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Abstract. One of the goals of the 4SECURail project has been to
demonstrate the benefits, limits, and costs of introducing formal meth-
ods in the system requirements definition process. This has been done,
on an experimental basis, by applying a specific set of tools and method-
ologies to a case study from the railway sector. The paper describes the
approach adopted in the project and some considerations resulting from
the experience.
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1 Introduction

The railway infrastructure is constituted by a large, heterogeneous, and dis-
tributed system with components that are on board, trackside, centralized, cross-
ing regional and national borders, managed by different authorities, and devel-
oped by different providers. Not surprisingly, the current trend is to standardize
the requirements of the various system components together with their interfaces
(see, e.g. EULYNX[1]). Standardization is expected to increase market competi-
tion, reduce vendor lock-in, and promote the reduction of long-term maintenance
costs. However, to produce the desired outcomes, the defined standard require-
ments for the various system components must be precise, i.e., not suffer from
ambiguous interpretation issues, and correct, i.e., not give rise to interoperability
problems and not suffer of inconsistencies or missing points. The current state
of the art is based on the use of natural language requirements possibly associ-
ated with SysML/UML graphical artifacts [2–6]. Such a choice is not risk-free
because natural language and SysML/UML are usually not rigorous enough to
allow a precise system specification [7, 8]. One of the goals of the 4SECURail [9]
project is to observe the impact of the integration of formal methods inside the
requirements definition process. This has been achieved with the definition of a
”Demonstrator”, i.e., an example of requirements construction process based on
formal methods, and its application to a case study selected from the railway
signaling sector[12].
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2 The Case Study and Demonstration Process

The 4SECURail case study is derived from the communication layers specified
by UNISIG-39 [10] and UNISIG-98 [11], describing the establishment, supervi-
sion, and management of the RBC1-RBC communication line used to support
the RBC-Handover protocol. The full system can be modeled as a set of four
UML state machines interacting with other three state machines modeling other
parts of the execution environment (see Fig. 1). In our modeling, we introduced
an additional abstract “Timer” component that allows the various components
to proceed in parallel but in a constrained way with respect to their relative
execution speed. The requirements of the Communication Supervision Layer
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Fig. 1. The 4SECURail case study structure
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Fig. 2. The 4SECURail Demonstrator process

(CSL) and Safe Application Intermediate Sub-Layer (SAI) components are de-
fined in natural language, and their initial specification can be found in Deliver-
able D2.3[9]. The 4SECURail demonstrator process (see Fig. 2) begins with the
analysis of the natural language descriptions of the requirements and with the
construction of an operational SysML/UML model of the system components.

1 Radio Block Centre



A Case Study in Formal Analysis of System Requirements 3

The UML designs are complemented by an explicit and precise set of assump-
tions on the characteristics of inter-state machine communications. We make a
restricted use of the features provided by UML so that the design has a clear and
simple semantics allowing, with a low effort, its mechanical translation into the
different notations used for formal analysis. This paper focuses on the presen-
tation of the adopted approach for the translation of the SysML/UML models
into the formal notations supported by three different verification frameworks,
namely UMC [13–15], ProB [16, 17], and CADP [18, 19]. For all the details of
the formalization and analysis process, we refer to the project deliverables [9].

3 The Formal Modeling

The first notation used to model the case study is the KandISTI/UMC frame-
work developed by the Formal Methods && Tools (FMT) Laboratory2 at ISTI-
CNR in Pisa. This notation allows us to define a system as a set of UML state
machines, expressed in a simple textual form3, to explore the possible system
evolutions, and to verify branching time properties on it. Despite its still proto-
typical status, this framework has been chosen as the first target since it fits well
the needs of fast design prototyping. The resulting graph describing the system
evolutions can be analyzed or saved in the form of a Doubly Labeled Transition
System (L2TS), where the user has the choice to specify which kind of informa-
tion should be associated with the L2TS edges and nodes. This information may
include the UMC transition label, the outgoing events generated by the effects
of a transition, the value of some state variables, or any other custom flag asso-
ciated with the transition firing. The second notation is the B language accepted
by the ProB tool. ProB is an animator, constraint solver, and model checker for
the B-Method developed by the Institute for Software and Programming Lan-
guages of the Heinrich-Heine University in Germany. The B-method-based tool
appears to be one of the most widely used tools for the formal development and
analysis of railway-related systems [26]. The third notation is the LNT[27] lan-
guage of the CADP[18] framework. CADP is an advanced process algebra-based
toolset that leverages Labeled Transition Systems (LTS) theory to support com-
positional verification, system minimization, animation, and testing. The LNT
notation has an imperative style of process descriptions that is well-suit to the
description of the behavior of UML state machines.

In UMC, a system is defined as a static instantiation of a set of state machines
from their template defined as a Class definition. The event pool associated with
a state machine can be qualified as FIFO or RANDOM queue, and in our case,
we rely on the UML FIFO default choice. The behavior of a UMC state machine
is described by a set of rules in the form:

Transition_Label:

SourceStates -> TargetStates {Trigger [Guard] / Effects}

2 https://fmt.isti.cnr.it
3 UMC is freely accessible online at http://fmt.isti.cnr.it/umc and a detailed descrip-
tion of the syntax can be found in http://fmt.isti.cnr.it/umc/DOCS/sdhelp.html
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In ProB, our encoding models a system as a single B Machine that includes
the local state and the behavior of all the UML state machines constituting
the system. The main difference between the ProB model and the UMC/LNT
models is that in ProB, the UML event pools are modeled by global variables
manipulated by the (atomic) state machine operations, while in UMC and LNT
the event pools are handled locally inside each state machine, and their manip-
ulation occurs via synchronizations or message exchange. A UML transition of
a state machine is mapped on a ProB OPERATION, appropriately conditioned
with respect to the trigger and guard, and performing the specified effects. The
sending of an event is explicitly modeled with the insertion of data into a FIFO
buffer modeling the event pool of the target state machine.

In the LNT encoding, a state machine is represented by an LNT process, and
the various LNT processes are composed in parallel, appropriately synchronizing
the sending/accepting actions. Each process executes a loop inside which several
alternatives are non-deterministically possible. These alternatives model either
the condition and effects of the triggering of state machine transitions, or the
unconditioned acceptance in the event pool of incoming events. Also in this case,
the event pool of the state machine is explicitly modeled as a FIFO buffer in the
local state of the process.

Figure 3 shows one of the natural language requirements for the initiator CSL
subsystem, while Figure 4 shows the graphical layout of the state machine dia-
gram of the CSL system component on the initiator side of the communication
line. We can see how the requirement R4 is modeled by the corresponding tran-
sition in the state machine diagram. Fig. 5 shows, from left to right, the encoding
of the R4 transition for UMC, ProB, and LNT. Clearly, the executable model
contains more implementation details than the abstract UML design shown in
Fig. 4, which just describes the system requirements in a semi-formal notation
acting as a bridge between the natural language and the executable/formal nota-
tions. The colors in the figure help to see the matching of the various information
present in each encoding. We can see that the transition label in UMC becomes
the operation name in ProB, that the change of state is modeled in ProB and
LNT by the change of the value of a variable, and that signaling-related op-
erations are modeled in ProB and LNT as explicit operations on lists/tuples.
An essential consequence of using a UML subset (e.g., no composite states, no
parallel states, no deferred events, no competition between triggered and com-
pletion transitions) is that it becomes rather easy to implement a mechanical
translation from the UMC encoding to the ProB and LNT notations.

Requirement R4:
    When in the NOCOMMSconnecting state a ISAI_Connect_confirm is received, the initiator CSL 
    moves to COMMS state, sends a RBC_User_connect_indication to the RBC and starts both 
    the send and receive timers.

Fig. 3. The R4 requirement for the initiator CSL in natural language
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Fig. 4. The state machine diagram of the CSL component on the initiator side

process ICSL [..] is
...
 var mybuff: ICSL_BUFF, ... in
  loop
    select
      -- R4_ICSL 
      only if
         mybuff /= nil 
      and
           head(mybuff) = ISAI_CONNECT_confirm
       and
           STATE = NOCOMMSconnecting
      then
        RBC_User_Connect_indication;
        connect_timer := max_connect_timer;
        receive_timer := 0;
        send_timer := 0;
        mybuff := tail(mybuff);
        STATE = COMMS
      end if
      []
         ...
    end select
   end loop
  end var
end process

MACHINE SYS
  ...
OPERATIONS
  ...
R4_ICSL =
PRE
    ICSL_buff /= [] &
    first(ICSL_buff) = ISAI_CONNECT_confirm & 
    ICSL_STATE = NOCOMMSconnecting
THEN 
    IRBC_buff := IRBC_buff <-
                         RBC_User_Connect_indication;
    ICSL_connect_timer := 
                          ICSL_max_connect_timer;
    ICSL_receive_timer := 0;
    ICSL_send_timer := 0;
    ICSL_buff := tail(ICSL_buff);
    ICSL_STATE = COMMS
END;
  ...
END;

Class ICSL is
  ...
Behaviour
  ...
R4_ICSL:
NOCOMMSconnecting -> COMMS  
 { ISAI_CONNECT_confirm /  
    RBC.IRBC_User_Connect_indication;
    receive_timer := 0;                 
    connect_timer := max_connect_timer; 
     send_timer := 0; }  
  ...
end ICSL;

Fig. 5. UMC, ProB, and LNT encoding of the R4 ICSL transition

All these three notations, moreover, natively support data type operations
on lists or tuples that can be exploited in an equivalent way to handle FIFO
buffer operations. The final effect of the transformations is the generation of
formal models with almost the same readability as the first UMC model; also,
the original comments present in the UMC code are preserved in the generated
ProB and LNT encodings. Because of the strict budget and timing constraints
of the project, our goal has been limited to the translation of the set of features
currently used in our models. Still, the set of supported features can surely be
further extended (e.g., by allowing sequential composite states and constrained
forms of parallel states).

The CADP environment allows saving the statespace of an LNT model in the
simple textual .aut [20] format (as an LTS whose labels denote communication



6 D. Belli, F. Mazzanti

actions). The ProB tool saves the full statespace of a model in textual format
which can be easily mechanically converted into the .aut format (as an LTS
whose labels denote the triggered operation names). Finally, also the UMC envi-
ronment allows saving the statespace of a model in the .aut format, permitting
the user to specify which information to encode in the LTS labels (communica-
tion actions or transition labels, or both). The strong equivalence of the three
models can therefore be easily checked with tools like mCRL2 ltscompare[29]
or CADP bcg cmp[21]. While defects in the code of the translators can often
immediately be put in evidence by just the observation of the size of the gener-
ated state spaces, the formal LTS comparison of the .aut representations allows
observing also one of the specific execution traces that are at the root of the
dissimilarity. This proved to be very useful during the testing of our translators.

4 Hints on the Formal Analysis

The tool diversity adopted in the project allows us to analyze the system from
different perspectives: e.g., state-based linear time properties with ProB, event-
based branching time properties with CADP, state- and event-based properties
with UMC, information hiding and model reductions with CADP. Because of the
parametricity of the system and the presence of several wide-range parameters
in communications, formal analysis can only be done by reasoning on selected
scenarios where the system parameters are fixed and the environment compo-
nents have a desired stimulating behavior. Several examples of these scenarios
are shown in [30] and described in Deliverable D2.5[9]. Linear (or lazo-shaped)
counterexamples or reachability proofs from UMC and ProB can be displayed
in a friendly way as sequence diagrams. Due to the complexity of the issue, for
more details on the subject, we refer to the final project deliverable D2.5 [9] and
the presentations in [22–24].

5 Related Works

The goal of the 4SECURail Demonstrator is to show a possible way to im-
prove the quality of standard specifications by exploiting formal methods. The
project Formasig[28] has a very similar goal, which is the development of a formal
method allowing railway standardization projects to formally verify standardized
interfaces. Also in the case of Formasig, the starting point is the EULYNX natu-
ral language specification enriched with SysML artifacts. The Formasig approach
aims to translate these EULYNX SysML models, developed with the commercial
PTC framework[33], into the process specification language mCRL2[36, 37] for
formal analysis. Several other Shift2Rail[34] projects have investigated the use
of formal methods for the analysis of signaling systems like ASTRAIL[35], which
focuses on a survey of the available tools on this subject, and PERFORMIN-
GRAIL[25] (still in progress) more centered on ERTMS[46] moving block speci-
fications. The impact of the adoption of formal methods during railway-related
software development has been studied in Shift2Rail projects X2RAIL2 and
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X2RAIL5 (in progress). Unfortunately, not all the produced material in these last
projects is publicly available. Many studies investigate the formal verifications of
UML models (e.g. [49–54]). Because of the ambiguity, variability, and complex-
ity of the OMG UML documents, all these efforts appear as particular personal
interpretations of specific UML subsets, without reaching the goals of providing
UML with precise and widely recognized semantics. We have focused our effort
on the model checking techniques provided by ProB for Event-B specifications.
An alternative approach, based on theorem proving to develop formally verified
refinements, is supported by Atelier-B[38] and Rodin [39]. When using Rodin
the input models can also be derived by UML-B[40–42] designs. A fragment of
our case study, i.e., the SAI communications levels, has also been specified and
verified, as a spin-off of the project[43], using UPPAAL[44]. Hugo[47, 48] is an-
other interesting example of formal methods diversity that still uses UML state
machines as a starting point while exploiting UPPAAL and Spin[45] for formal
analysis.

6 Conclusions

The effort described in this short paper is just a fragment of the overall activity
performed inside the project and does not describe many other points analyzed
or discussed in the project deliverables. Among these, an analysis of the cost and
benefits from the point of view of Infrastructure Managers for the use of formal
methods, the reasons for choosing UMC, Prob, and LNT as reference platforms,
the reasons and difficulties implied by the choice of using UML as starting point
of the analysis process, the relation between the natural language requirements
and the semi-formal and formal artifacts, the kind of easily understandable feed-
back that the formal analysis can give to the initial standard interface designer.
Some of these themes have also been touched in [22–24]. The experience gained
in the experimentation has confirmed that a simplified version of UML is a vi-
able choice for the modeling of requirements. A simplified UML can be the base
for rigorous, clear, and easy to understand designs that can be mapped more
directly with natural language requirements, and that can be translated into
still understandable formal notations. A second confirmation coming from our
experimentation is that the exploitation of formal methods diversity, i.e., multi-
ple translations of the same specification into different formal notations, allows
from one side to reduce and detect as early as possible the introduction of encod-
ing errors, and from the other side the widening of the available formal analysis
techniques and tools. The project deliverables, the generated models, the veri-
fied scenarios, and the source code of the translators are publicly available from
Zenodo repositories [30–32].
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