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Abstract According to the idea now widespead that macroseismic intensity should
be expressed in probabilistic terms, a beta-binomial model has been proposed in the
literature to estimate the probability of the intensity at site in the Bayesian framework
and a clustering procedure has been adopted to define learning sets of macroseis-
mic fields required to assign prior distributions of the model parameters. This article
presents the results concerning the learning sets obtained by exploiting the large Ital-
ian macroseismic database DBM1I11 [5] and discusses the problems related to their
use in probabilistic modelling of the attenuation in seismic regions of the European
countries partners of the UPStrat-MAFA project [17], namely South Iceland, Por-
tugal, SE Spain and Mt Etna volcano area (Italy). Anisotropy and the presence of
offshore earthquakes are some of the problems faced. All the work has been carried
out in the framework of the Task B of the project.
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1 Introduction

The capability to forecast seismic scenarios in terms of macroseismic intensity at a
site is of great importance and the issue has largely been analysed in the past by mod-
elling the intensity attenuation according to a deterministic point of view. Nowadays,
however, the idea that the intensity at a site, as well as the intensity decay, must be
expressed in probabilistic terms in order to obtain a more complete treatment of its
intrinsic uncertainty is widespread [8], [6], [16]. According to this idea, [13] pro-
posed to estimate the probability distribution of the intensity at a site, conditioned on
the epicentral intensity and on the epicentre-to-site distance, by using a beta-binomial
model. The estimation process is carried out according to the Bayesian paradigm, ex-
ploiting a learning set of macroseismic fields to assign prior distributions of the model
parameters. The model was at first tested on the Camerino (28/07/1799) and Colfior-
ito (1997/9/26) earthquakes by using, as learning set, a set of macroseismic fields
from seismogenetic zones of the zonation ZS4 [7] judged homogeneous from the
viewpoint of kinematic context and expected rupture mechanism to the zone which
the epicentres of the two earthquakes belong to.

The definition of a suitable learning set is a key point for an extensive use of
the model. [19] suggested to apply a clustering procedure to macroseismic fields
chosen from Italian macroseismic databases to derive classes of fields internally ho-
mogeneous from the attenuation point of view, and to use these classes as potential
learning sets in subsequent studies aimed at forecasting damage scenarios in terms
of macroseismic intensity. The idea underlying this proposal is that the estimation of
the model parameters improves if it is possible to choose a learning set whose atten-
uation trend fits as much as possible the one characterizing the situation under study.
Moreover, since the difference in the decay trend depends on many geological char-
acteristics, not all available or easily measurable, they launched the innovative idea
of describing the macroseismic fields through summaries of the spatial distribution of
the intensity decay and to base the clustering procedure on them. This approach for
constructing potential learning sets has been first applied to the macroseismic fields
of 55 hearthquakes of epicentral intensity MCS ≥ V II, selected from the DBMI04
Italian database [15] and judged to be representative of spatial and temporal distribu-
tion of the Italian seismicity.

In the UPStrat-MAFA project [17] the strategy above mentioned has been refined
and the proposed model has been applied to macroseismic fields of European seismic
regions of Iceland, Portugal, Spain, and in Mt Etna volcano area. The aim is that of
contributing to implement common strategies to assess seismic hazard in terms of
intensity through probabilistic modelling of the different attenuation trends.

We want to highlight that the estimation of the intensity at site allows to forecast
the severity of the damages that a future earthquake can cause and the expected ex-
tension of the area hit by the event so as to expedite the selection of the strategies
of post-seismic intervention. From a long-term perspective this knowledge allows to
grade and prioritize the interventions addressed to risk mitigation and protection of
urban settlements from an earthquake [9].

This article is divided in three main parts. In the first part we explain the method-
ological aspects of the strategy in detail; in the second one we introduce the potential
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learning sets we derived on the basis of the most updated database of Italian macro-
seismic fields; in the third part we present the answers given to some issues arisen in
the analysis of the test areas.

2 Some statistical methods and a probability model in seismic attenuation

2.1 Construction of learning sets

Given an as large as possible reference set of N macroseismic fields produced by
earthquakes that occurred in a wide region, it is necessary to examine whether the
attenuation trends are considerably different and, in this case, to apply a clustering
procedure which identifies groups of fields homogeneous from the attenuation point
of view. Each clustering procedure rests on the description of the objects to be clus-
tered by means of a set of attributes; in the case of macroseismic fields, an obvious
choice is to use summaries of the spatial distribution of the intensity decay as at-
tributes. More precisely, each macroseismic field may be characterized by the mean,
the median and the 3rd quartile of each set of distances between the epicentre and the
sites where the same intensity Is, or, equivalently, the same ∆ I, was observed. This
results in characterizing each macroseismic field by a vector of q = 3 I0 attributes,
where I0 is the value of the epicentral intensity. The N× 3 max I0 matrix obtained
by considering all of the N fields is the basis for the computation of a dissimilarity
matrix among the macroseismic fields, that is the next step required for the applica-
tion of a clustering method. It has to be pointed out that this representation of the
macroseismic fields is likely to produce missing values since some of the intensities
Is in the range (1, I0) may have not been recorded in some of the macroseismic fields
and, moreover, the value I0 itself is not the same for all of the macroseismic fields.
However, this is not a problem because the methods used in the following are able to
handle missing data. For details we refer the interested reader to [4].

As a measure of dissimilarity we use the so-called Manhattan distance, that is

d(i, j) =
q

∑
k=1
| xik− x jk |,

where (xi1,xi2, . . . ,xiq) and (x j1,x j2, . . . ,x jq) are the attributes of the two macroseis-
mic fields i and j. This measure is not particularly sensitive to outliers and this is
reason for which it has been chosen.

The clustering method used to group the macroseismic fields belongs to the class
of the hierarchical agglomerative methods and it is known as Ward method [4]. We
choose this class of methods since we think it allows a more thorough understanding
of the clustering process than the methods designed for a fixed number of groups, and
in particular the Ward method since it does not suffer from the drawbacks typical of
other agglomerative methods, such as, for example, the chaining effect typical of the
single linkage method. According to the agglomerative methods each object, in our
case each macroseismic field, is initially considered as a separate cluster; therefore
at the beginning of the procedure one has as many clusters as fields to be clustered.
Subsequently, at each step, the number of clusters is reduced by one by merging the
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two clusters whose combination optimizes a given objective function. The merging
process continues until only one cluster is left. In particular, Ward method minimizes
the loss of information associated with each merger. Let x̄R denote the centroid of a
cluster R, defined by the value x̄k = 1/mR ∑i∈R xik, k = 1, . . . ,q, where mR is the num-
ber of macroseismic fields (objects) in the cluster. The loss of information associated
with the cluster is defined in terms of the sum of the distances from its centroid:

ER = ∑
i∈R

d(xi, x̄R),

where, in our case, d is the Manhattan distance above defined. At each step the union
of every possible pair of clusters R and S, generating a new cluster T , is considered
and the two clusters whose merger results in the minimum increase ∆E are combined,
where ∆E is given by:

∆E = min
R,S

∆ERS = ET −ER−ES.

Several quantitative and graphical tools can provide insight into the hierarchy of clus-
ters so obtained. The most used graphical tool is the dendrogram, that depicts the
whole merging process, step by step; another is the so-called silhouette plot [14]. Ex-
amples of dendrogram and of silhouette plots are provided in section 3, as well as an
explanation of this last plot. See also [19].

2.2 Probabilistic analysis

2.2.1 Beta-binomial model

Conditioned on the epicentral intensity I0, and on a fixed epicentral distance, the
intensity at a given site Is is assumed to have a binomial distribution with parameter
p:

Pr(Is = i | I0 = i0, p) =
(

i0
i

)
pi(1− p)i0−i ,

which is equivalent to assume that also the intensity decay ∆ I has a binomial distri-
bution with parameter p since

Pr(∆ I = i0− i | I0 = i0, p) = Pr(Is = i | I0 = i0, p).

The choice of the binomial distribution is predicated on respecting as far as possi-
ble the ordinal nature of the intensity scale applied. The parameter p, in its turn, is
taken as a random variable in order to account for the variability in ground shaking
even among sites at the same epicentral distance, and it is assumed to have the beta
distribution:

Be(p;α,β ) =
Γ (α +β )

Γ (α)Γ (β )

∫ p

0
xα−1(1− x)β−1dx
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with hyperparameters α and β . The beta distribution is chosen because of its great
flexibility and tractability within the Bayesian framework. Mean and variance are
given, respectively, by:

E(p) =
α

α +β
σ

2(p) =
αβ

(α+β )2(α +β +1)
. (1)

First we assume that the decay is isotropic, i.e., we assume to have a point source
and circular isoseismal lines bounding the points of equal intensity. In section 4.1 we
shall drop this assumption and also consider the anisotropic case. In the present case
we draw J circular bins around the epicentre and suppose that in all of the sites within
each j-th bin, Is - so as ∆ I - has the same binomial distribution with parameter p j,
i.e.:

Pr(Is = i | I0 = i0, p j) = Pr(∆ I = I0− i | I0 = i0, p j) =

(
i0
i

)
pi

j(1− p j)
i0−i. (2)

In its turn, each p j has a beta distribution with hyperparameters α j and β j. The width
of the bins may vary depending on the situation under study; in the analysis of the
macroseismic fields of the Italian database DBMI11 [5] we have taken bins of 10 km.

2.2.2 Parameters estimation

In the Bayesian framework, the estimation procedure of the model parameters con-
sists of the following main steps: elicitation of prior distributions of the parameters
from our beliefs on the phenomenon, computation of the posterior distributions given
the current observations, and evaluation of the parameter estimator. In the present
context we proceed in different way depending on whether we have sufficient in-
formation “to learn from the past” or nor. In Italy, the availability of the database
DBMI11 allows us to build classes of macroseismic fields with similar intensity de-
cay (section 3) and to use them as sources of prior information; on the contrary, as
for other European countries where such a database is missing, in section 4.2 we de-
scribe how and with which of those classes the macroseismic fields of the area under
study may be matched, by using those classes as potential learning sets for all the
case studies carried out inside the UPStrat-MAFA project [12].

After selecting an attenuation class C , we assume that our aim is to analyse the
attenuation of earthquakes, belonging to this class, of fixed epicentral intensity I0. If,
for instance, I0 = VII, then we will have C =C0∪C1, where C0 is the set of the fields
generated by earthquakes of intensity VII and C1 the set of the remaining fields. In
each bin drawn around the epicentre, on the basis of the information provided by the
macroseismic fields which constitute the set C1, we assign the hyperparameters α j,0
and β j,0 of the prior beta distribution of the parameter p j in the following way. The
probability that the decay is equal to 0 is given by:

Pr(Is = i0 | I0 = i0, p j) = Pr(∆ I = 0 | I0 = i0, p j) = pi0
j (3)
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and it can be roughly estimated by using the relative frequency of null decay N j(i0)/N j,
where N j(i0) is the number of the N j sites in the jth bin where the intensity at site
is not smaller than the epicentral intensity. In this way the initial mean value for p j

will be p j,0 = (N j(i0)/N j)
1/i0 . To overcome the problem that this procedure is not

applicable in the bins where there is no report of null decay, the available values p j,0
are approximated by the smoothing inverse power function g(d) = [c1/(c1 + d)]c2 ,
whose coefficients c1,c2 are estimated by the method of least squares. In this way
we are able to obtain initial values p j,0 for every jth bin. The variance σ2(p j) must
satisfy some inequalities of the form b1 j < σ2

j < b2 j, suggested by the significance
of p j in the decay process, as indicated in [13]; therefore, we have chosen to set
σ2(p j) = b1 j +0.99× (b2 j−b1 j). After assigning the variance σ2(p j), we invert (1)
to obtain the values of the hyperparameters α j,0 and β j,0.

Being the beta distribution a conjugate prior for the binomial model, the posterior
distribution of p j is again a beta distribution. Then, on the basis of the macrosesmic
fields belonging to C0, we update the parameters of each posterior beta distribution
according to the Bayesian approach, and estimate the parameters p j through their
posterior mean:

p̂ j =
α j,0 +∑

N j
n=1 i(n)s

α j,0 +β j,0 + i0 ·N j
, (4)

where N j is the total number of sites that are in the jth bin and i(n)s is the intensity at
the n-th site. We point out that the estimates really updated are only those associated
with bins where data points were observed; therefore we again smooth these values
p̂ j through a new inverse power function g(d) = [c1/(c1 +d)]c2 by obtaining, in this
way, a binomial distribution of Is, Pr(Is|I0;g(d)), conditioned on I0, at any distance d
from epicentre.

2.2.3 Forecasting

Whenever we have new observations, once estimated the parameters p j through their
posterior mean (4), and smoothed these estimates p̂ j by using a specific inverse power
function g(d) = [c1/(c1 + d)]c2 , we are able to forecast, in terms of macroseismic
intensity Is at site, the damage scenario that a future earthquake of given intensity I0
could cause by the smoothed binomial probability distribution:

Prsmooth(Is = i | I0 = i0;g(d)) =
(

i0
i

)
g(d)i (1−g(d))(i0− i) (5)

and by using the mode ismooth of this distribution as forecast value of the intensity Is
at any site distant d from the epicentre.

Having an entire probability distribution for the variable Is to predict, instead
of just its estimate as in the deterministic attenuation laws, is a great potentiality
of our probability model; indeed this allows to better express the uncertainty of the
phenomenon by computing, for instance, the probability that Is exceeds a given value
at a fixed site.
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2.2.4 Validation

To validate the results three criteria are proposed. The first one is the so-called loga-
rithmic scoring rule [18], based on the logarithm of the likelihood function

scoresmooth =−
1
N ′

log
N
′

∏
n=1

(
i0

i(n)s

)
g(dn)

i(n)s (1−g(dn))
(i0− i(n)s ) , (6)

where N
′

is the total number of the observed intensities at site, i(n)s is the intensity at
the n-th site and dn is the distance of the n-th site from the epicentre.

The second criterion is based on the p(O)/p(F) ratio between the probability that
the fitted model assigns to an observation O and the probability of the forecast value
F , that is

oddssmooth =−
1
N ′

log
N
′

∏
n=1

Prsmooth(i
(n)
s )

Prsmooth(i
(n)
smooth)

,

where i(n)smooth is the estimate of the intensity at the n-th site provided by the mode
of the smoothed binomial distribution. The idea behind this measure is based on a
consideration of how much is gained from having predicted F when O occurs and is
borrowed from the concept of deviance [11]. Of course the gain is maximum when
we have predicted what really occurs.

The third and last criterion is based on the absolute discrepancy between observed
and estimated intensities at site

di f fsmooth = 1/N
′ N

′

∑
n=1

∣∣∣i(n)s − i(n)smooth

∣∣∣ . (7)

On the basis of the absolute discrepancy (7) comparisons have been performed
with the best deterministic attenuation relationships proposed in the literature for the
various test areas; for the complete results the reader is referred to the final report of
the UPStrat-MAFA project [12].

3 The learning sets

The data set considered in the UPStrat-MAFA project [17] as a basis for the cluster-
ing procedure is composed of 298 macroseismic fields drawn from the most recent
Italian macroseismic database, DBMI11 [5], that have at least 40 data points and cor-
respond to the earthquakes of MCS ≥V that occurred in Italy from 1500. The spatial
locations of these events cover all the Italian territory. Table 1 shows the number N of
the macroseismic fields which compose our data set for each value of the epicentral
intensity. On the whole the data points are 43350.
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Fig. 1 Dendrogram obtained by applying the Ward method to the part of the DBMI11 Italian database
used in the UPStrat-MAFA project. A, B, C and D denote the four classes we selected.

Table 1 Number of macroseismic fields analysed, subdivided by epicentral intensity.

I0 V V-VI VI VI-VII VII VII-VII VIII VIII-IX IX IX-X X X-XI XI tot.
N 28 42 55 17 40 25 26 7 22 6 18 3 9 298

The dendrogram produced by applying the Ward method, described in section
2.1, to this set of data is depicted in Figure 1. Background knowledge about the Ital-
ian sismicity, visual inspection of the dendrogram and the analysis of the silhouette
plots (explained in the following) drove us to select the four classes A, B, C and D
highlighted in Figure 1, of size 97, 165, 23 and 13, respectively.

The Agglomerative Coefficient (AC) whose value is shown in Figure 1 concerns
the strength of the clustering structure obtained. For each macroseismic field i, i =
1, . . . ,298, we denote by d(i) its dissimilarity to the first cluster it is merged with,
divided by the dissimilarity of the merger in the final step of the process; AC is the
average of all (1− d(i)). Its possible value ranges between 0 and 1, and the higher
the AC value, the clearer the clustering structure. As it is seen, in our case the value
is very high, signifying the sharpness of the clustering structure.

As for the silhouette plots that we used to support the choice of the classes, the
silhouette value s(i) of each object, in our case each macroseismic field, is computed
as follows. Let A be the cluster to which object i belongs and a(i) the average dis-
similarity of i to all other objects in A. Then let C be any cluster different from A and
d(i,C) the average dissimilarity of i to all objects of C. After identifying the cluster
B such that

b(i) = d(i,B) = minC 6=Ad(i,C),

s(i) is defined as
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Fig. 2 Silhouette plot corresponding to the four classes A, B, C, and D.

s(i) =
b(i)−a(i)

max{a(i),b(i)}
.

B is called neighbour of object i and the second-best cluster for object i. The
value s(i) always lies between -1 and +1, and it is clear that the more s(i) approaches
1, the better the object i is classified, whereas if s(i)≈−1, object i is badly classified.
The overall average silhouette width is then defined as the average of the s(i) over
all objects i in the data set. The silhouette plot is the graphic representation of this
quality index. It is a plot showing the silhouettes of all clusters next to each other,
where the silhouette of a cluster is a plot of the s(i), ranked in decreasing order, of all
its objects i. Figure 2 provides the silhouette plot corresponding to the four classes A,
B, C and D we selected. The average silhouette width is 0.3, which is the best value
compared to those obtained by considering 3 and 5 classes.

The software used to perform the clustering procedure and to derive the silhouette
plots is the free software R [10].

A summary of the data set analysed is given in Table 2. We remark that in the
probability model proposed the intensity is considered as an integer variable, hence
the intensities I0 assessed by half degrees have to be approximated. We have chosen
to approximate them by below, that is, for instance, the earthquakes with I0 = V-VI
are grouped together with those of I0 = V, and so on. We stress that this is the unique
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Table 2 Summary of the 298 macroseismic fields analysed, subdivided by epicentral intensity I0 and
attenuation classes A, B, C, D.

class
I0 A B C D
V 7 20 1 - 28

V-VI 6 35 1 - 42
VI 15 29 9 2 55

VI-VII 1 9 3 4 17
VII 15 20 3 2 40

VII-VIII 10 11 3 1 25
VIII 7 16 2 1 26

VIII-IX 1 5 - 1 7
IX 14 5 1 2 22

IX-X 4 2 - - 6
X 9 9 - - 18

X-XI 3 - - - 3
XI 5 4 - - 9

97 165 23 13 298

approximation we have done; throughout the algorithm the intensity values are used
as they are in the data set, respecting their uncertainty.

Figure 3 shows the epicentre distribution of the 298 earthquakes which constitute
the four attenuation classes A, B, C, and D among which we chose the learning set for
each of the case studies, and those available, at present, for potential future studies.
The classes have attenuation trends decreasing in steepness, that is class A contains
the macroseismic fields with the steepest attenuation trend, whereas class D gathers
macroseismic fields with the flattest attenuation trend. This is exemplified in Figure
4, that also shows the global internal homogeneity of the different classes in terms of
attenuation, despite the great variety of situations.

As exemplified in section 4.2, in each case study the choice of a suitable learning
set is carried out by comparing the attenuation trends of the earthquakes under study
with those of the four classes, and by choosing the most similar one.

Figure 5 shows, conditioned on I0 =V II, the prior and posterior estimates of the
parameters p j of the binomial distribution of the intensity at site Is obtained for each
of the classes A, B, C, and D as explained in section 2.2.2. The estimates were ob-
tained under the assumption of isotropic decay and the width of the distance bins
was assumed equal to 10 km. The red curves depicted in Figure 5 represent the
trends of the estimates obtained by applying the smoothing inverse power function
g(d) = [c1/(c1 + d)]c2 with the values given in Table 3. We emphasize that these
trends should not be confused with deterministic attenuation laws; in fact, they are
substantially linked, by Eq. 3, to the variation of the probability of null decay with
respect to the distance from the epicentre. For I0 = V the estimates are shown just for
classes A, B, and C since class D does not include earthquakes with I0 = V. Similarly,
for I0 = X and I0 = XI the estimates are shown just for classes A and B since classes
C and D do not include earthquakes with I0 = X and I0 = XI.

The 298 macroseismic fields taken into account for building the learning sets
have also been used to costruct the classification tree [3] depicted in Figure 6. Very
briefly, the tree has to be interpreted as follows. In the root node we have all the data
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Fig. 3 Spatial location of the 298 earthquakes subdivided into the four attenuation classes A, B, C, and D.

set, that is the 298 macroseismic fields, each characterized by the attenuation class it
belongs to. Each split is driven by a condition concerning one of the summaries of
the spatial distribution of the intensity decay used to describe the macroseismic fields
in the clustering procedure (see section 2.1). For example, the condition mean[2] <
29.56 ruling the very first split concerns the mean of the distances of the sites with
∆ I = 2, while the condition mean[4] < 82.72 ruling the split at the very left of the
tree concerns the mean of the distances of the sites with ∆ I = 4, and so on.

The macroseismic fields for which the condition is satisfied are directed to the
left, those for which the condition is not satisfied are directed to the right. As it is
seen, each node of the tree, including the terminal nodes (leaves), is characterized by
its composition in terms of macroseismic fields (in order, classes D, A, B, C, as in
Figure 1) and by the class assigned to it according to the composition itself. To exem-
plify, let us take again the leaf at the very left of the tree: it contains 80 macroseismic
fields of class A, 4 of class B and none of the two other classes, and class A is the
class associated with the leaf. At the opposite side, on the extreme right of the tree,



12 Renata Rotondi et al.

class A

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1887/11/14   VI1887/11/14   VI1887/11/14   VI1887/11/14   VI1887/11/14   VI

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1915/01/13   XI1915/01/13   XI1915/01/13   XI1915/01/13   XI1915/01/13   XI1915/01/13   XI1915/01/13   XI1915/01/13   XI1915/01/13   XI1915/01/13   XI

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1975/01/16   VII−VIII1975/01/16   VII−VIII1975/01/16   VII−VIII1975/01/16   VII−VIII1975/01/16   VII−VIII1975/01/16   VII−VIII

class B

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1997/10/14   VII−VIII1997/10/14   VII−VIII1997/10/14   VII−VIII1997/10/14   VII−VIII1997/10/14   VII−VIII1997/10/14   VII−VIII

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1694/09/08   X1694/09/08   X1694/09/08   X1694/09/08   X1694/09/08   X1694/09/08   X1694/09/08   X1694/09/08   X

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1908/12/28   XI1908/12/28   XI1908/12/28   XI1908/12/28   XI1908/12/28   XI1908/12/28   XI1908/12/28   XI1908/12/28   XI1908/12/28   XI1908/12/28   XI

class C

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1987/05/02   VI1987/05/02   VI1987/05/02   VI1987/05/02   VI1987/05/02   VI

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1990/12/13   VII1990/12/13   VII1990/12/13   VII1990/12/13   VII1990/12/13   VII1990/12/13   VII

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1731/03/20   IX1731/03/20   IX1731/03/20   IX1731/03/20   IX1731/03/20   IX

class D

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1998/03/26   VI1998/03/26   VI1998/03/26   VI1998/03/26   VI1998/03/26   VI

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1914/10/27   VII1914/10/27   VII1914/10/27   VII1914/10/27   VII1914/10/27   VII1914/10/27   VII

0 50 100 150 200 250
0

2

4

6

8

10

12

 distance [km]  

 i
n
te

n
s
it
y
 d

e
c
a
y
  

∆
 I

1690/12/04   VIII−IX1690/12/04   VIII−IX1690/12/04   VIII−IX1690/12/04   VIII−IX1690/12/04   VIII−IX

Fig. 4 Intensity decay versus epicentral distance for some macroseismic fields of class A, B, C, and D.
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the same ∆ I. The date and the epicentral intensity of the relative earthquakes are shown too.

we have a leaf containing 116 macroseimic fields of class B, 1 of class A and C and
none of class D. The class associated with the leaf in this case is class B. The idea
underlying the construction of a classification tree is that of having leaves as uniform
as possible in terms of the class they belong to. In our case the result is very satis-
factory since the percentage of macroseismic fields directed to leaves associated to
classes different from the ones they belong to is very low, as it can be easily verified
by looking at the leaves themselves.
Generally speaking, given a set of known classes, a classifier is used to assign one of
these classes to an object whose class is unknown. A classification tree achieves this
aim by entering the object into the tree and directing it to one of the leaves according
to the conditions on the splits. In this study the classification tree we constructed has
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Fig. 5 Prior and posterior estimates of parameters p j (blue dots). The red curves indicate the smoothing
inverse power functions, and the green bars the 80% confidence intervals of the p j . Classes A, B, C and
D; I0 = VII. We recall that parameters p j and probability of null decay are linked by Eq. 3
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Table 3 Parameters of the inverse power functions smoothing the values of the p j,0 prior and p j posterior
parameters, respectively, for the attenuation classes A, B, C and D.

I0 Class c1,0 c2,0 c1 c2
V A 8391.50 290.52 13587.91 244.38

B 10169.59 186.29 433.66 3.66
C 177.84 2.18 65.93 0.72
D - - - -

VI A 7026.81 232.13 12776.89 216.50
B 15909.20 316.81 36125.39 261.90
C 15703.24 192.29 165.87 1.08
D 22464.64 353.85 208.48 0.87

VII A 4786.27 160.30 13679.45 191.53
B 18650.52 346.79 361.63 3.01
C 159.88 1.99 261.29 1.58
D 28026.65 304.56 13.99 0.21

VIII A 8425.44 273.20 13515.28 189.91
B 17759.64 331.79 209.08 1.70
C 1187.72 11.84 56.81 0.59
D 25159.44 300.90 26.57 0.30

IX A 8908.18 285.60 13973.95 162.15
B 16013.49 291.74 123.10 1.10
C 2905.35 29.91 201.73 1.72
D 20684.05 219.65 83.61 0.75

X A 6354.20 226.24 31832.60 329.98
B 18600.38 331.09 93.92 0.84
C - - - -
D - - - -

XI A 10650.37 357.73 33942.32 307.74
B 17819.76 333.78 20376.75 115.65
C - - - -
D - - - -

Fig. 6 Classification tree built with the 298 macroseismic fields.
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been used to help choosing the attenuation class of the macroseismic fields consid-
ered in the different case studies. In studies on seismic hazard assessment in Italy, the
classification tree has been used for assigning the attenuation class to those macro-
seismic fields of the DBMI11 database that did not enter into the clustering procedure
since they provide little information.

The software used to obtain the classification tree is the free software R [10].

4 Solutions to some specific problems

4.1 How to exploit information on anisotropy?

In Agostinelli and Rotondi [1], data depth functions have been applied to identify
attenuation patterns in sets of macroseismic fields. In addition to the general circular
decay trend corresponding to the assumption of isotropic attenuation, it has turned
out that it can be appropriate to use an elliptical shape when we have information on
the fault rupture that caused an earthquake, in particular on the direction and length of
the rupture. Indeed, it can happen that more rapid decay is visibly recognizable along
the direction perpendicular to that of the fault in the macroseismic field generated by
a strong earthquake with long fault rupture. It is however clear that it is not possible
to collect a large number of fields with the same fault characteristics on which to base
parameter estimation. The solution we have found consists in a plane transformation
that turns the ellipse of major axis equal to the fault rupture into the circle of radius
equal to the width of the bins. This allows to exploit in assigning prior distributions
the information collected in the isotropic case. As for the assumption of anisotropic
decay, we just consider the hypothesis of elliptic isoseismal lines, but, in principle,
other curves could be considered, as long as it is possible to find a plane transforma-
tion that brings back to the circular pattern characterizing the isotropic decay.

In the ellipse case we proceed in the following way [2]: let us consider an ellipse
(blue line in Figure 7) rotated by an angle ψ with respect to the positive semi-axis,
with center at origin and semimajor a and semiminor b axes, respectively (in Figure
7 ψ = −0.785 rad, azimuth = 2.356 rad); first, we rotate it counterclockwise by the
angle ψ , overlapping it to the (green) ellipse in canonical position, then we scale this
ellipse to the (red) circle with radius b, and finally rotate this circle clockwise to the
original position. In Figure 7 the sequence of movements is indicated by the points 1,
2, 3, 4; at the side of the figure there are the equations linking the coordinates of the
moving points.

Once the plane transformation is performed, the probability model can be applied,
and the parameters estimated, as in the isotropic case (section 2.2). The estimated
probability distribution of the intensity Is that will be felt at a site is then associated
to the original position of that site. Since the anisotropic effect decreases with the
distance from the epicentre, we draw the subsequent elliptical bins by increasing
both the axes of a fixed equal segment ∆r, so that the eccentricity of the increasing
ellipses tend to 0. An example of the results obtained is given in Figure 8 which refers
to the 1865/07/19 earthquake that hit Fondo Macchia, a place on the eastern flank
of Mt Etna volcano. The top panels show the observed (left) and estimated (right)
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(1) −→ (2)

x2 = cos(−ψ) x1 − sin(−ψ) y1
y2 = sin(−ψ) x1 + cos(−ψ) y1

(2) −→ (3)

x3 = x2 × b/a y3 = y2

given θ = arctan(y2/x2) and

θ
′
= arctan(y3/x3), we set φ = −θ′

+θ+ψ

(3) −→ (4)

x4 = cos(φ) x3 − sin(φ) y3
y4 = sin(φ) x3 + cos(φ) y3

Fig. 7 Graphical representation and equations of the transformation of the (blue) ellipse into the (red)
circle.

Table 4 Number of macroseismic fields analysed for the European test areas involved in UPStrat-MAFA
project, subdivided by epicentral intensity.

Epicentral intensity
type of MFs V VI VII VIII IX X XI XII ≥ V

Italy isotropic 70 72 65 33 28 21 9 - 298

Mainland Portugal an/isotropic 3 4 1 - 1 1 - - 10

Offshore Portugal an/isotropic 1 - - 1 4 1 1 1 9

Azores Islands isotropic - 4 6 3 1 - 1 - 15

SE Spain isotropic 5 14 8 2 1 - - - 30

Mt Etna isotropic - 30 14 8 2 - - - 54
anisotropic - - 7 9 1 - - - 17

Iceland isotropic - 3 1 1 2 1 - - 8
anisotropic - - - - 2 1 - - 3

macroseismic field, whereas the botton panels depict the values of intensity Is that
may be exceeded with 25% (left) and 75% (right) probability respectively, according
to the estimated smoothed binomial distribution (5).

4.2 How to tune learning sets with data sets?

In the project UPStrat-MAFA we have analysed the macroseismic attenuation of Eu-
ropean countries: Portugal, Spain, Iceland, which do not have so large database of
macroseismic fields as to allow a reliable estimation of the probability distribution of
Is. Table 4 shows the number N of macroseismic fields examined for the European
test areas involved in the UPStrat-MAFA project, subdivided by epicentral intensity.

A way to proceed has been to compare the attenuation trend in these countries
with that of the four classes A, B, C, and D of macroseismic fields identified in the
Italian database DBMI11 [5] and used as learning sets (section 3). The comparison
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Fig. 8 Mt Etna, Italy: Anisotropic case. (top): Observed (left panel) and estimated (right panel) macro-
seismic field of the 1865/07/19 earthquake of I0 = VIII; (bottom): Intensities at site that may be exceeded
with probability 25% (left panel) and 75% (right panel).

was mainly carried out graphically by overlapping summaries (mean, median, 3rd

quartile) of the spatial distribution of the seismic decay in the classes A, B, C and
D with those of the country under examination. If necessary, we applied a scaling
factor k to the data from the European countries to improve matching; so, e.g., as
for Icelandic earthquakes of I0 ≥ IX , we noticed that what is felt at a distance d in
the case of Italian earthquakes in class A is similar to what is felt at distance d/2 in
Iceland. This means that the scaling factor k = 2 has to be adopted to make usable
the results obtained for class A as prior information on the decay in Iceland; there-
fore, the inverse power function g(d) = [(c1A/k)/(c1A/k+d)]c2A is used to obtain the
values p j,0 from which to deduce the hyperparameters of the prior distribution of the
parameter p j (section 2.2.2), where c1A and c2A are the parameters estimated through
the method of least squares from the macroseismic fields of the earthquakes in class
A (see Table 3). The correspondence between scaled (k = 2) Icelandic earthquakes
of I0 ≥ IX and class A was also supported by the result obtained by examining the
Icelandic macroseismic fields with the classification tree built on the basis of the 298
Italian fields (see section 3). Figure 9 compares summaries of the spatial distribution
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of the seismic decay in class A with those of the Icelandic earthquakes of I0 ≥ IX
without and with the scaling.

Table 5 Input parameters adapting the model to the observations from European countries: attenuation
class used as learning set, scaling factor, bin size, width of the first isoseismal line, length of the minor axis
of the first ellipse in the anisotropic case.

Isotropic input Anisotropic input

attenuation scaling bin first minor axis
class factor size isoseismal of the ellipse

Italy A, B, C, D 1 10 Km 10 Km -

Mainland Portugal B 1/2 20 Km 20 Km fault rupture/3

Offshore Portugal B 1/3 30 Km 30 Km fault rupture/3

Azores Islands A 2 5 Km 5 Km -

SE Spain A 1 10 Km 10 Km -

Mt Etna B 10 1 Km 1 Km fault rupture/5

Iceland A, Io≥ IX 2 5 Km 5 Km fault rupture/3

D, Io ≤ VIII 1 10 Km 10 Km -

Other critical points concern how to assign the size of the first circle, the width of
the bins, and the length of the minor axis in the anisotropic case. These values have
been typically determined through an exploratory analysis of the epicentral distances
of the sites at which ∆ I < 1 in the isotropic case, and through an exploratory analysis
of the distances of the same sites from the fault rupture in the anisotropic case. As for
Iceland, in the light of these values we have set the radius of the first circle and the
width of the subsequent bins equal to 20 km in the isotropic case, and the minor axis
in the anisotropic case equal to the third of the faul rupture (major axis). Table 5 sum-
maries all of the input parameters which adapt the model to the specific conditions of
the countries considered in the project.

4.3 How to integrate the fields of offshore earthquakes?

Offshore earthquakes are characterized by the lack of intensity data points at short
distances from the epicentre or from the fault rupture when it is known. In our ap-
proach this means that we were not able to compute some summaries (mean, median,
3rd quartile) of the spatial distribution of the seismic decay that are the starting point
of our modelling. For instance, the use of the classification tree in order to select the
most suitable learning set among the four classes A, B, C, and D, requires that some
specific summaries are known; indeed, on the basis of the learning set we used to
build the classification tree, the summaries required for using it as a classifier are 5,
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Fig. 9 Plots of summaries (median, 3rd quartile and mean) of the spatial distribution of the intensity decay
in class A (grey dots) and for Icelandic earthquakes having I0 ≥ IX (pink triangles), without (above) and
with (below) the scaling factor k = 2. Black dots and red triangles denote median values.
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and precisely the mean of the distances at which ∆ I = 1 (mean[1]), ∆ I = 2 (mean[2])
and ∆ I = 4 (mean[4]), and the median of the distances at which ∆ I = 3 (median[3])
and ∆ I = 4 (median[4]); we refer to section 3, in particular to Figure 6. When miss-
ing, they were derived by fitting the regression model ∆ I = 3log(d/h)+ b(d− h),
where d denotes distance and b and h are parameters of the model, estimated by
the least squares method. Figure 10 shows the values of the 5 summaries that were
provided in input to the tree for some offshore earthquakes of Portugal.
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Fig. 10 Offshore Portugal: Examples of plots of the mean (red), median (black) and 3rd quartile (green)
of the epicentral distances where the same ∆ I is recorded; d in the place of the missing summaries is
estimated according to the model ∆ I = 3log(d/h)+ b(d− h). Triangles denote observed values, squares
estimated values. The values of the summaries needed by the classification tree are shown too.

5 Conclusions

The UPStrat-MAFA project has offered the opportunity to make, for some European
seismic regions, the whole path from the collection of data to the evaluation of the
seismic risk impact on buildings and network systems. All of the steps have been
done in consistent way with the decisions of adopting the macroseismic intensity
as proxy measure of the size of an earthquake and of treating the various sources
of uncertainty through probabilistic methods. In this picture we have dealt with the
problem of attenuation modelling. A key point of our approach has been the construc-
tion of learning sets from which to draw information to enhance insufficient data sets
and to make reliable the parameter estimates. Then we have matched the data set of
each test area with the most similar learning set from the decay point of view so that,
according to the Bayesian paradigm, the prior distributions of the model parameters
are borrowed from the suitably modified posterior distributions obtained through the
learning set. Moreover, we have shown how to include in the same modelling also the
macroseismic fields of offshore earthquakes by completing the missing summaries of
the sets of distances from the epicentre to the sites where the same decay is recorded.
Finally, when information on the finite source is available, we have illustrated how to
return to a similar environment in which the decay is isotropic by a transformation of
the plane, to exploit the information collected in estimation of other data sets.

We refer the reader to the final report of the project [12] for more detailed infor-
mation and all the figures.
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2. R Azzaro, S D’Amico, R Rotondi, T Tuvè, and G Zonno. Forecasting seismic scenarios on Etna
volcano (Italy) through probabilistic intensity attenuation models: A Bayesian approach. Journal of
Volcanology and Geothermal Research, 251:149–157, 2013.

3. L Breiman, J H Friedman, R A Olshen, and C J Stone. Classification and regression trees. Chapman
Hall, New York, 1993.

4. L Kaufman and P J Rousseeuw. Finding groups in data. Wiley, New York, 1990.
5. M Locati, R Camassi, and M (eds.) Stucchi. DBMI11, the 2011 version of the Italian Macroseismic

Database. http://emidius.mi.ingv.it/DBMI11/. Milano, Bologna, 2011.
6. L Magri, M Mucciarelli, and D Albarello. Estimates of site seismicity rates using ill-defined macro-

seismic data. Pure and Applied Geophysics, 143(4):617–632, 1994.
7. C Meletti, E Patacca, and P Scandone. Construction of a seismotectonic model: the case of Italy.

Pageoph., 157:11–35, 2000. Zonation ZS.4 available from http://emidius.mi.ingv.it/GNDT/

P511/home.html.
8. F Meroni, V Petrini, R Rotondi, and G Zonno. Expected damage for alternative seismic hazard

evaluations. In Proceedings of 4th ICSZ, volume 2, pages 801–818, Standford, California, 1991.
9. B Pizzo and V Fabietti. Environmental risk prevention, post-seismic interventions and the recon-

struction of the public space as a planning challenge. Italian Journal of Planning Practice, 3(1):1–8,
2013.

10. R Development Core Team. R: A language and environment for statistical computing. http://www.
r-project.org. Vienna, Austria, 2008.

11. T R C Read and N A C Cressie. Goodness-of-fit statistics for discrete multivariate data. Springer-
Verlag, New York, 1988.

12. R Rotondi, C Brambilla, E Varini, and G Zonno. Task B - Probabilistic analysis of macroseismic
data for forecast damage scenarios. OA Earth-prints Repository, 2014. available from http://hdl.

handle.net/2122/9143.
13. R Rotondi and G Zonno. Bayesian analysis of a probability distribution for local intensity attenuation.

Annals of Geophysics, 47(5):1521–1540, 2004.
14. P J Rousseuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.

Journal of Computational and Applied Mathematics, 20:53–65, 1987.
15. M Stucchi, R Camassi, A Rovida, M Locati, E Ercolani, C Meletti, P Migliavacca, F Bernardini, and

R Azzaro. DBMI04, il database delle osservazioni macrosismiche dei terremoti italiani utilizzate per
la compilazione del catalogo parametrico CPTI04. Quaderni di Geofisica, 49:1–38, 2007. available
from http://emidius.mi.ingv.it/DBMI04/.

16. T M Tsapanos, O Galanis, G Koravos, and R M W Musson. A method for Bayesian estimation of the
probability of local intensity for some cities in Japan. Annals of Geophysics, 45(5):657–671, 2002.

17. Urban Disaster Prevention Strategies using MAcroseismic Fields and FAult Sources (UPStrat-MAFA)
- EU Project. Num. 23031/2011/613486/SUB/A5), DG ECHO Unit A5. http://upstrat-mafa.
ov.ingv.it/UPStrat/, 2012.

18. R L Winkler. Scoring rules and the evaluation of probabilities. Test, 5(1):1–60, 1996.
19. G Zonno, R Rotondi, and C Brambilla. Mining macroseismic fields to estimate the probability distri-

bution of the intensity at site. Bulletin of Seismological Society of America, 99(5):2876–2892, 2009.

http://emidius.mi.ingv.it/DBMI11/
http://emidius.mi.ingv.it/GNDT/P511/home.html
http://emidius.mi.ingv.it/GNDT/P511/home.html
http://www.r-project.org
http://www.r-project.org
http://hdl.handle.net/2122/9143
http://hdl.handle.net/2122/9143
http://emidius.mi.ingv.it/DBMI04/
http://upstrat-mafa.ov.ingv.it/UPStrat/
http://upstrat-mafa.ov.ingv.it/UPStrat/

