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Abstract
Quantum parameter estimation offers solid conceptual grounds for the design of sensors enjoying
quantum advantage. This is realised not only by means of hardware supporting and exploiting
quantum properties, but data analysis has its impact and relevance, too. In this respect, Bayesian
methods have emerged as an effective and elegant solution, with the perk of incorporating
naturally the availability of a priori information. In this article we present an evaluation of
Bayesian methods for multiple phase estimation, assessed based on bounds that work beyond the
usual limit of large samples assumed in parameter estimation. Importantly, such methods are
applied to experimental data generated from the output statistics of a three-arm interferometer
seeded by single photons. Our studies provide a blueprint for a more comprehensive data analysis
in quantum metrology.

1. Introduction

The aim of quantum metrology is to study how the use of quantum phenomena can be beneficial in
parameter estimation [1–9]. As the technological level of quantum sensors increases, ensuring reliable and
efficient data processing becomes a crucial aspect in the operation of devices. While in proof-of-principle
demonstrations the enhancement in precision can be shown with simple data analysis, for real applications
optimal use of the available data is required [10]: this is instrumental to reaching the necessary accuracy, as
well as the ultimate limits on precision.

The estimation process relies on two sources of information. On the one hand, we may have some a
priori information available on our parameter from modelling or preliminary measurements. On the other
hand, the collected data allow to refine our previous knowledge. Bayesian data analysis thus provides the
most natural setting to combine both contributions to deliver a high-quality estimator [11, 12]. The
standard approach to assess its performance in terms of precision is to compare the experimental variance
with that of the Cramér–Rao bound [11]. This is determined by the Fisher information, which indicates the
amount of information embedded in the output probability of the quantum sensor. However, this approach
is valid only for local estimation, i.e. in a small range around a known value of the parameter. This may not
be the case in general, and suitable methods to achieve local conditions are needed [13–24]. More
exhaustive data processing thus has to incorporate cases with relatively broad a priori information. This is
particularly relevant when limited metrological resources can be invested for the measurement [25–29].

The interplay between a priori information and collected data becomes even more complex in the
multiparameter case. Here, the estimation procedure is affected not only by the initial uncertainties on the
individual parameters, but also on their correlations. Indeed, the multiparameter Fisher information sets a
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Figure 1. General scheme for Bayesian parameter estimation. N probes ρ0 are sent through the system, acquiring information on
the parameters φ, retrieved after measurement Πx. The measurement outcomes x are used to update the initial knowledge A(φ)
to obtain the output conditional probability p(φ|x), representing the result of the estimation process.

given degree of statistical correlation between parameters [2, 30], which may contrast with the one obtained
from a priori considerations, especially in its orientation in the parameter space to be estimated.

Adequate bounds on the variance of Bayes estimators have been introduced by Ziv and Zakai (ZZ) [31],
and by Van Trees (VT) [32], but have never been tested on data from a quantum sensing experiment. In this
article, we show the applicability of the ZZ and VT bounds in multiphase integrated photonic quantum
sensing. This is emerging as one of the most solid technologies for the realisation of quantum sensors
[33–36]. Our results show that both bounds capture the limits in multiphase estimation, especially for
limited resources. The VT approach, besides being less computationally demanding, provides a tighter
bound on the experimental variance. The ZZ approach still provides a useful reference, and captures the
dependence on the variance on the correlations present in the a priori information. Our findings contribute
to shaping actual data analysis for future real-life quantum sensors.

2. Bayesian multiparameter estimation with a priori knowledge

Bayesian estimation theory [11, 12, 37] represents a paradigm for parameter estimation protocols and has
been extensively and fruitfully employed [8, 17, 18, 36–46]. In general, in multiparameter problems one has
to deal with a set of physical parameters φ = (φ1, . . . ,φn), whose (unknown) values have to be estimated by
the user. Typically, information on such set φ is obtained by preparing a set of N probe states ρ0 of an
auxiliary system. The evolution of the auxiliary system depends on the set φ via a unitary operation U(φ),
or more generally via a physical map Lφ. Measurement Πx of the N probe states ρφ after evolution provides
information on the parameters φ.

Such a process can be embedded in a Bayesian framework, where the parameters φ to be estimated are
treated as random variables distributed according to some distribution p(φ), which encodes the actual
knowledge on the parameters values (see figure 1). Bayesian estimation permits to naturally encode in such
framework the availability of an arbitrary a priori information on the parameters, that may occur in several
scenarios. This initial knowledge is encoded in the so-called prior distribution A(φ), which acts as the
starting point for the estimation process. After preparing N probe states, the measurement outcomes
x = (x1, . . . , xN) are collected. Here, this vector represents the set of the N measurements obtained by
sending the sequence of inputs, where the outcome on a single probe xk = 1, . . . , s can take one of s possible
values according to the system behavior. Prior knowledge is updated according to the Bayes’ rule:
p(φ|x) ∝ p(x|φ)A(φ). Here p(x|φ) is the conditional probability of detecting the sequence x of outcomes
provided a given set of values φ for the parameters. For N independent probes, and individual
measurements, such conditional probability is expressed as p(x|φ) =

∏N
k=1p(xk|φ), where p(xk|φ) is the

likelihood of the given outcome xk for a single copy of the probe.
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The output distribution p(φ|x) fully encodes all the final knowledge on the parameters at the end of the
estimation process. A common choice for an estimator of φ is provided by its expectation value
φ̂ =

∫
φp(φ|x)dφ, that can be proven to be an asymptotically efficient and unbiased estimator [47–49]. In

single-parameter estimation, the precision can be quantified by the mean square error
MSE(φ) =

∑
xp(x|φ)(φ̂− φ)2. This generalizes in the multiparameter scenario to a matrix C(φ), with

elements Cij(φ) =
∑

xp(x|φ)(φ̂i − φi)(φ̂j − φj). Such quantities encode the precision in the estimate with
respect to the true values of the parameters. Different theoretical studies focused on the extension of the
Bayesian framework to the multiparameter case, also paying attention to the limited data regime [27,
50–53].

In general, the mean square error (or its corresponding matrix form for a multiparameter scenario), is
not accessible by the user, given the inherent absence of knowledge of the true parameter value. Bayesian
approaches provide an additional framework to describe the estimation process. In particular, for a given
experimental instance with N probe states and the string x of measurement outcomes, the posterior
distribution p(φ|x) encodes the degree of confidence resulting from the estimation process via its
covariance matrix Σ, whose elements are given by Σij =

∫
(φ̂i − φi)(φ̂j − φj)p(φ|x) dφ. The diagonal

terms of Σ represent the variances of the individual parameters. Conversely, off-diagonal terms contain
information about the correlation between the parameters. In the limit of large N, given that Bayesian
estimation is unbiased, it can be shown that the covariance matrix Σ and matrix C asymptotically coincide.

Different quantities can be used to bound the estimation error, as a function of the resources N
employed in the process. The most common bound applying to the covariance matrix is the celebrated
Cramér–Rao bound [11]

Σ � 1

N
F(φ)−1, (1)

where N is the number of repetitions of the experiment, and the Fisher information matrix F(φ) has entries
Fi,j(φ) =

∑
x∂φi p(x|φ)∂φj p(x|φ)/p(x|φ). This limit holds for local estimation: this means that the

measurement assumes previous knowledge of the parameters φ, up to some uncertainty we aim at
improving. Such an improvement may come from performing adaptive measurements, or, as it is often the
case, by increasing the number of events N. Referring to the discussion above, in this large N limit, the
width of the posterior distribution has little to do with the a priori distribution A(φ), and is governed
uniquely by the Bayesian update.

When a limited number of repetitions are available, the Cramér–Rao limit may indeed not provide
relevant information. However, if the prior distribution is regular and derivable, there exists a simple result
due to VT, which states that the matrix

Hi,j =

∫
A (φ ) Fi,j(φ)dφ+

1

N

∫
∂φiA (φ ) ∂φjA (φ )

A (φ )
dφ, (2)

sets a limit to the covariance as

Σ � 1

N
H−1, (3)

which is called VT bound [54]. This considers how both the average Fisher information available following
the measurement and the prior enter in the final information; when N is large, the usual Cramér–Rao
bound is recovered, as the contribution from the a priori distribution becomes negligible.

For the VT bound to exist, A(φ) must be regular; in order to obtain a valid bound also for generalised
distributions, we adopt the Ziv–Zakai (ZZ) bound [31], in the multiparameter form proposed by Bell et al
[55]. Differently from the VT bound, the ZZ bound is written explicitly in a scalar form, by introducing a
unit vector u in the parameter space, and considering the error u�Σu:

u�Σu � 1

2

∫ π

0
τ

{
max

v:uTv=1

∫
[A(φ) +A(φ+ vτ)]

× Pe(φ,φ+ vτ)dφ

}
dτ = Z(u)

(4)

We can define the error probability of distinguishing φ from φ′ as:

Pe(φ,φ′) =
1

2

(
1 −

∑
x

|π0p(x|φ) − π1p(x|φ′)|2
)

, (5)

based on our measurements and the probabilities π0 = 1 − π1 = A(φ)/(A(φ) +A(φ′)). These
expressions hint at how the ZZ method adopts binary hypothesis testing as a way to bound the error, and
avoids the need of a regular a priori distribution.
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Figure 2. (a) Conceptual scheme of a multiarm interferometer for multiphase estimation. The relative phases to be estimated
(φ1 = ϕ1 − ϕref , . . . ,φm−1 = ϕm−1 − ϕref ) with respect to a common reference arm (ϕref ) are embedded between input (UA)
and output (UB) multimode transformations. Finally, single-photon detectors placed on the output modes provide the m
possible outcomes x = 1, . . . , m for the measurement on each probe (figure shows the m = 3 modes case). (b) Scheme of the
reconfigurable interferometer employed for multiphase estimation. The first transformation UA is a balanced tritter, and includes
a thermo-optic phase shifter placed on resistor RA used to adjust the transmittivities for balanced operations. The phases φ1 and
φ2 to be estimated, which can be changed via the set of resistors R1 –R6, are the two relative phases with respect to the central
mode, acting as a reference. Output transformation UB is a second balanced tritter, which can be fine-tuned via resistor RB, and it
is used to recombine the output modes before the measurement.

3. Platform and methodology for Bayesian multiphase estimation

We have tested Bayesian estimation with a priori knowledge in an experimental platform provided by an
integrated multiarm interferometer realized via the femtosecond laser writing technique [56] on a glass
chip, where the unknown parameters are provided by two relative phase shifts inside the structure (see
figure 2). In this way we apply the Bayesian framework and study the corresponding bounds for the
paradigmatic problem of multiphase estimation, having several applications to sensing and microscopy
[33, 35, 57–62]. More specifically, the interferometer is the three-mode generalization of a Mach–Zehnder
one [34, 35]. This is realized by replacing the input and output beam-splitters with two cascaded tunable
tritters [63]. The output state of the interferometer will then depend on two different relative phase shifts
between the internal modes. Within the circuit, phases can be actively reconfigured via thermo-optic phase
shifters, obtained by fabricating resistive microheaters on top of the interferometer [35, 36, 64]. In the
present device, resistors RA and RB are used to fine-tune the input and output tritter transformations. The
phase shifts for the estimation process are the two relative phases (φ1,φ2) referred to the central internal
arm of the interferometer. These phases can be modified via the set of thermo-optic shifters corresponding
to resistors R1 –R6 and whose response functions can be also calibrated using machine learning techniques
[65]. Redundancy in such set of resistors can be used to implement adaptive estimation protocols, as shown
in reference [36]. Single-photon probes are conditionally generated from a two-photon source based on the
spontaneous parametric down-conversion process. Namely, one of the two generated photons is directly
measured, acting as a trigger for the experiments, while the other photon is injected in the integrated device
via a single-mode fiber array in the first input port. After evolution through the interferometer, the output
modes are coupled to an array of multimode fibers and measured via single-photon detectors.

As a first step, prior to the estimation experiments, single-photon states are employed to characterize
the response of the interferometer. In particular, this amounts to experimentally reconstruct the
correspondence between the current propagating on each resistor and the applied optical phase on the
waveguide below, including potential cross-talks between the different tunable phase shifts. Furthermore,
the same measurements are employed to reconstruct the transmittivity values for each directional coupler.
This characterization is performed via the procedure reported in [35, 36]. More in details, single-photon
input states are sent in the interferometer, and the output statistics for different values of the current are
recorded. These data are then employed to perform a fitting procedure, using a mathematical model for the
interferometer. Such a model includes both static parameters such as directional coupler transmittivities
(Tj) and static phases obtained at zero current in the resistors (φ0j), and the dynamical response function

4



Quantum Sci. Technol. 7 (2022) 025011 S E D’Aurelio et al

φl = φl({ij, Rj}), being Rj the resistances and ij the applied currents [35, 36]. This procedure finally leads to
knowledge of the likelihood function PML(x|φ1,φ2). Having access to such response function has a
fundamental role for Bayesian estimation experiments, since this approach is based on progressively
updating the posterior distribution according to the measurement outcomes and the likelihood function.
Indeed, an accurate knowledge of the system likelihood is required to avoid biases or additional errors in
phase estimation processes, and is a common need shared by quantum sensor platforms based on different
technologies.

Then, phase estimation experiments are performed on the same system, characterizing the process for
different values of the prior distribution A(φ1,φ2). The posterior distribution after each experiment with N
resources is updated from Bayesian update as described above, and carries all the available information on
the unknown parameters. Relevant quantities, such as the estimate as well as the confidence interval related
to the covariance matrix Σ, are extracted from this function. Bayesian protocols require evaluation of
multidimensional integrals, whose dimension is given by the number of unknown parameters. Such
integrals become progressively more difficult to handle from a computational point of view. To address such
an issue, a possible solution is provided by performing an appropriate discretization of the parameters
space, which can be performed by using the particle approximation [66]. Such a technique corresponds to
replacing the continuous parameter space with a discrete set of M p points yi = (φ1,i,φ2,i), named particles.
Each particle has its own weight wi, related to the conditional probability associated with the corresponding
values yi. More specifically, the initial particle set is obtained by randomly generating M p values yi

according to the prior distribution. The corresponding initial weights are uniformly set to wi = 1/Mp.
Bayesian update is then performed by changing at each step the weights of the particles according to the
Bayes’ rule. Thus, at each step k the weights of the particles are updated as wi → wiPML(xk|φ1,i,φi,2),
followed by proper renormalization. After the N steps of the estimation have been performed, the estimates
are obtained as:

φ̂ =

M p∑
i=1

wiyi, (6)

while the covariance matrix can be estimated as:

Σ =
Mp∑
i=1

wi(yi − φ̂).(yi − φ̂)T. (7)

In our case, given the intermediate-N regime and the intrinsic periodicity of the phase parameters, we
employed the corresponding circular counterparts for the estimate and the covariance matrix [67]. For a
two-parameter space we employed a value of M p = 1600, which is sufficient to provide a good
approximation of the estimation experiments in the investigated regimes.

Furthermore, we applied the resampling technique [68] throughout the data analysis. Such technique is
employed to avoid a common issue that may arise in particle approximations. In particular, for
progressively larger N and corresponding lower uncertainty on the parameters, most of the weights wi will
be zero-valued. In this case, the set of particles is no longer informative on the experiment, and the
quantities evaluated from equations (6) and (7) fail to provide a good approximation of the exact values. To
avoid such an issue, a new set of particles is periodically resampled [68] throughout the estimation
experiments. This method consists in checking, at each step of the protocol, the concentration of the weight
values. If 1/

∑
iw

2
i < Mth (in our case, the choice is Mth = Mp/2), a new set of particle positions and

weights ({y′i},w′
i) is generated according to the current knowledge on the parameters. More specifically, Mp

new particle positions are generated by random choice from the current ones {yi} according to the weights
wi. Then, the new set of particle positions is perturbed according to a multivariate normal distribution
having mean μi = ayi + (1 − a)φ̂ and covariance matrix Σ̃ = (1 − a2)Σ. Here, φ̂ and Σ are the mean and
covariance of particles before resampling ({yi},wi) as defined in equations (6) and (7), and a is a parameter
included in the interval a ∈ [0, 1]. In our case, we used a = 0.98 according to references [36, 66]. Once the
new particle positions are determined, the new weights are reset to uniform w′

i = 1/Mp.

4. Results

Two-phase estimation is performed by Bayesian updating of the a priori distribution A(φ1,φ2) based
on the reconstructed probabilities PML(x|φ1,φ2). In the asymptotic limit of large samples N � 1,
the only relevant figure to assess the uncertainty of the measurement is the local Fisher information
F(φ1,φ2): usually, in this regime the output posterior p(φ1,φ2|x) is sufficiently narrow that details on the
prior distribution become irrelevant—except for ruling out possible ambiguities occurring at a large scale.
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Figure 3. Analysis of the total variance V as a function of the number of measured events N, and comparison with the expected
bounds. Plots correspond to μ1, μ2 = (1.1, 2.0), σ = 0.25 and different values of correlations ρ in the prior. Red plots: ρ = 0.0.
Black plots: ρ = 0.25. Blue plots: ρ = −0.25. Green plots: ρ = 0.4. Solid lines: ZZ bound. Dashed lines: VT bound. Points:
estimates based on experimental data. Error bars on the total variances (V) estimated from the experimental data are obtained as
the standard error on K = 300 repeated runs, and are smaller than the point size in the plot.

With a smaller sample, N � 200, both PML(x|φ1,φ2) and A(φ1,φ2) are relevant: this regime is the one we
will be exploring. We first consider an a priori distribution in the Gaussian form: A(φ1,φ2)
∝ exp

(
− 1

2 (φ1 − μ1,φ2 − μ2) · Γ−1 · (φ1 − μ1,φ2 − μ2)�
)
, where μ1 and μ2 are the mean values, and Γ

captures the initial uncertainties and the correlations on the parameters. For equal uncertainties Γ1,1 = Γ2,2,
the width of the prior distribution is quantified by a single parameter σ =

√
Γ1,1. In particular, we quantify

the correlations by means of the Pearson coefficient [69] ρ = Γ1,2/(Γ1,1Γ2,2)1/2. Similarly, we can introduce
a quantity for the Fisher information ν = −F1,2/(F1,1F2,2)1/2, where the additional minus sign here
originates from the inversion of F in order to obtain a covariance matrix.

The relevant figure in our case is the total variance V = Tr [Σ]. Figure 3 shows the scaling of this
variance on the phases as a function of N. The points, corresponding to our estimates based on the
experimental probabilities, are efficiently captured by both the ZZ and the VT bounds, with the former
becoming marginally looser for increasing N. Since we have to consider two parameters, the minimal
variance at the ZZ bound VZZ writes VZZ = Z(u1) + Z(u2), where u1 and u2 are orthogonal unit vectors.
We found that the tighter bound on V corresponds to choosing u1 and u2 as the eigenvectors of the
covariance matrix Σ, since these are associated to independent parameters.

A first case in this plot considers the scenario of a symmetric A(φ1,φ2), Γ1,1 = Γ2,2, presenting no
correlation between the two parameters, ρ = 0. Other possibilities are illustrated in figure 3, for the same
widths, but different values of ρ: the bounds are still able to capture the variance efficiently, but it must be
remarked that the uncertainties themselves are varied. In particular, it can be verified that the minimal
uncertainties are achieved when the correlations in the prior distribution match those of the Fisher
information: ρ = ν, i.e. in the absence of competing symmetries in the updated probability. The particular
case of figure 3 exemplifies a general behaviour. The grids in figure 4 show that the relative variation
between the assessed variance at N = 1 and the corresponding ZZ bound remains below 1%, regardless of
the initial correlation ρ. These results also provide upper limits for the behaviour of the VT bound, which
appears to be tighter (see figure 3).

The second key parameter in the a priori is its width, which is varied in the plots of figure 5(a). Here we
show the variance as a function of N, for different values of Γ1,1. As expected, the narrower the prior
distribution, the more precise the estimate is. Crucially, both the ZZ and the VT bounds become less strict
for wider prior distributions. The origin of this behaviour can be traced in the form of the posterior
distributions, shown in figures 5(b) and (c). When A(φ1,φ2) is narrower, it eventually produces a
well-behaved a posteriori distribution, with a single peak. In the opposite limit of a wide a priori
distribution, the final distribution is affected by ambiguities in the outcome probabilities, on which
A(φ1,φ2) does not provide enough information for a discrimination. This emphasises the impact of
ambiguities in the output distributions. In fact, different phase settings may lead to identical outcomes. The
settings can only be discriminated if the a priori distribution is sufficiently narrow, regardless of the number
of copies. The bounds, on the other hand, do not account for this increased complexity.

In general, the VT bound, which is considerably simpler to calculate, performs better than the more
sophisticated ZZ bound. However, the latter presents the advantage of working also for non-derivable a
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Figure 4. Relative difference (V − VZZ)/VZZ between the total variance V and the expected ZZ bound VZZ for N = 1 by varying
the correlation ρ in the prior. Plots are generated for different values of μ1, μ2, and σ = 0.2. Error bars on the total variances (V)
estimated from the experimental data are obtained as the standard error on K = 300 repeated runs, and are <1% (relative error).
(a) ρ = ν. (b) ρ = 0. (c) ρ = −1/ν.

Figure 5. Comparison between bounds and experimental estimates for different values of the prior width σ. (a) Total variance V
for μ1, μ2 = (1.1, 2.0) and ρ = 0. Magenta plots: σ = 0.4. Green plots: σ = 0.35. Blue plots: σ = 0.3. Red plots: σ = 0.25.
Black plots: σ = 0.2. Solid lines: ZZ bound. Dashed lines: VT bound. Points: estimates based on experimental data. Error bars on
the total variances (V) estimated from the experimental data are obtained as the standard error on K = 300 repeated runs, and
are smaller than the point size in the plot. (b) and (c) Posterior distributions after an estimation experiment. Here, colors
represent the weights wi for the different particles yi. (b) Posterior after N = 100 events, starting from a prior distribution with
μ1, μ2 = (1.1, 2.0), ρ = 0 and σ = 0.4. (c) Posterior after N = 100 events, starting from a prior distribution with
μ1, μ2 = (1.1, 2.0), ρ = 0 and σ = 0.2.

priori distributions, as for the case presented in figure 6. We show the bounds as a function of N when the a
priori distribution is now in the form of a 2D Heaviside rectangle of width Δ. The bounds are not as
accurate as in the analytical cases of regular a priori functions, providing only an estimate for the magnitude
of the variance.

5. Discussion

Parameter estimation using quantum resources promises the development of a novel generation of sensors
with enhanced precision capabilities. Besides the technological advances, this development must be
inevitably accompanied by appropriate data analysis techniques to fully exploit the sensors precision.
Notable frameworks to be addressed require going beyond local estimation and asymptotic scenarios, thus
dealing with limited resources and different prior knowledge. In this general framework, suitable bounds
need to be identified to properly address the performance of quantum estimation experiments.

7
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Figure 6. Analysis of the total variance V with a non-derivable prior as a function of the number of events N. The chosen prior
distribution is a 2D Heavyside rectangular function, with equal width Δ on each direction. Solid lines: ZZ bound. Points:
estimates based on experimental data. Error bars on the total variances (V) estimated from the experimental data are obtained as
the standard error on K = 300 repeated runs, and are smaller than the point size in the plot. Blue plots: Δ = 0.6. Red plots:
Δ = 0.4. For all datasets, μ1, μ2 = (1.1, 2.0).

Here, we have investigated Bayesian multiphase estimation with different prior knowledge in integrated
multiarm interferometers. The latter represents a promising platform for quantum sensing, and at the same
time can be used as a testbench to develop proper techniques for multiparameter estimation. Within this
system, we have investigated the interplay between the natural correlation on the unknown parameters,
related to the Fisher information matrix, and the correlation encoded in the prior distribution. Such
scenario has been assessed by using two different bounds for Bayesian estimation, that can naturally take
into account the availability of different prior knowledge. We observe that both VT and ZZ bounds provide
a strict estimate of the estimation error for regular and narrow prior distribution. This is observed
independently of the relative orientation of the prior distribution correlation with respect to the system
Fisher matrix. For larger priors, the bounds become less accurate in the presence of ambiguities in the
system output probabilities, which affect the estimation precision. Finally, when the prior distribution is not
regular the ZZ bound still provides a reasonable, albeit not strict, estimate of the process features.

The present analysis provides a detailed insight on the role of the different quantities underlying
multiparameter estimation, in the general regime with limited resources and different prior knowledge.
Such results are expected to be of relevance for the development of quantum sensors, and can stimulate
further investigation in defining a general and comprehensive framework for multiparameter quantum
estimation.
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