reporting-platform-live


Ecological Indicators 161 (2024) 111962

3

to test the effectiveness of the SDG 15.3.1 sub-indicator output when 
following two methodologies: the widespread Trends.Earth plugin 
method and an alternative approach using a different NDVI metric. The 
results were compared with the “ground truth” obtained from observa
tion of true colour satellite images. 

The research was carried out in Campania, southern Italy: the choice 
of the site was especially useful because (i) the region has high territorial 
variability which potentially overlaps with a geographical distribution 
of degraded areas (ii) the authors had access to a large dataset (e.g. soil, 
geology, land use, climate etc.) that proved to be useful for this specific 
research. These conditions facilitated the testing of the productivity sub- 
indicator included in the SDG 15.3.1 indicator. 

2. Materials and methods 

2.1. Study area 

The region of Campania is in the southern part of the Italian Penin
sula; it has a population of 5,834,056 people and a total area of 13.595 
km2. Campania is the second most populous and the most densely 
populated region of Italy. Forest and semi-natural areas cover more than 
37 % of land in the region (about 5.000 km2) and comprise the areas in 
which land use is at its least human dominated. Arable land occupies 
around 55 % and artificial areas about 7.5 % of the total area (CLC, 
2018). However, data from the SNPA (National Environmental Protec
tion System in Italy) which indicates that artificial land cover accounts 
for about 10.5 % of land use in the region, clearly above the national 
average value (i.e. 7,14 %, ISPRA/SNPA, 2023), shows that this infor
mation is probably underestimated. 

The climate regime of the region is typically Mediterranean, hot-dry 
summers and cool-wet winters, with some evident differences because of 
the significant orographic effects on precipitation (Longobardi, 2022). 
High precipitation (up to 2,000 mm) is typical in high relief areas of the 
central part of the Apennines during winter periods, while lower values 
(900 mm) are generally recorded in the western and eastern parts of the 
region. The mean annual temperatures range from 12 ◦C in February to 
29 ◦C in August. The morphologically heterogeneous territory of the 
region translates into great soil, land and land use variability whose 
responses to and effects on degradation phenomena can potentially 
differ greatly. 

2.2. Data source and processing 

2.2.1. The UNCCD procedure 
The starting point of the study was the result obtained when applying 

the UNCCD procedure to Campania through the Trends.Earth plugin 
using as input the default data: i) ESA CCI land cover maps classified in 7 
classes according to IPPC Land Use Categories, ii) SoilGrids at 250 m 
resolution as reference to carbon stocks for the first 30 cm of the soil 
profile and iii) productivity elaborated from bi-weekly data from MODIS 
with 250 m resolution (Trends.Earth. Conservation International. 
Available online at https://trends.earth. 2022). 

As stated above, the comparison of the three sub-indicator values 
clearly shows the great weight of productivity on the final evaluation 
15.3.1 (see Table 1). 

Moreover, in order to interpret land productivity change, the UNCCD 
recommends applying three metrics based on NDVI:  

- Trend or trajectory: measures the rate of change over a period of at 
least 15 years;  

- State: detection of recent changes in primary production as compared 
to a baseline period.  

- Performance: local productivity relative to other areas with similar 
land cover or bioclimatic regions. 

The aggregation of the three metrics according to the “One-out, all 

out (1OAO)” method proposed by the methodology gives values at pixel 
scale as indicated in Fig. 1. 

More specifically, following the 1OAO rules, the “trend or trajectory” 
metric distinctly appears to be highly important if compared with the 
other two metrics (state and performance): considering the 18 possible 
different combinations, more than 80 % of the final evaluation follows 
the trajectory classes. 

Furthermore, trend is here considered to be the most objective 
parameter as it is used as a statistical significance test to determine the 
rate of NDVI changes over time, whereas the determination of signifi
cance in the state and performance metrics is more arbitrary (Sims et al., 
2019). 

2.2.2. Our approach 
Considering the above, the assessment in the Campania region 

focused on the analysis of trend metrics to evaluate the productivity sub- 
indicator. We studied this item to achieve the dual objective of i) testing 
the reliability of the SDG 15.3.1 sub-indicator through a procedure for 
verifying the results obtained by applying the Trends.Earth plugin, and 
ii) testing the reliability of a revised version according to a new 
approach. 

In doing this, we required access to the codes of the Trends.Earth 
plugin, which is supported by several Python scripts that allow calcu
lation of the various indicators on the GEE. These codes are freely 
available on GitHub.3 

As already shown in the previous paragraph, the GEE is currently one 
of the best tools for interpreting the performance of vegetation indices 
and their seasonal dynamics (maximum value, minimum value, range, 
mean, etc) at different spatial and temporal resolutions (i.e., MODIS, 
Landsat, Sentinel). 

Hence, we assessed the trajectory of NDVI in the GEE environment at 
pixel level for the whole Campania region over the 2001 – 2018 period. 
The calculation code applied by Trends.Earth was reproduced, and new 
trend metric was tested by also running the scripts on Landsat products 
with a finer spatial resolution. 

To be more precise, the MODIS13Q1 V6.1 product (bi-weekly, 
spatial resolution 250 m) and the Landsat 7 (16 days, spatial resolution 
30 m, with a temporal observation that is compatible with the studied 
period) dataset were used to analyse NDVI values over the 2001–2018 
period. According to the official methodology, the mean annual NDVI 
values were used to compute a linear regression at the pixel level to 
identify areas experiencing changes in primary production. 

A Mann-Kendall non-parametric significance test was then applied to 
check statistically whether the variable of interest had a monotonic 

Table 1 
Percentage of Indicator 15.3.1 and related three sub-indicators assessed in 
Campania by applying Trends.Earth default data. The summary of change in 
productivity shows values similar to the final assessment.   

Summary of 
SDG 15.3.1 
Indicator (final 
assessment) 

Summary of 
change in 
productivity 

Summary of 
change in 
land cover 

Summary of 
change in 
soil organic 
carbon 

Improved 
land area  

65.95 %  67.93 %  1.59 %  0.64 % 

Stable 
Land 
area  

22.85 %  25.05 %  94.48 %  98.50 % 

Degraded 
Land 
area  

11.02 %  6.84 %  3.93 %  0.85 % 

Land area 
with no 
data  

0.17 %  0.17 %  0.00 %  0.00 %  

3 https://github.com/ConservationInternational/trends.earth-algorithms. 
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upward or downward trend over time (Mann, 1945, Kendall, 1975). The 
Mann-Kendall ‘Z’ score can be used to determine the significance of the 
Trend slope (Onyutha, et al. 2016): positive Z scores indicate a trend of 
increasing productivity; negative scores indicate decreasing productiv
ity. The Z score represents the number of standard deviations from the 
mean of the sample, so it reflects the magnitude of the slope with larger 
positive or negative scores indicating a more statistically significant 
slope. Results obtained from Trends.Earth are expressed as integers from 
− 3 to 3 through a range of pixel values representing the significance 
statistics of the trend slope as reported in the list below. 

In the present work, pixel values were assigned with the following 
significance thresholds according to the same approach as trajectory 
trends elaborated by Trends.Earth plugin (Sims et al., 2021):  

- declining (Z score < -1.96; Trends Earth pixel value = -3 and − 2)  
- stable (− 1.96 ≤ Z score ≤ 1.96; Trends Earth pixel value = -1, 0, 1)  
- increasing (Z score > 1.96; Trends Earth pixel value = 2 and 3) 

The stable class (not significant in Z score variations) is associated 
with all pixels that do not fall into the degradation or improvement 
classes. 

Following the above procedure and using both MODIS and Landsat 7 

stacks of images, we introduced a new metric by applying the codes to 
calculate the pixel-based trends by using the maximum annual NDVI 
values instead of the mean ones. In this way, we obtained 4 trajectory 
evaluations (2 resolutions with MODIS and Landsat x 2 metrics with 
mean and max NDVI values) for the Campania region for the observed 
period (2001–2018) (see Fig. 2). 

The performance evaluation of the approaches coupling different 
metrics and resolutions was computed by combining GEE and Google 
Earth (https://earth.google.com/) and using a network of 490 ground 
truth test points (390 for testing MODIS and 100 for Landsat images) 
from a random selection over different landscape units (combining 
geological setting, morphology, topography, climate and land use) 
(Fig. 3). These “ground truth” test points were analyzed by photointer
pretation over true colour images and about 5 % of these points were 
validated by field evaluation (visual assessment by experts, including 
authors who had personal knowledge of these areas). 

3. Results 

3.1. The analysis in the Google Earth Engine (GEE) 

Land productivity was firstly assessed through analysis of the NDVI 

Fig. 1. Land productivity metrics aggregated into three or five classes according to UNCCD methodology (Source: Trends.Earth. Conservation International. 
Available online at: http://trends.earth. 2022). 

Fig. 2. General workflow adopted in the present work: starting from land productivity sub-indicators, we only considered the trajectory metric within a testing area 
(the Campania region). We compared the traditional UNCCD approach (based on mean yearly NDVI data) for the 2001–2018 period with an alternative metric based 
on maximum yearly data, using both MODIS and Landsat data sources. 

M.D. Leginio et al.                                                                                                                                                                                                                              

https://earth.google.com/
http://trends.earth


Ecological Indicators 161 (2024) 111962

5

trends over the selected 2001–2018 period by using the Trends.Earth 
plugin. The result was a multiband raster containing all the information 
regarding productivity sub-indicators (trajectory, state, performance, 
mean annual NDVI integral, etc.). The data corresponding to trajectory 
were clipped within a GIS environment over the study area (the Cam
pania region) and uploaded onto the GEE through the client-side user 
interface: the map showed a predominance of the “improvement” class 
which occupied almost 68 % of the total surface; only 2.5 % of the 
territory was classified as “degraded” and about 30 % fell into the 
“stable” class (Fig. 4). 

In order to explore the official procedure applied by Trends.Earth in 
producing trajectory metrics, we reproduced the codes in the GEE by 
considering the same data source, study area and observation period. 
Finally, we applied the original styled layer descriptor (SLD) and ob
tained a raster map that was completely comparable with the Trends. 
Earth output, so confirming the correct reproduction of the official 
procedure. 

For the sake of clarity, it should be emphasized that, even though 
land productivity appears to be the main sub-indicator in defining the 
state of land, the assessment obtained is more of an investigation into the 
evolution of the state of canopy/plant vigour over time than a strict 
analysis of land degradation/improvement, which cannot be based on 
the observation of NDVI trends alone (G.T. Yengoh et al., 2015, Schillaci 
et al., 2023). Cases where the NDVI trends alone identify degradation or 
improvement phenomena are those that can be defined as “striking”, 
such as intense soil erosion affecting production, soil sealing or land use 
changes between distant classes (forest/agriculture). 

However, from here on, in following the coding of the official 
methodology, we will mention the degraded, improved and stable 
classes even though only referring to the trend metric. 

3.2. The logical framework 

With the GEE tool at our disposal, equipped with a customized 
Graphical User Interface (GUI) including (see Fig. 5) a map visualization 
panel, an inspector tool and a code editor, we were able to perform the 

reliability tests for the indicator and to test new metrics at different 
spatial resolution. 

To this end, we started by adapting the GUI to our needs, which 
consisted of being able to observe the trajectories of the NDVI values at 
the pixel scale at any point on the map in real-time. Therefore, we added 
new lines of code to i) calculate the maximum annual NDVI data (as 
suggested by Markos et al., 2023) in order to use these values to produce 
a new trajectory metric, as already done for the mean values following 
the official procedure; ii) add panels to the GUI to host two charts which 
have to be created on the-fly every time a user clicks on a location of 
interest on the map (i.e. pixel) by using the inspector tool. The charts 
show the normal NDVI values and the maximum yearly NDVI values as 
collected from the multi-temporal stack of images and corresponding to 
the clicked-on location, both provided with trend lines (Fig. 6). More
over, in order to simplify the “on the ground” check of the results ob
tained after the classification of the NDVI trends (degraded, stable or 
improved areas), we added a specific code to iii) print the path to 
visualize the point selected in Google Earth by generating a link to kml 
files and iv) obtain the single scene of MODIS NDVI collection corre
sponding to each selected date. 

The graphs coupled with the trajectory map allowed us to observe 
the NDVI trends over time at each point of the study area so as to 
discover their shapes, anomalous peaks, ascending and descending pe
riods, phenological phases (green-up, maturity and senescence) during 
the year and deduce the possible causes. Moreover, uploading the 
observation points onto Google Earth allowed us to use the time slider 
tool to observe on a true colour image timeline how the surrounding 
landscape/canopy changed over time. We made a photointerpretation 
by applying at each point a buffer of approximately 250 m as the reso
lution of the MODIS images. With this logical framework, we were able 
to deduce whether the classification of trends for the 2001–2018 period 
was correct or not for each observation point by making a comparison 
between what was reported on the map, what was shown by the NDVI 
graphs and what was shown by the Google Earth images (true colour). 

The procedure described above, was repeated with images at a better 
resolution, the Landsat7 Collection characterized by a timeline 

Fig. 3. Locations of testing points within the Campania region.  
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compatible with the studied period (USGS Landsat 7 Collection 2 Tier 1 
TOA Reflectance). In this case, we focused the photointerpretation on a 
buffer of 30 m, which was coherent with the pixel size of Landsat images. 
The working scheme described in Fig. 5 was again applied to the images 
in this collection: the observation points superimposed onto the trend 
maps can be “clicked” on to obtain on the-fly the graphs of the NDVI 
variations over time both for the normal values and the yearly maximum 
values covering the 2001–2018 period. 

3.3. The reliability tests 

In the first phase, the reliability test which regarded the MODIS 
multi-temporal NDVI images, calculates both the mean NDVI yearly 
values as reported by the official method and the maximum yearly 
values according to the new proposed metric. To this end, the analysis 
was carried out on 390 ground truth points that were selected within the 
Campania region according to the criteria described above. 

In a second phase, the tests were performed by using the trend results 
from the Landsat 7 collection with the aim of verifying the metric 
improvement at a higher resolution. In the present work, the term 
“reliability” means the comparison carried out, at each observation 
point, between what was classified according to the applied trend 
metrics, what we deduced by observing the NDVI charts and what it was 
possible to deduce in terms of degradation/non-degradation from the 
true colours satellite images provided by Google Earth. 

The results of this study – based on the comparative evaluation of the 
two UNCCD- based procedures- will be shown through the relevant case 
studies described below. Fig. 7 shows the map of Campania classified 
according to the methodology relating to trajectory sub-indicators pro
posed by the UNCCD, with some highlighted areas corresponding to the 
cases discussed. To be more precise, rather than representing new metric 
applications, case A addresses a procedure applied to all the cases in 
order to improve the quality of NDVI data. 

Case A - The greenhouses 
The first attempt to improve the trajectory output regarded the se

lection of good quality images from the MODIS collection. Pixel quality 
can be negatively affected by clouds or other atmospheric conditions 
and, so, each image should be pre-processed to remove the unusable 
values. Each MODIS image contains quality assurance (QA) information 
that can be used to identify which pixels to remove. We used a specific 
function in the GEE to get the required pixel quality and mask the pixels 
to be removed, so ensuring the absence of potential outliers caused by 
clouds or other noises. This masking procedure changed our results 
greatly in comparison with the official metric, particularly along the 
coastline where there are often scattered or densely aggregated green
houses. Example A in Fig. 7 shows an area in the southern part of the 
Salerno municipality where there is a dense concentration of green
houses. The frequent seasonal presence of growing tents make NDVI 
signals unclear and the following statistical test not unbiased: as a 
consequence, the approach with the mask recognizes stable areas 

Fig. 4. The Campania region classified through trend metrics according to the methodology proposed by the UNCCD (Trends.Earth) and considering the 2001–2018 
period. Different colours represent a classification of trend metrics at pixel level after a Kendall test. At the bottom left, the surfaces are reported (%) classified with 
reference to the total surface. 
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instead of degraded ones. According to the official approach assessed by 
Trends.Earth, these territories are classified as degraded while, when 
applying the quality filter to mask noises, most of the pixels are classified 
as stable. It is interesting to note that, according to the UNCCD 
approach, almost 25 % of the total regional degraded area is localized in 
this sector of the region. In other words, using a good quality pixel filter 
can significantly change the scenario. 

Case B - Overestimation of improved areas 
These cases represent the most common subject matter for applying a 

different metric: the analysis carried out at the observation points by 
applying the logical framework described above highlighted the signif
icant difference between the UNCCD approach and the approach pro
posed in the present study on the assessment of areas identified as 
“improved” or “potentially improved”. We observed a frequent over
estimation of areas classified as improved in the UNCCD approach. The 
common presence of peaks in the lower minimum value at the beginning 
of an observation period induces an increasing trend line which confers 
an improvement status on the pixels. In the same way, their presence at 
the end of the observed period attributes a decreasing trend line which 
highlights potentially degraded pixels. The latter case should be masked 
with the second sub-indicator of land productivity referred to as “state”, 
which is able to detect recent changes in primary production as 
compared with an initial period; however, the third and fourth rows of 
Fig. 1 do not confirm this assumption due to the greater weight assumed 
by trajectory, aggregating land productivity metrics. Low minimum 
values were observed in the presence of clouds, often encountered in 
mountain areas, and bare soils, mainly found in cropland and connected 
to growth cycles of plants and/or soil management practices. We have 
also observed cases where the amplitude of NDVI curves over time 
tended to shrink to minimum values (higher minimum values), probably 
as a result of crop management practices or due to crop rotation (these 
aspects deserve additional studies). 

In these cases, we found that the new metric further reduces the 
effects due to minimum NDVI data by “cleaning” the signals over time 
and changing the output from significant improvement or degraded 
classes to stable ones (i.e. no significant NDVI change over the time 
period) (Fig. 7, case B and Fig. 8, on the right). 

Case C - Soil erosion 
In the hilly arable inland areas of Campania, near the boundaries 

with the regions of Molise and Puglia, the new metric based on max 
NDVI highlights “striking cases”, i.e. evidently degraded areas that are 
not revealed by the Trends.Earth results. The forms of land degradation 
in these areas involved soil loss due to water action and are mostly found 
in small areas affected by stream channel erosion as shown in Fig. 8. We 
collected several Google images at the observation points where the 
erosion phenomena affecting the areas are evident. Unlike the official 
approach (Fig. 9, bottom right), the proposed metric (Fig. 9, bottom left) 
shows a slight but constant reduction in maximum annual NDVI values 
from year to year, which results in degraded pixels as shown in Fig. 7 
(case C). 

Case D - Forest environment. 
Several observations from forest areas showed a significant re

ductions in NDVI values so giving a declining trend slopes, the indicator 
of degradation. We found that, in some cases (striking), these declines 
were connected to fire events that occurred during the observation 
period, as confirmed by the regional database on forest fires which has 
been available since 2002 (Carabinieri-CUFAA, 20214). Moreover, in 
other cases, we observed that the typical form of local land management 
was chestnut tree coppicing (Iovino et al., 2020). Hence, either because 
of fire or coppicing, the trend reduction are the result of a sudden drop in 
NDVI values, which are generally extremely high in forest environ
ments. However, we often only noticed these descending trends, clas
sified as forms of degradation by the indicator, through the new 
proposed metric while Trends.Earth classified the observations as stable 
or improved (Fig. 7, case D, and Fig. 10). 

3.4. Land degradation assessment through a higher resolution approach 
(Landsat) 

NDVI time series from 2001 to 2018 were calculated using the 

Fig. 5. The gee logical framework applied to check whether the classification of trends referring to the 2001–2018 period was correct or not. 1) the 450 observation 
points (black dots) distributed over the study area and superimposed on the metrics maps. The graphs of NDVI for both the MODIS and Landsat collections are 
produced on the-fly by clicking each position within the territory; 2) an example of the graphs produced representing the NDVI data for the 2001–2018 period; 3) a 
link to Google Earth is produced for each position clicked to visualize the observation point through high resolution true colour satellite images over time by using the 
time slider tool (4); 

4 https://geoportale.incendiboschivi.it/portal/apps/sites/#/geoportale-i 
ncendi-boschivi. 
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Landsat7 Collection too. We applied the overall GEE procedure 
described for the MODIS images to observe the results and reliability of 
the metrics at higher resolution (30 m). In this case the reliability tests 
were performed by using 100 additional observation points that were 
widely distributed over the regional territory. As expected, the tests 
confirmed higher reliability of the new metric; the finer resolution of the 
Landsat NDVI signal permits a better vison of land use change over time 
while also identifying landscape fragmentation in peri-urban areas due 
to urban development and infrastructure construction. Fig. 11 shows a 
testing phase at one of the observation points, comparing Landsat and 
MODIS images. In addition to the greater detail and variability of the 
data obtained using the Landsat images, the added value of the new 
metric is also more evident: the same point classified as degraded with 
MODIS is considered as improved with the Landsat images, although the 
surrounding areas were subjected to new urbanization during the 
observed period. 

3.5. Comparative evaluation of the UNCCD trajectory and new 
assessment approach 

The results of the reliability tests highlighted the better performance 
of the proposed metric. After starting from 390 observation points and 
discarding 40 due to dubious interpretations, the remaining 350 points 
gave us the following results: 313 confirmed the reliability of the new 
metric and 216 supported the quality of the Trends.Earth assessment 
(there was total agreement between the two approaches at 178 points). 

Table 2 below summarizes these results and the better performance 
of the new metric compared with the official methodology is self-evident 
(90 % vs. 62 %). A further phase conducted on an additional 100 points 
showed that the level of accuracy increased up to 96 % when using 
Landsat images with a higher resolution. 

In Table 3 below, the surfaces of the Campania region are shown and 
classified as degraded, stable or improved, according to the official 
methodology compared with the proposed new approach using the 
MODIS and Landsat datasets: stable and degraded areas significantly 

Fig. 6. Example of charts produced showing the modis ndvi values overtime from 2001 and 2018 (above) and the corresponding yearly maximum values (below). 
trendlines in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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increase at the expense of those showing improvement, which decrease 
by about one-third. 

Considering the above, if the new proposed metric were applied, the 
results of the land degradation assessment in the Campania region for 
the 2001–2018 period would be significantly different. In particular, the 
degraded and stable classes would have their values more than doubled 
in terms of occupied surfaces, while the improved class would be more 
than halved. As already stated, the results obtained by observing just the 

NDVI trajectories describe the behaviour of the canopies rather than the 
state of health of the underlying soils. 

However, the results shown in Table 2 and the differences reported in 
Table 3 highlight in one hand the benefits of higher spatial resolution 
(250 vs 30 m) capable to both, reduce the noise effects of adjacent pixels 
and consequently have greater precision in the representation of the 
spatial variability of the data. On the other hand, differences between 
approaches are associated to different sensitivity to NDVI values. In fact, 

Fig. 7. The map of campania classified according to the methodology proposed by the unccd. different colours represent pixels classified as degraded, stable or 
improved areas during the 2001 – 2018 period. circular spots (a – d) highlight the areas referred to in the cases discussed. 

Fig. 8. Examples of NDVI trajectories over time for the same location from 2001 to 2018 calculated through the two approaches. Left side, NDVI data with a positive 
mean values trend (red line) classified as improving. Right side, yearly maximum NDVI data with horizontal trend (red line). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. Example of degraded areas due to soil water erosion. The two images from Google Earth highlight the phenomena from 2002 to 2015. Bottom left, NDVI chart 
produced with the proposed new approach. Maximum yearly NDVI values show a slight but constant reduction (trend line) classified as degradation (Fig. 7, C). 
Bottom right, mean values of NDVI show a slight positive trend (trend line) classified as improvement. The white circle identifies the point selected to produce the 
charts. Dotted line highlights part of the eroded area recognized as degraded through the new approach. 

Fig. 10. Example of areas subjected to coppice management. The two images from Google Earth highlight the presence of several areas given over to coppicing from 
2012 to 2016. Bottom left, NDVI chart produced through the proposed new approach. Maximum yearly NDVI values show a reduction during the 2016–2018 period 
(red arrow), which is recognised as a degradation (Fig. 7, D). Bottom right, mean values of NDVI show a slightly positive trend that is classified as improvement 
(trend line) even though the amplitude of the curves appears reduced during the 2016 – 2018 period (red arrow). The white circle identifies the point selected to 
produce the charts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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as already discussed, we observed that the proposed new metric, based 
on the yearly maximum NDVI values, appears to be less sensitive to the 
outliers of minimum NDVI values and more sensitive to striking cases of 
degradation or improvement (e.g., soil consumption, intense erosion in 
agricultural environments, fires or changes between agricultural/forest 
land uses) where the metric could even replace the SDG indicator 15.3.1. 
Nevertheless, in the case of stable trajectories or slight sloping in a 
positive or negative direction, which is true in the majority of the 
analyzed cases, it is very hard to assess the state of the land with any 
certainty. 

In the latter cases, there is a clear need to integrate NDVI trajectories 
with additional indices and/or data and datasets suitable to the scale of 
the analysis and capable of adding further information on possible 
drivers of degradation or early signs of soil degradation that are not 
recognisable through the approaches currently used. 

4. Discussion 

Nowadays, the land degradation issue is at the centre of the EU 
Agenda for environmental policies, as is confirmed by the new proposal 
for a Directive on soil monitoring and resilience (Soil Monitoring Law). 
At the same time, the research community has turned its attention to the 
definition of indices/indicators that are capable of describing land 
degradation in order to permit the monitoring and achieving of sus
tainable development goals (SDGs. Reaching these targets necessarily 
requires common, implementable, and comparable methodologies 
worldwide. For this reason, the United Nations has established the 
monitoring of indicator 15.3.1 with the support of three sub-indicators: 
productivity and its trend over time, land use/cover changes, and trends 
in carbon stock above and below ground. For its importance in the final 
assessment (see chapter 1 “Introduction”), this study focuses on land 
productivity and how it is measured by the international scientific 
community. Although the term “productivity” refers to a soil’s capacity 
to provide yields and is closely related to the concept of physical, 
chemical, and biological fertility, the methodology adopted by the 
UNCCD proposes measuring this sub-indicator using the NDVI index, 
applied as a proxy for depicting the phenomenon over time. 

In this context, remotely sensed data can surely play a significant role 
in determining land degradation processes by offering a list of un
doubtable advantages, such as the speed of the analysis, low costs, the 
possibility to monitor land changes over time and quickly compare 
different landscapes, and the opportunity to evaluate the processes over 
large territories. One of the most important factors is the almost com
plete absence of surveys aimed at testing data obtained by remote 
sensing of direct field observations (Kirui et al., 2021, AbdelRahman, 
2023, Gabriele & Brumana, 2023). Some cases have been recently 
studied at local level in Africa, in central Mediterranean areas and 
eastern Asia (Reith et al., 2021, Schillaci et al., 2023, Cherif et al., 2023, 
Von Maltitz et al., 2019, FAO, 2022) and these consider the overlapping 

Fig. 11. Example of comparison between Landsat and MODIS images used as datasets for the calculation of the proposed new metric. The images from left to right 
are from Google Earth true colour, Landsat and MODIS new metric. The white circle identifies the point selected to produce the charts. In this example, the same 
metric returns conflicting results due to different image resolution. Evidently, in the case of MODIS images on the right, the observation point corresponds to a pixel 
whose value was influenced by the fact that the surrounding areas were subjected to urbanization (degradation). On the other hand, for the same location, Landsat 
data at finer resolution returns some pixels that are classified as improved, probably due to a local change in land use during the observation period. 

Table 2 
Results of the reliability tests conducted on 450 (350 + 100) observation points.  

MODIS – UNCCD 
approach 

GEE MODIS – new 
approach 

GEE Landsat – new 
approach 

62 % 90 % 96 %  

Table 3 
Percentages of degraded, stable and improved areas using different approaches 
and data sources.   

MODIS – UNCCD 
approach 

GEE MODIS – new 
approach 

GEE Landsat – new 
approach 

Degraded 2,5% 6,1% 4,5% 
Stable 29,7% 73,3% 68,1% 
Improved 67,8% 20,6% 27,4%  
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of all the sub-indicators that mainly use global or national datasets as 
results of the SDG 15.3.1 indicator. Conflicting results are highlighted by 
using different input data sources and different scales of satellite images 
(Akinyemi et al., 2021, GEO-LDN Initiative, 2020, Jendoubi et al., 
2019). With regards to land productivity, many case studies stress the 
accuracy of the NDVI trajectory as the best proxy for determining 
degradation phenomena coupled with other climatic/drought parame
ters or phenological and productivity-related variables (Prince, 2019, 
Schillaci et al., 2022, Rotllan-Puig et al., 2021, Xoxo et al., 2022), but the 
same Earth Observation (EO) data source can produce different results 
that lead to “false-positives” of apparent improvement trends for 
degraded areas and, conversely, “false-negatives“ (FAO, 2022, Thomas 
et al., 2023). 

In this context, the present analysis highlights the greater effective
ness of the proposed new method in assessing the productivity sub- 
indicator. Contextually it is very interesting to highlight that the pro
posed approach – based just on the NDVI trend – is very high-performing 
and able, in specific cases, to replace the complex UNCCD approach, 
which includes soil and land use information. Moreover, it could be 
hypothesized that this approach, especially benefiting of higher spatial 
resolution EO data and the opportunity to produce at pixel level graphs 
on the-fly of indicators, could become a tool for local, regional and 
national-scale land degradation monitoring in compliance with the 
SDG15.3.1 indicator. Additionally, since the approach is based on open 
data, it is open to further improvements and can be replicated with ease 
over different territories and eventually using finer resolution data like 
free satellite images from Sentinel. However, there are some critical 
issues which are summarized below:  

- The observation of trends and patterns of just NDVI data cannot 
automatically be interpreted in terms of land degradation and/or 
improvements, except for in striking cases.  

- The relationships between soil degradation and productivity may not 
be linear, so additional parameters and/or indicators should be used 
contextually to NDVI. 

- The availability of high-resolution data allows significant improve
ment of the analyses by reducing the noise effects of adjacent pixels 
and guaranteeing greater precision in the representation of the 
spatial variability of the data.  

- A careful study of the signals and their trends at pixel level, by using 
representative samples of the full data, is necessary. This is funda
mental in order to understand the system behaviour over time.  

- Reliability analysis of the results is required, possibly by using 
quantitative in-situ measurements as ground truths. This issue is 
critical when approaches are transferred between scales.  

- To confirm the robustness of the proposed procedure, it needs to be 
applied in pilot areas with different environmental conditions in 
Europe and elsewhere. 

Finally, the results obtained in this work show the need to identify 
more sensitive approaches, either on the basis of the combination of 
remote sensing variables, as has already been proposed by other authors 
(Markos et al., 2023; Kussul et al., 2023), or by adding different trend 
analysis methods, for example, those based on the study of the fitting 
function parameters or on the usage of additional resources such as 
satellites with hyperspectral sensors, airborne data, etc. (Milewski et al., 
2022). 

5. Conclusions 

In the present study, we have observed the SDG 15.3.1 land pro
ductivity sub indicator through the trajectory metric of NDVI in order to 
assess land degradation in Campania during the 2001 – 2018 period. We 
started with the assumption that the trajectory is the most representative 
metric. The analysis, performed by applying the official methodology 
through Trends.Earth software, showed widespread improvement in the 

land conditions and almost 68 % of the total surface was classified as 
improved; only 2.5 % of the whole territory appeared affected by 
degradation and about 30 % was apparently in a stable condition. These 
results are not in agreement with general trends of land degradation at 
national or European levels, although we are aware that the method
ologies applied are different. Nevertheless, on the basis of this evidence, 
we tried to improve the analysis by developing the entire code in the 
GEE environment to reproduce the same steps followed by the official 
UNCCD methodology. We masked low quality pixels through the quality 
assurance of the MODIS images, so ensuring the absence of most of 
potential outliers due to signal noises. The application of the mask 
prevented the noise of several disturbed pixels from changing the re
sults, mainly in correspondence with some municipalities located along 
the Campania region coastline. After this first attempt to improve the 
output, we exploited the potential of the GEE by developing a script to 
run real-time chart visualization which, on a pixel basis at selected 
observation points, represented the trends of the NDVI signal over time. 
We also wrote a code to upload the observation points via.kml files onto 
the Google Earth platform and used the time slider tool to “follow”, 
through true colours satellite images, the variations to which the can
opies and eventually the surrounding land were subjected during the 
observation period. The working framework highlighted the need to 
identify a new metric that is capable of overcoming certain limitations 
shown by the UNCDD official methodology. 

For this purpose, we proposed a novel procedure consisting of the 
assessment of NDVI maximum annual values instead of mean values for 
trajectory calculations. This new approach produced a map of Campania 
that, as opposed to the official approach, showed a significant increase 
in the stable areas, a decrease in those classified as improved and a slight 
increase in areas classified as degraded. These results, which were also 
confirmed by using higher resolution data collection, are most likely due 
to the lower sensitivity of the new metric to the outliers of the minimum 
NDVI values. Moreover, we noticed the better performance of the new 
metric in some specific striking cases, such as in the case of areas sub
jected to evident soil erosion, land use change and forest areas that were 
subjected to coppicing. Indeed, the verification of the approaches car
ried out by using a network of sample points scattered throughout the 
region, indicated a reliability of around 60 % for the official approach 
and 90 % in the case of the proposed new approach (up to 96 % by 
applying the new metric to Landsat 7 collection). The same best outcome 
can be observed in areas that remain “stable”, typically in natural or 
forested areas where the cover and density of the canopy are constant 
over time without showing clear signs of deterioration or reduction. 

The reliability test was carried out considering the interpretation of 
the Google Earth true colours multi-temporal images as “ground truth”. 
This procedure is obviously not comparable to field measurements of 
degradation processes, but it presents certain advantages such as 
requiring less time to cover extended areas at a lower cost considering 
the free satellite image sources. Furthermore, it became clear that, 
through the proposed framework, the reliability analysis can mainly be 
conducted by observing evident and visible degradation phenomena, as 
in the case of intense soil erosion, soil sealing, fires, etc., or evident 
improvement phenomena, such as changes in land use (i.e. from agri
cultural to forestry or the restoration of urban areas which adopt nature- 
based solutions). All other forms of potential degradation/improvement 
which do not necessarily result in significant changes in NDVI, such as 
soil pollution, compaction, loss of organic matter, or the use of improved 
cultivation techniques, are less easily detectable even when using the 
finest spatial resolution of remote sensing. However, even considering 
the above, it is our opinion that the use of the trend metric based on 
maximum NDVI yearly values is more suitable than the official metric in 
determining degraded/improved or stable areas over the territory. This 
approach, combined with the higher resolution of the satellite imag
eries, reproduces the spatial variability of the metrics in greater detail 
and better assessment of potential land degradation processes within 
strongly fragmented territories like Campania. It is self-evident that the 
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greater resolution translates into more useful information for planning 
purposes, especially on local scales, where it is particularly important to 
know where and how it is necessary to limit the degradation phenomena 
of the territories. 

The proposed study aims to improve an already existing approach 
based on the trend metrics of a vegetational index. Although further 
insights are required, our results confirmed an improvement, paving the 
way for future studies addressed at applying the same approach to the 
other sub-indicators provided by the UNCCD methodology (state and 
performance). Moreover, the proposed approach which provide on the- 
fly pixel based indicators graphs and utilize open EO data even at high 
resolution, could become a easily replicable tool for local, regional and 
national-scale land degradation monitoring. 

The world of remote sensing is constantly and very quickly evolving 
and tools such as the GEE allow very complex analyses at very low cost 
today. The spatial resolution and the number of bands of satellite re
sources are also continuously improving, so guaranteeing greater pre
cision in the analyses and applicability of indicators to spatial scales that 
are appropriate for landscape planning and management. In this 
context, Sentinel-2 images, freely available for download since 2015, or 
the very high-resolution of unmanned aerial vehicles might permit 
better investigation of the effects of land management on soil degrada
tion processes, even on a single farm scale. 
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