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Density functional theory (DFT) has greatly expanded our ability to affordably compute and understand
electronic ground states, by replacing intractable ab initio calculations by models based on paradigmatic
physics from high- and low-density limits. But, a comparable treatment of excited states lags behind. Here,
we solve this outstanding problem by employing a generalization of density functional theory to ensemble
states (EDFT). We thus address important paradigmatic cases of all electronic systems in strongly (low-
density) and weakly (high-density) correlated regimes. We show that the high-density limit connects to
recent, exactly solvable EDFT results. The low-density limit reveals an unnoticed and most unexpected
result—density functionals for strictly correlated ground states can be reused directly for excited states.
Nontrivial dependence on excitation structure only shows up at third leading order. Overall, our results
provide foundations for effective models of excited states that interpolate between exact low- and high-
density limits, which we illustrate on the cases of singlet-singlet excitations in H2 and a ring of quantum
wells.
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Preamble.—Density functional theory (DFT) [1,2] is
best known as a computational modeling tool used in tens
of thousands of applicative scientific papers every year.
What is less widely known is that DFT offers a natural
connection between quantum mechanics and paradigmatic
physical conditions (high- and low-density limits) of
matter, in which electronic correlations attain two quanti-
tatively (weak and strong, respectively) and qualitatively
different fundamental ends. In this context, DFT serves
as a formal tool to understand the behavior of ground
state electronic structure via a rigorous constrained varia-
tional approach to the electronic structure problem.
Understanding of paradigmatic conditions then informs
model development, e.g., the popular “PBE” [3] approxi-
mation, and computational studies therefrom.
Unfortunately, DFT is only defined for ground states, so

cannot elucidate the structure of excited states. This Letter
will demonstrate that ensemble density functional theory
(EDFT) for excited states [4,5] can tackle this outstanding
problem. We shall show that recently derived Hartree and
exchange physics [6,7] become exact in the high density
(weak interaction) limit; so high-density excited electronic

states may be solved using these tools. More importantly,
we shall show that the low density (strong interaction) limit
of excited states behaves exactly like a ground state.
Therefore, the full suite of ground state strictly correlated
electron (SCE) tools and approximations [8–13] may be
used to solve both ground and excited states of low-density
many-electron systems.
Our Letter thereby improves understanding of excited

states in paradigmatic limits and connects their behavior to
well-defined density functionals for which exact forms and
approximations are available. It presents a crucial step
toward efficient excited state approximations that capture
important limits; and promises to accelerate and generalize
recent progress on low cost modeling of single [14–19] and
double excitations [16,20–23] that may range from weakly
to strongly correlated regimes.
The rest of this Letter proceeds as follows: First, we

introduce EDFTand show how it can be used to understand
the high- and low-density limits of interacting electrons in
realistic inhomogeneous systems. Then, using as an illus-
tration the strong interaction limit of electrons in a
harmonic well, we derive the asymptotic properties of
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the density functionals for describing excitations in
Wigner-like systems via EDFT. We then reveal that the
second leading term in the low-density limit is also the
same in ground and excited states, and that a nontrivial
dependence only appears in the third leading term—which
therefore describe more realistic correlated excitations. We
then illustrate the importance of our findings for applica-
tions by studying excitations in two examples. Finally, we
conclude.
Theoretical framework.—Excited state EDFT is

concerned with the behavior of countable sets of excited
states. In practice, a finite set of low-lying solutions of
Ĥjκi ¼ Eκjκi. These are grouped in an ensemble state
Γ̂w ¼ P

κ wκjκihκj using some prescribed weights [24]
such that wκ ≥ 0 and

P
κ wκ ¼ 1 (collectively, w).

The average of an operator, Ô, over Γ̂w is given by
Ow ≔ Tr½Γ̂wÔ�. Crucially, choosing wκ ≤ wκ0 for
Eκ ≥ Eκ0 , ensures that Γ̂w fulfills an extended variational
principle [4] according to which Ew ¼ infΓ̂w

trial
Tr½Γ̂w

trialĤ�
where the argument for the infimum (usually a minimum),
Γ̂w
trial ¼

P
κ wκjκtihκtj, involves prescribed weights, w, and

mutually orthonormal trial wave functions jκti.
Density functionalizing the above variational principle in

terms of the ensemble particle density, n, yields [5,6]

Ew ¼ min
n

�
T w

s ½n� þ Ew
Hxc½n� þ

Z
nðrÞvextðrÞdr

�
: ð1Þ

Here, T w
s ½n� ¼ minΓ̂w

trial→nTr½Γ̂w
trialT̂� is the kinetic energy of

the Kohn-Sham (KS) system—i.e., an auxiliary systems
reproducing the particle density of the ensemble; the
minimum is attained at Γ̂s ≡P

κ wκjκsihκsj [26]. Ew
Hxc½n�

takes care of the remaining Hartree (H), exchange (x), and
correlation (c) energies. Together, they yield the “universal”
functional for ensembles: Fw ¼ T w

s þ Ew
Hxc.

In fact, Eq. (1) describes different functionals for every
choice of w. To stress this important point we use capital
calligraphic letters to refer to energies of mixed states; and
superscripts, w, to indicate quantities that explicitly depend
on their weights. Pure ground states involve setting w0 ¼ 1

(Γ̂0 ¼ j0ih0j) for which Eq. (1) attains usual DFT forms.
Spin and spatial symmetries are preserved at the Kohn-
Sham level [27] (see high-density limit discussion for
further details) by equally weighting degenerate states.
Varying weights (e.g., via partial derivatives) lets us address
individual excited states. [28] Therefore, the weight
dependence of ensemble functionals is directly related to
the structure and behavior of ground and excited electronic
states.
The universal energy functional may be generalized to

F λ;w½n� ¼ inf
Γ̂w→n

Tr½Γ̂wðT̂ þ λV̂eeÞ�; ð2Þ

where T̂ is the kinetic energy operator and V̂ee is the
Coulombic interaction operator. λ sets the strength of the
interaction. This functional is referred to as “universal”
because the external potential, which specifies the system
we wish to treat, does not appear explicitly in its definition
[the density being given and fixed in Eq. (2)]. Matching
terms from above yields Fw ≡ F λ¼1;w, T w

s ≡ F 0;w and
Ew
Hxc ≔ Fw − F 0;w. In fact, we stress that F , T s and EHxc

are multiuniversal because each set of weights, w, defines a
different excitation structure and, thus, a different universal
functional. As we shall show below, this multiuniversality
evolves into a simple universality in the low-density limit of
matter.
In what follows, our main objective is to determine the

salient behavior of key ensemble density functionals in the
high-density (weakly interacting) and low-density (strictly
interacting) limits. In doing so, we shall extend to excited
states concepts and core results which have previously been
worked out for pure ground states only [8–13]. These
works can be understood as providing a generalization of
the seminal work of Wigner [29,30] to inhomogeneous
systems within DFT. Our current Letter completes the
generalization to include excited inhomogeneous systems
within EDFT. It thus provides a complete treatment of the
electronic structure of two important paradigmatic and
fundamentally different regimes, within a consistent and
versatile approach.
High-density limit.—In the parlance of modern density

functional theory, the high- and low-density limits entail
uniform scaling of the coordinates of the electrons, say, by
γ > 0 in such a way nðrÞ → γ3nðγrÞ≕ nγðrÞ. To keep the
discussion simple, we may think of a finite system like an
atom, molecule, or quantum dot. Uniform scaling and the
adiabatic constant integration in EDFT, were introduced by
Nagy [31]. Scaling gives T̂ → γ−2T̂γ and V̂ee → γ−1V̂ee;γ .
We find

F λ;w½nγ� ¼ γ2F λ=γ;w½n�: ð3Þ

Because the scaled ensemble density is the density of a
stationary ensemble of the Hamiltonian with interaction
λ ¼ 1=γ, we see that the high- and low-density limits are
related to the weak- and strong-interaction limits, respec-
tively [32].
Let us first consider the high-density (i.e., weak inter-

action, γ → ∞) limit. Scaling yields

lim
γ→∞

Fw½nγ�
γ2

¼ T w
s ½n�; lim

γ→∞

Ew
Hxc½nγ�
γ

¼ Ew
Hx½n�; ð4Þ

where the second result follows from the definition [6] of
EHx as a gradient of F . The high-density limit thus inherits
good properties of EHx [6,7,23,27]: (i) it preserves spin and
spatial symmetries of the system; (ii) the relevant KS states
can be linear combinations of Slater determinants (SDs)
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that are eigenstates of spin and proper generators of
point groups, unlike the single SD of conventional
spin-DFT treatments; (iii) yet, it enables effective reuse
of conventional spin-density functional approximations
for exchange, via combination rules or on-top pair
densities [7,17,19,23].
Next, consider the adiabatic connection formula,

Ew
Hxc½n� ¼ Fw½n� − F 0;w½n� ¼

Z
1

0

Vλ;w
ee ½n�dλ; ð5Þ

Vλ;w
ee ½n� ¼ lim

η→0þ

F λþη;w − F λ;w

η
≔ Tr½V̂eeΓ̂λþ;w�: ð6Þ

The “Hx” component is recovered as Ew
Hx½n� ¼ V0;w

ee ½n�.
Scaling gives Ew

Hxc½nγ� ¼ γ2
R 1=γ
0 Vλ;w

ee ½n�dλ, from which (for
finite systems) we get, [33]

Fw½nγ� →
γ→∞

γ2T w
s ½n� þ γEw

Hx½n� þ EGL2;w
c ½n� þ � � � : ð7Þ

The first correlation contribution follows from Görling-
Levy [34] perturbation theory for ensembles, [35] which
must also be adapted for KS states in the form of linear
combinations of SDs. Correlations may alternatively be
captured by employing expressions previously reported in
Refs. [7,36,37]; as in, e.g., Ref. [23].
Low-density limit.—Approaching a most striking, and

previously unnoticed fact, let us turn to the low-density
(i.e., strong interaction, γ → 0þ) limit,

lim
γ→0þ

F 1;w½nγ� ¼ lim
γ→0þ

V1;w
ee ½nγ�: ð8Þ

Crucially,

lim
γ→0þ

V1;w
ee ½nγ�
γ

¼ VSCE;w
ee ½n�≡ VSCE

ee ½n� ð9Þ

where VSCE
ee ½n� ¼ infΨ→nhΨjV̂eejΨi is the known interac-

tion energy functional of strictly correlated electrons in a
ground state, but here evaluated at the ensemble particle
density. This result says that, in the low-density limit, the
functional dependence on weights disappears from both
F 1;w½nγ� and V1;w

ee ½nγ�. Dependence on the weights enters
only via the particle density, n ≔ Tr½Γ̂wn̂� ¼ P

κ wκnκ, of
the ensemble. Equation (8), and its extension to higher
orders in γ discussed later, are the central result of this
Letter. In this context, SCE results, analysis, and under-
standing for ground states [8–11] become special cases of
the above more general result.
Proof of Eqs. (8) and (9).—Here, we shall guide the

reader through the main steps and key physics. A full proof
is reported in Section 1 of the Supplemental Material [38].

The salient features can be already grasped by observing
the behavior of an interacting system as interactions are
increased in a model system. We choose two-electron
harmonium in which two electrons interact in an external
potential vext ¼ 1

2
r2 with an interaction strength λ.

The scaled classical interaction energy of this system is
Vcl ¼ 0.7937λ2=3 [43]. Quantum solutions may be found
numerically. Details are in Supplemental Material Sec. II.
Figure 1 shows the interaction energies, Vλ

κ ≔ hκjV̂eejκi, of
six low-lying spherically symmetric triplet (3S) and singlet
(1S) states. It is clear that quantum and classical interaction
energies all become the same as λ is increased—i.e., all
excitations tend toward the same classical limit.
To prove our result for EDFT we need to consider a

similar physical setting (λ → ∞), in which instead of fixing
the external potential we fix the ensemble density, con-
taining the excited states we want to treat. Proving Eq. (9)
then entails showing that the degeneracy behavior
carries through to systems in which the density is kept
fixed. Our argument involves the expansion of wave
functions for large but finite interaction strengths, [9,44]
around the strictly correlated limit. In this effectively
classical limit, which yields the leading term as
λ → ∞ of the ground-state universal functional Fλ½n�
[10,11], the N-body distribution of an N-electron
system is PN ½n�ðr1; …; rNÞ ¼ Rf½nðsÞ�=Ng Q

N
i¼1 δ(ri −

f iðsÞ)ds which leads to Fλ→∞½n� → λVSCE
ee ½n� ¼ λ

P
N
i¼2RfnðrÞ=½2jr − f iðrÞj�gdr. Here, f iðrÞ are co-motion maps

that preserve the density and the indistinguishability of
electrons [8,12].
At large but finite λ we construct orthonormal wave

functions, jκλi, based on quantum harmonic oscillations
(QHOs) around the strictly correlated distribution,
PN ½n� [9,45]. The QHOs act on curvilinear coordinates
orthogonal to the manifold parametrized by the co-motion
functions; and contribute at Oð ffiffiffi

λ
p Þ in the kinetic and

potential energies. Prima facie, the wave functions jκλi
have different densities. However, it is also possible to

FIG. 1. Ratio of quantum and classical interaction energies for
two electrons in a Harmonic well. Six triplet (top) and singlet
(bottom) energies are shown. Scaled densities, 4πr2nðrÞ, of the
states are also shown for the case λ ¼ 50.
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quantize along the manifold, which contributes
only at Oð1Þ in kinetic energy and is amenable to the
Harriman construction [46] of orthogonal orbitals yielding
density n. We thereby obtain a countable number of
orthornomal wave functions that all have the same density
n, and the same energy up to Oð1Þ. Thus, VSCE;w

ee ½n� ≔P
κ wκVSCE

ee ½n� ¼ VSCE
ee ½n� and Eqs. (8) and (9) follow from

the equivalence of γ → 0þ and λ → ∞ in Eq. (3).
Next-leading terms in the low-density limit.—To analyze

the next leading terms, it is useful to first rewrite
Fw½n� ≔ T SCE;w½n� þ VSCE

ee ½n�, taking SCE as the reference
system and letting T SCE;w capture all the ensemble effects.
Then an alternative adiabatic connection yields

T SCE;w½n� ¼
Z

∞

1

T λ;w½n�
λ2

dλ: ð10Þ

Here, we introduced, T λ;w¼−λ2∂λ½ðF λ;wÞ=λ�≔Tr½T̂Γ̂λþ;w�,
where the derivative and trace must be treated with caution,
like in Eq. (6). Equation (10) generalizes known results
for the ground state-only case [47–49] to the ensembles
considered in this Letter.
Next, we show that T λ→∞;w is independent of weights to

leading order, which leads to T SCE;w½nγ→0þ� also indepen-
dent of weights. Ensemblization of known results [9,45,50]
gives T λ→∞;w → ð ffiffiffi

λ
p

=2ÞFZPE;w where FZPE;w involves
λ-normalized zero point energy (ZPE) of the QHOs,
jκλi, introduced earlier. Hence, T λ;w becomes inde-
pendent of weights if we can show that FZPE;w½n�≡
limλ→∞ð2=

ffiffiffi
λ

p ÞT λ;w½n� is independent of weights. Supple-
mental Material Sec. I naturally covers this case—
for guidance, below, we touch on essential steps and
consequences.
The Harriman construction introduced earlier

(also, Supplemental Material Sec. IB) yields hκλjT̂jκλi ¼
h0λjT̂j0λi þOð1Þ for λ → ∞. Thus, T λ;w ¼ P

κ wκ

hκλjT̂jκλi ¼ h0λjT̂j0λi þOð1Þ is independent of weights
to leading order, giving weight-independent, FZPE;w½n�≡
limλ→∞ð2T λ;w½n�= ffiffiffi

λ
p Þ ¼ FZPE½n�. Here, FZPE½n� is the

well-studied ground state functional [9,44,45], but evalu-
ated on the ensemble density. Using the latter result
in (10), and applying scaling laws, finally yields,
limγ→0þ2T SCE;w½nγ� ¼ FZPE½nγ� ¼ γ3=2FZPE½n�. Thus we
conclude that T λ;w½n� and T SCE;w½n� are independent of
the ensemble weights in the low-density limit.
Fw½nγ→0þ� ¼ γVSCE

ee ½n� þ γ3=2FZPE½n� is therefore also in-
dependent of weights to second leading order. Details of
scaling are in Supplemental Material Sec. III.
Where and how does the weight dependence appears

in the low-density limit? Equations (S31)–(S37) of
Supplemental Material Sec. IB reveal that it appears in
the third leading term,

Fw½nγ� →
γ→0þ

γVSCE
ee ½n� þ γ3=2FZPE½n�

þ γ2ΔT ð2Þ;w½n� þ � � � : ð11Þ

The Oðγ2Þ term, ΔT ð2Þ;w ¼ P
κ wκΔT

ð2Þ
κ , has an explicit

weight dependence on each excited state. It captures the
energy of oscillations “perpendicular” to the collective ZPE
modes, according to the metric dictated by the SCE
manifold—see Eq. (S36) and discussion for details.
Note, a similar result was previously observed in the
special case of Hubbard dimers [51].
Use of high- and low-density limits in approximations.—

We have so far derived series expansions in the high-
density [Eq. (7)] and low-density [Eq. (11)] limits. Next, we
shall illustrate their relevance in applications.
First, we remark that Eqs. (5), (7), and (11) imply that

lim
γ→þ∞

Ew
Hxc½nγ� ¼ γEw

Hx½n� þ EGL2;w
c ½n� þ � � � ; ð12Þ

lim
γ→0þ

Ew
Hxc½nγ� ¼ γVSCE

ee ½n� þ γ3=2FZPE½n� þ � � � : ð13Þ

Especially note that the low-density (strictly correlated)
limit of both Fw½n� [see (8)] and Ew

Hxc½n� depends on the
excitation structure only trivially, via the ensemble particle
density. Weight dependence appears at higher order.
To illustrate the usefulness of the limits, we first consider

the lowest singlet-singlet excitation in dissociating H2. This
problem is a rather stringent test of density functionals—
failed by time-dependent DFT approximations [52,53]
because (i) the ground state is dynamically correlated near
its minima but becomes strongly correlated when disso-
ciated; (ii) the first excited state is always dynamically
correlated, thus cancellation of errors in the approximate
excitation energy from the ground state may be unreliable
during dissociation; (iii) the first excited state in the KS
ensemble involves a superposition of two SDs, and its
symmetry and related properties are irreproducible by an
adiabatic single-SD approach.
Figure 2 (top) reports the excitation energy ΔESS ¼

ES1 − ES0 of the lowest singlet states (S0 and S1) of H2

using: exact exchange (EXX) energies—the leading term in
the high-density series of Eq. (12); Görling-Levy [34]
(GL2) perturbation theory (renormalized to avoid numeri-
cal singularities)—the next leading term of (12); and the
interaction strength interpolation (ISI) approximation
[54,55] that uses high- and low-density limits—the latter
via the harmonium point charge plus continuum (HPC)
approximation [55]. Note, all approximations are ensembl-
ized versions of ground state analogs, i.e., Eapprox

Hxc →
Eapprox;w
Hxc is adapted for excited states. All relevant energy

expressions and technical details on the calculations are in
Supplemental Material Sec. IV.
Only ISI performs well across the whole H2 dissociation

curve, which unambiguously highlights the benefit of using
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both Eq. (12) and Eq. (13) to construct approximations that
capture different correlation regimes. In fact, using only
Eq. (12) leads to very poor results for the ground state
energy: EXX overestimates and GL2 drastically under-
estimates as correlations become stronger.
Next, we carry out similar calculations for four electrons

in a ring of four quantum wells; see Supplemental Material
Sec. IV for further details. Lattice disorder in this system
yields ΔESS ¼ 2.15 eV on average, versus ΔESS ¼
0.003 eV of the ordered lattice. Results are shown in
Fig. 2 (bottom). Again, we see that the low-density
behavior included in ISI reduces errors: from 100%
(EXX) down to 12% (ISI). GL2 energies (not shown) have
orders of magnitude worse errors. This example (also,
Ref. [56]) thus suggests that seamless interpolation
between high- and low-density limits may be crucial for
predicting optical gaps in disordered nanostructures.
Summary and conclusions.—The results presented in

this Letter describe, via ensemble density functionals, the
behavior of excited many-electron states in the para-
digmatic high-density (weakly correlated) and low-density
(strictly correlated) limits (regimes)—summarized for
the important EHxc functional in Eqs. (12) and (13),
respectively.
The high-density limit follows intuition and connects

directly to previous results which use the ensemble Kohn-
Sham system as a reference system. The corresponding
auxiliary pure states have the form of symmetry adapted
combination of Slater determinants; and EHxc has strong
weight dependence. Approximations based on this limit
have already successfully described weakly to moderately
correlated excitations.
The low-density limit, in contrast, revealed an unex-

pected fact: the first two leading order terms of excited
states may be described by existing tools used for strictly
correlated ground states. Therefore the ensemblization of
ground-state approximations is, for once, straightforward.

Dependence of EHxc on the weights (and therefore excita-
tion structure) only shows up in the third leading order
term. The provided model applications illustrate that
generally correlated regimes of excited states require
seamless treatment of both density regimes.
One immediate consequence of the present Letter is that

electronic interaction models must interpolate between
Fermionic mean-field-like excitation-structure dependence
at high densities, and no excitation-structure dependence at
low densities. Not only is this of direct importance for
traditional analytic-driven approximations, as seen in the
examples reported here, it also provides constraints for data-
driven methodologies based on machine learning. Ensemble-
derived constraintswere used to great success in themachine-
learned “Deep Mind 21” ground state approximation [57]—
our Letter promises to extend this success to excited states to
provide complements or alternatives to existing finite order
(see examples above) or infinite order (via Green’s functions)
many-body perturbation theory.
Natural next steps from the present results are to consider

extended systems with uncountable excitations, finite-
temperature ensembles, and magnetic interactions. Finite
temperature imposes a λ dependence on the weights. Prior
work [25,58] showed that the high (low)-density limit may
be more relevant to the behavior of density functionals at
low (high) temperature. Magnetic interactions require extra
basic densities (e.g., spin densities and currents) and related
Hxc quantities; [59,60] and must consistently fulfill gauge
symmetries [61]. Further work along both lines is being
pursued.
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