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The patterns of change in bioclimatic conditions determine the vegetation cover 
and soil properties along the altitudinal gradient. Together, these factors control 
the spatial variability of soil respiration (RS) in mountainous areas. The underlying 
mechanisms, which are poorly understood, shape the resulting surface CO2 flux 
in these ecosystems. We aimed to investigate the spatial variability of RS and its 
drivers on the northeastern slope of the Northwest Caucasus Mountains, Russia 
(1,260–2,480 m a.s.l.), in mixed, fir, and deciduous forests, as well as subalpine 
and alpine meadows. RS was measured simultaneously in each ecosystem at 12 
randomly distributed points using the closed static chamber technique. After the 
measurements, topsoil samples (0–10 cm) were collected under each chamber 
(n = 60). Several soil physicochemical, microbial, and vegetation indices were 
assessed as potential drivers of RS. We  tested two hypotheses: (i) the spatial 
variability of RS is higher in forests than in grasslands; and (ii) the spatial variability 
of RS in forests is mainly due to soil microbial activity, whereas in grasslands, it is 
mainly due to vegetation characteristics. Unexpectedly, RS variability was lower in 
forests than in grasslands, ranging from 1.3–6.5 versus 3.4–12.7 μmol CO2 m−1 s−1, 
respectively. Spatial variability of RS in forests was related to microbial functioning 
through chitinase activity (50% explained variance), whereas in grasslands it was 
related to vegetation structure, namely graminoid abundance (27% explained 
variance). Apparently, the chitinase dependence of RS variability in forests may 
be  related to soil N limitation. This was confirmed by low N content and high 
C:N ratio compared to grassland soils. The greater sensitivity of grassland RS to 
vegetation structure may be related to the essential root C allocation for some 
grasses. Thus, the first hypothesis concerning the higher spatial variability of RS 
in forests than in grasslands was not confirmed, whereas the second hypothesis 
concerning the crucial role of soil microorganisms in forests and vegetation in 
grasslands as drivers of RS spatial variability was confirmed.
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1. Introduction

Soil respiration (RS) is one of the major fluxes of the global carbon 
(C) cycle affecting atmospheric CO2 concentrations. The process of RS 
potentially provides feedback to global climate change due to the large 
amount of C currently stored in soil organic matter (SOM), otherwise 
known as soil organic carbon (SOC) (Reichstein et al., 2003; Frey 
et al., 2013). SOC accounts for approximately 1,500 Pg of total C 
unequally distributed in the uppermost meter of the global soil layer, 
representing the largest terrestrial C pool (Kutsch et  al., 2010; 
Schaufler et al., 2010; Mayer et al., 2020). The ratio between SOC 
accumulation in terrestrial ecosystems and SOC loss as CO2 efflux 
from soil determines whether an ecosystem serves as an atmospheric 
sink or source of C (Schlesinger and Andrews, 2000; Bolstad 
et al., 2004).

The processes and factors affecting RS has become a heavily 
scrutinized topic in the international research community in the 
broad context of its efforts to mitigate long-term climate change (Bu 
et al., 2012; Leifeld et al., 2013). However, the extremely high temporal 
and spatial variability of RS remains a challenge for the development 
of accurate regional and global models of the C cycle (Bond-Lamberty 
and Thomson, 2010). The temporal variation of the RS process is 
studied worldwide and can be effectively predicted by the dynamics 
of soil temperature and moisture (Luo and Zhou, 2006; Xu and Shang, 
2016; Hursh et al., 2017; He et al., 2023). However, much remains 
unclear about the spatial variation of RS within different ecosystems, 
landscapes, and biomes, making it difficult to predict.

RS composed of autotrophic (mainly root respiration) and 
heterotrophic components hampers the quantification of spatial 
drivers controlling the total CO2 efflux from soil (Chen et al., 2017). 
The contribution of each of these components is characterized by high 
spatial heterogeneity (Subke et al., 2006). More specifically, the spatial 
variation of root respiration is affected by vegetation, i.e., by species 
composition, abundance of herbaceous species, and the corresponding 
density of fine roots in the upper soil layer (Rodeghiero and Cescatti, 
2008). At the same time, changes in the microbial capacity to 
decompose SOM (enzymatic activity, basal respiration, microbial 
biomass abundance, etc.) from site to site determine the spatial 
distribution of heterotrophic respiration (Ananyeva et  al., 2020). 
Consequently, the drivers of spatial distribution of different 
components of RS are interdependent, and it is quite difficult to 
determine which of these components are key.

Mountain landscapes occupy almost 25% of the global surface 
area (Kapos et al., 2000) and accumulate significant amounts of SOM 
(Canedoli et al., 2020); consequently, their contribution to the global 
С cycle can be considerable (Hansson et al., 2021). As for regional 
models describing the C cycle in mountains, the contribution of RS 
accounts for up to 21% of regional emissions estimates, exceeding 
even that of the C-rich soil of steppes (Kudeyarov et  al., 2007). 
Nevertheless, there is a significant lack of data on RS in mountainous 
areas (Kudeyarov and Kurganova, 2005; Liu et  al., 2014). These 
shortcomings are related to difficulties in logistics and equipment 
delivery, unfavorable climatic conditions, and measurement features 
(Lin et  al., 2017). For instance, when measuring RS on mountain 
slopes, the correction factor on steepness should be applied (Xu and 
Shang, 2016). Therefore, researchers usually select a flat plot to 
determine RS, resulting in a lack of data about mountain landscapes 
with steep slopes. Hence, an extension of the regional database is 

necessary for better understanding the spatial patterns of RS in 
mountains and its drivers.

Most mountains (e.g., Himalayas, Alps, Caucasus) are covered 
with forests, which are replaced by grasslands at increased altitudes 
(Bardelli et al., 2017; Ahmad et al., 2020; Ivashchenko et al., 2021). 
Hence, the distribution patterns of RS change at higher altitudes. A 
higher variation coefficient in forests than in grasslands has been 
shown due to the high heterogeneity of soil conditions caused by gaps 
in forest canopies (Rodeghiero and Cescatti, 2008; Katayama et al., 
2009; Qi et al., 2010; Darenova et al., 2016; Shi et al., 2019). Besides, 
considering that the ratio of heterotrophic to autotrophic respiration 
in forests is mainly higher than in grasslands as reviewed by Hanson 
et al. (2000), it would be reasonable to assume a different contribution 
of microbial and vegetation properties to the spatial variations of RS 
in these ecosystems. Despite a number of works having been 
conducted on the determination of drivers of spatial patterns of RS in 
forests (Luan et al., 2012; Jiang et al., 2020), there is still a lack of clear 
understanding on how they are combined in different ecosystem 
types. Such assessments face the substantial challenge of organizing 
simultaneous measurements of RS across various ecosystems to avoid 
the effect of temporal variability (Jiang et  al., 2020). The spatial 
variability of RS could be assayed using manipulation experiments or 
monitoring natural environmental gradients in the field. Manipulation 
experiments in controlled environments negatively affect the ability to 
predict system responses to changing factors and, accordingly, the 
capacity to effectively schedule and implement conservation actions 
(Pressey et  al., 2007; Reside et  al., 2017; Ettinger et  al., 2019). 
Interpreting the data from monitoring experiments performed in 
natural environments is a more challenging issue; nonetheless, it is a 
promising alternative to manipulation experiments as more realistic 
assessments of RS and its drivers could be achieved.

Thus, we developed an experimental design that allows for the 
mitigation of the effect of temporal variability via simultaneous 
measurements in various ecosystems along altitudinal gradient and 
only focused on spatial factors within forests and grasslands of the 
examined mountain slope. The following hypotheses were formulated:

 i. The spatial variability of RS in forests is higher than in 
grasslands due to the high heterogeneity of environmental 
conditions (e.g., temperature and litter thickness) caused by 
canopy gaps compared to open grasslands.

 ii. The spatial variability of RS in forests is attributable mainly to 
soil microbial activity, while spatial variability of RS in 
grasslands is attributable mainly to vegetation properties, 
taking into account different contributions of heterotrophic 
and autotrophic components to this process for the two 
ecosystem types.

2. Materials and methods

2.1. Study area and experimental design

The study was conducted in the Northwest Caucasus Mountains 
(43°40’N; 40°47′E) in Karachay-Cherkess Republic, South Russia. The 
mountain slope-to-test was the northeastern exposure and covered five 
vegetation belts: mixed forest at 1,200–18,00 m a.s.l., fir forest at 
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1,800–2,040 m a.s.l., deciduous forest at 2,040–2,290 m a.s.l., subalpine 
meadow at 2,290–2,300 m a.s.l., and alpine meadow at 2,300–2,500 m a.s.l. 
(Figure  1). The soil types were Cambisols, Umbrisols, and Leptosols 
formed on non-alkaline bedrock. The mean annual air temperature 
ranged from 3.5 to 5.9°C (our data for years 2018–2021; Table 1) and 
annual precipitation ranged from 800 to 1,850 mm (the nearest 
meteorological stations were located at 1,313 m a.s.l. and 2,006 m a.s.l.). The 
dominant vegetation species along the studied slope are shown in Table 1.

In each vegetation belt, 12 plots of 0.5 × 0.5 m were randomly 
established as described by Ivashchenko et al. (2021). In total, there 
were 60 plots along a 1.2 km altitudinal gradient. RS was measured 
simultaneously at all plots from 9:30 to 10:30 a.m. on August 11, 2018. 
This design was aimed at estimating the drivers of spatial variation of 
RS without considering the causes of its temporal changes. The 
measurement time (day and hour) was chosen so that the primary 

drivers of temporal variability of RS (i.e., plant phenology, soil 
temperature, and moisture) were close to representative throughout 
the altitudinal gradient. First, most plant species along the study slope 
reach their maximum phytomass and ripening stage in the first half of 
August. Second, on the eastern slope, there is enough light during the 
morning for photosynthesis, but there are still no large spatial 
fluctuations in soil temperature. On the measurement day, soil 
moisture across the slope was equally sufficient due to preceding rain 
events typical for the summer season at the location. Vegetation and 
soil physicochemical and microbial properties characterizing the 
sources, conditions, and mediators of CO2 formation in soil were 
considered as potential drivers of spatial variability of RS. In this case, 
only the upper 10-cm soil layer was taken into account, since (i) its 
microbial properties showed a close correlation with RS for different 
soils and ecosystems (Sushko S. et al., 2019; Sushko S. V. et al., 2019), 

TABLE 1 General characteristics of studied forest and grassland sites along the northeastern slope of Mt. Tkachiha.

Site Altitude, m a.s.l. Slope, ° MAT, °C Dominant vegetation

Air Soil

Forests

mixed 1,260 7 5.9 NA Fagus orientalis, Abies nordmanniana, Picea orientalis

fir 1,960 20 3.4 3.9 Abies nordmanniana

deciduous 2,060 26 4.1 3.6 Acer trautvetteri, Sorbus aucuparia, Betula pendula

Grasslands

subalpine 2,240 9 4.8 4.0 Calamagrostis arundinacea, Festuca ovina

alpine 2,480 6 3.5 3.2 Carex sp., Vaccinium vitis-idaea

MAT, mean annual temperature for years 2018–2021; NA, not available.

FIGURE 1

Scheme of the northeastern slope of Mt. Tkachiha (Northwest Caucasus, Karachay-Cherkess Republic, Russia).
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and (ii) it provides main portion of surface CO2 fluxes from moist soils 
(Wiaux et al., 2015).

Vegetation surveys to identify plant species and their projective 
cover for the herbaceous layer were carried out at each 0.5 × 0.5 m plot 
before RS measurements. Simultaneously with the RS measurement, 
soil temperature was recorded at a 10 cm depth using the Checktemp 
sensor (Hanna Instruments, Germany), after which a single composite 
sample per plot (mixing 5 cores with Ø 5 cm) was taken from the 
upper 0–10 cm layer, placed in a plastic bag, and transported to the 
lab. Fresh samples (n = 60) were immediately sieved through a 2 mm 
mesh to exclude roots, debris, stones, and homogenized them. A 
portion of each soil sample was used to determine its moisture by the 
gravimetric method (8 h, 105°C). The remained soil was used for 
microbial and chemical analysis. Subsamples for microbial analysis 
were stored at 4°C for up to 2 weeks after sampling.

2.2. Soil respiration

Soil respiration (RS), i.e., CO2 efflux from the soil surface, was 
measured by the closed static chamber technique. For this, 
non-transparent PVC chambers (Ø 15.5 cm, volume 1.8 L) were inserted 
into the soil to a depth of 2–3 cm (above-ground grass was preliminarily 
cut) perpendicular to the slope surface. Three air samples (20 ml) were 
taken from each chamber through a rubber stopper with a gas-tight 
syringe and analyzed with an infrared gas analyzer (SBA-5, PP system, 
USA). The first zero-time sample was collected immediately after 
installing the chamber, while the other two were collected at an interval 
of 3–5 min. The day before, preliminary measurements were performed 
with gas sampling at nine time points (0, 1, 2, 3, 4, 5, 10, 15, 20 min) to 
determine the period of initial linear increasing of CO2 concentration 
inside the closed chamber at each site. It was found that 5 min is a 
representative time for all ecosystems during which the gas increases 
linearly (mean R2 = 0.98 ± 0.03). Additionally, we recorded atmospheric 
pressure along the altitudinal gradient simultaneously with RS 
measurements using a meteorological barometer. The RS rate (μmol CO2 
m−2 s−1) was calculated according to the following equation:

 
R

VP

RST
S = ×

∂
∂
C
t
,
 

(1)

where V is chamber volume (m3), P is air chamber pressure (Pa), 
R is gas constant (8.314 m3 Pa K−1 mol−1), S is soil surface area (m2), T 
is chamber air temperature (K), and ∂С/∂t is change of CO2 
concentration inside the chamber over time (μmol mol−1 s−1). The final 
RS rate was corrected for the surface slope angle in degrees (θ): RS/cos 
θ (Xu and Shang, 2016).

2.3. Soil and vegetation analysis

Soil total C and N contents were determined by the dry 
combustion method using a CHNS analyzer (Leco Corp., USA). 
Dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) 
were determined in 0.05 M K2SO4 extracts (5 g soil: 20 mL solution) 
using a Shimadzu TOC-VCPN analyzer (Shimadzu Corp., Japan) 
(Makarov et  al., 2015). The pH was measured in a soil:water 
suspension (1:2.5 ratio) with a conductivity Sartorius Basic Meter 
(Germany). Microbial biomass carbon (MBC) was measured by the 

substrate-induced respiration method (Anderson and Domsch, 1978; 
International Organization for Standardization, 1997). Basal 
respiration (BR) was measured as the rate of soil CO2 release using 
gas chromatography (KrystaLLyuks-4,000 M; Meta-Chrom, Russia) 
(International Organization for Standardization, 2002). The MBC 
and BR values were determined under optimum hydrothermal 
conditions for the microorganisms: 22°C and 65% water holding 
capacity. Three hydrolytic C-and N-acquiring enzymes (β-d-
glucosidase, chitinase, and leucine aminopeptidase) were measured 
using fluorogenic substrates (Marx et  al., 2005; International 
Organization for Standardization/Technical Specification, 2019) as 
detailed by Ivashchenko et al. (2021). The soil samples for MBC, BR, 
and enzyme activities were pre-incubated at 22°C for 72 h 
(Loeppmann et al., 2016).

We chose characteristics of the herbaceous layer as a potential 
driving factor along the altitudinal gradient because: (i) it is a uniform 
ecological plant group for forest and grassland sites; (ii) despite a small 
contribution to overall forest biomass, this plant strata significantly 
affect N, P, K, and Mg cycles and mediate C dynamics at the ecosystem 
level (Gilliam, 2007). For each of the plots studied, the number of 
species (richness) and total projective coverage for graminoids and 
forbs were estimated (Ivashchenko et al., 2021). These functional plant 
groups were the most abundant and presented throughout the 
altitudinal gradient. In addition, the Shannon-Wiener plant diversity 
index (Hplant) for the herbaceous layer was calculated using the 
following equation:

 H p pplant = −∑ i iln  (2)

where pi is the ratio of i species projective cover to total projective 
cover of all species per plot.

2.4. Statistical analysis

The spatial variability of the studied properties within forests 
and grasslands was quantified by the coefficient of variation (CV, 
%), calculated as the ratio of the standard deviation to the mean. 
Additionally, boxplots combined with dot plots were used to show 
the variability of RS across the studied sites. The significance of 
differences in variables between two or more independent groups 
was tested by Welch’s t-test or one-factor analysis of variance 
(ANOVA), respectively. Principal component analysis (PCA) was 
used to show variations and relationships between the studied 
environmental variables, as well as to illustrate the difference 
between forest and grassland sites. To reveal possible drivers of RS 
spatial variability within forests and grasslands, we used forward 
stepwise regression and path analysis. First, significant factors 
within each group of variables (soil physicochemical, microbial, and 
vegetation) were identified by forward stepwise regression using 
permutation tests. Afterward, the causal relation between the 
identified predictors was examined using path analysis. The 
pre-analysis and preparation of data included (1) checking the 
normality of distribution with a histogram plot and Shapiro–Wilk’s 
test, (2) log-transformation of some variables to achieve a normal 
distribution (i.e., C, N, C:N, DOC, BR, enzyme activity), and (3) 
centering and scaling to unit variance. All analyses and 
visualizations were performed in the R software system (version 
4.1.2, RStudio Team, 2023) using the following packages: “ggplot2” 
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for boxplots (Wickham, 2016), “FactoMineR” (Lê et al., 2008) and 
“factoextra” (Kassambara and Mundt, 2020) for PCA, “packfor” for 
forward stepwise regression (Dray et al., 2016), and “lavaan” for 
path analysis (Rosseel, 2012).

3. Results

3.1. Environmental characteristics in forests 
and grasslands

As expected, soil environments essentially differed between 
mountain forests and grasslands (Table  2). Grasslands located at 
higher altitudes than forests accumulated more organic matter (in the 
C, N, DOC, DTN forms) in soils characterized by a lower C:N ratio. 
Under both types of vegetation, the soils were strongly acidic (pH 
5.0–5.2). Soil temperature in forests varied noticeably higher than in 
grasslands; its average values were 14.1, 11.3, 11.6, 13.7, and 13.0°C 
for mixed, fir, deciduous forests, subalpine and alpine grasslands, 
respectively. Conversely, water content was more homogenous in 
forests than in grasslands, averaging 39.3, 38.8, 39.4, 45.3 and 61.2% 
for the above listed ecosystems, respectively. Among the 
physicochemical properties studied in forest and grassland soils, the 
DTN content showed the highest spatial variability (CV 55–63%).

Differences in contents of total and dissolved forms of C and N 
between the forest and grassland soils led to significant differences in 
their microbial properties. Basically, indices of microbial activity in 
grasslands exceeded those in forests, except for leucine aminopeptidase 
(LAP) activity. Among the soil microbial properties, the activity of 
enzymes had the highest spatial variation within both forests and 
grasslands (CV 64–137%).

The forest understory (18% projective coverage) was formed 
mostly by forbs (11%). By contrast, the projective coverage (>90%) of 
grasslands almost equally consisted of graminoids and forbs. As a 
result, the number of species and the homogeneity of their distribution 
within a plot (Hplant) were higher in grasslands than in forests. In 
general, the spatial variation of all of the vegetation properties studied 
was considerably higher in forests than in grasslands (CV 50–164% 
vs. 9–56%).

The PCA analysis for all measured characteristics showed a clear 
grouping of studied sites by vegetation type, i.e., forests and grasslands 
(Figures  2A,B). Among the soil physicochemical parameters, the 
organic matter (in the C, N, DOC, DTN forms) and water contents 
mostly differed between forest and grassland soils (allocation of points 
along axis 1; r2 = 0.64–0.92) (Figure 2A). It is worth noting that the 

FIGURE 2

Principal component analysis (PCA) ordination triplot for soil physicochemical (A), soil microbial (B), and vegetation (C) characteristics of mountain 
forest and grassland sites. See variable abbreviations in Table 2.

TABLE 2 Topsoil (0–10 cm) and vegetation (herbaceous layer) 
characteristics of forest and grassland sites along the studied mountain 
slope.

Variables Forests (n = 35) Grasslands (n = 24)

Mean ± SE CV, 
%

Mean ± SE CV, %

C, g kg−1 73 ± 4 30 162 ± 11*** 32

N, g kg−1 5.1 ± 0.2 28 13.1 ± 0.8*** 31

DOC, μg g−1 127 ± 6 29 206 ± 8*** 19

DTN, μg g−1 59 ± 6 63 95 ± 11** 55

C:N 14.3 ± 0.3 14 12.2 ± 0.2*** 8

pH 5.2 ± 0.1 10 5.0 ± 0.1 7

Temperature, °C 12.3 ± 0.2 10 13.4 ± 0.1*** 5

WC, % 39 ± 1 22 53 ± 2** 20

MBC, μg C g−1 1,883 ± 97 30 4,475 ± 247*** 27

BR, μg C g−1 h−1 2.57 ± 0.18 42 3.62 ± 0.27** 36

β-Glucosidase† 1.28 ± 0.24 112 2.95 ± 0.39*** 64

Chitinase 2.96 ± 0.68 137 7.18 ± 1.53* 104

LAP1 6.71 ± 1.11 98 0.27 ± 0.05*** 83

Coverage, % 18 ± 2 73 94 ± 2*** 9

Graminoids, % 2 ± 1 164 44 ± 5*** 56

Forbs, % 11 ± 2 110 34 ± 3*** 47

Richness 5 54 7 ** 27

Hplant 0.94 ± 0.08 50 1.32 ± 0.08** 31

Values present means ± standard error (SE) with a coefficient of variation (CV); *P ≤ 0.05; 
**0.01; ***0.001 for Welch’s t-test. C, total carbon; N, total nitrogen; DOC, dissolved organic 
carbon; DTN, dissolved total nitrogen; WC, water content; MBC, microbial biomass carbon; 
BR, basal respiration; LAP, leucine aminopeptidase; Richness, number of species;  
Hplant, Shannon–Wiener diversity index. †Unit for enzyme activity is μmol MUF g−1 h−1 
(β-glucosidase, chitinase) or μmol AMC g−1 h−1 (LAP).
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temperature and pH value of forest soils were characterized by 
extremely high variance (allocation of points along axis 2; r2 = 0.64–
0.65), while for grassland soils they were more homogeneous. Equally 
high variation for soil microbial parameters was found within both 
forests and grasslands (Figure 2B). At the same time, soils under these 
vegetation types were separately grouped along axis 1, mainly 
according to MBC content and LAP activity (r2 = 0.76 and 0.59, 
respectively). In terms of herbaceous layer features, forest and 
grassland sites were clearly separated from each other mainly along 
axis 1, which is associated with variations in almost all of the studied 
characteristics (total and forbs projective coverage, number of species, 
Hplant; r2 = 0.60–0.76) (Figure 2C).

3.2. Spatial variation of soil respiration and 
its possible drivers

The RS rate in the forests was, on average, half of that in the 
grasslands, reaching 3.7 and 7.3 μmol CO2 m−1  s−1, respectively 
(Figure 3). Within forests, RS increased significantly in the following 
order: fir < deciduous < mixed forests with average values of 3.0, 3.6 
and 4.6 μmol CO2 m−1  s−1, respectively (p < 0.001 for one-way 
ANOVA). At the same time, RS did not differ between subalpine and 
alpine grasslands with average values of 8.1 and 6.4 μmol CO2 m−1 s−1, 
respectively (p = 0.09 for Welch’s t-test). In general, the spatial variation 
of RS in forests was lower than that in grasslands (CV 28 and 33%, 
respectively).

Difference in RS rate between forests and grasslands was associated 
with their divergence in soil (C, N, DOC, temperature, MBC and 
enzyme activities; R2 = 0.23–0.45, p ≤ 0.001) and vegetation properties 
(coverage and graminoid abundance; R2 = 0.49 and 0.55, p ≤ 0.001) 
(Supplementary Figure S1). Notably, the relationship with vegetation 
were stronger than with soil conditions, indicating its primary role in 
determining RS rate across ecosystem types.

Stepwise regression analysis showed that RS spatial variation in 
forests was best predicted by soil temperature, chitinase activity, and 
species richness of the herbaceous layer (explained variation 29–50%) 
(Table 3). The best predictors for grasslands included chitinase activity 
and graminoid abundance (explained variation 19 and 27%, respectively).

Subsequent path analysis was used to explore the direct or indirect 
effects of the identified predictors on RS spatial variation. For forests, 
soil temperature was included in the path model both as (i) a direct 
factor, due to changing physical components of RS, e.g., gas pressure 
and its diffusive transport throughout pore space, and (ii) an indirect 
factor, acting through the regulation of chitinase activity. The plant 
species richness was considered only as an indirect factor since it 
determines the quality of the organic substrate entering the soil (root 
exudates, above-and below-ground litter), which, in turn, can affect 
chitinase activity. In general, the path model explained 50% of RS 
variation across forest sites (Figure 4A). In turn, soil temperature 
affected RS indirectly through the regulation of chitinase activity. Plant 
species richness did not affect chitinase, showing only a strong 
negative correlation with temperature.

For grasslands, chitinase activity, graminoid abundance, and, 
additionally, C:N ratio as their linking factor (indicated on the base 
correlation among all variables; see Supplementary Table S1) were 
included in the path model. As a result, the proposed model explained 
29% of the RS variation in grasslands (Figure  4B). As expected, 

graminoids affected chitinase activity via changes in the soil C:N ratio. 
However, the significance of direct or indirect effects of graminoids 
and chitinase activity on RS was not confirmed by the model despite 
its overall satisfactory goodness-of-fit. Nevertheless, the largest 
standardized path coefficient (0.41) was found for the direct effect of 
graminoids on RS. This fact can likely explain the more pronounced 
effect of vegetation features on grassland RS variability than soil 
characteristics associated with the microbial decomposition of SOM 
(e.g., chitinase activity).

TABLE 3 Results of stepwise regression for Rs dependence on soil and 
vegetation characteristics in mountain forest and grassland sites.

Variables Forests (n = 35) Grasslands (n = 24)

R2 F-value R2 F-value

C 0.01 0.81 0.02 0.47

N 0.02 1.31 0.01 0.34

DOC 0.00 0.14 0.00 0.01

DTN 0.03 2.31 0.08 1.99

C:N 0.02 1.37 0.11 2.62

pH 0.07 5.03* 0.00 0.03

Temperature 0.45 26.54*** 0.00 0.07

Water content 0.06 4.58 0.04 0.93

MBC 0.03 1.94 0.05 1.44

BR 0.01 0.74 0.07 1.89

β-Glucosidase 0.01 0.73 0.05 1.41

Chitinase 0.50 32.72*** 0.19 5.09*

LAP 0.05 3.37 0.04 1.30

Coverage 0.00 0.09 0.04 1.10

Graminoids 0.01 0.23 0.27 8.19**

Forbs 0.02 0.71 0.01 0.29

Richness 0.29 12.79* 0.01 0.57

Hplant 0.02 0.71 0.02 0.79

For each variable group, the analysis was performed separately. See variable abbreviations in 
Table 2. Bold indicates significant values at *p ≤ 0.05; **0.01; ***0.001.

FIGURE 3

Soil respiration (RS) for mountain forest and grassland sites along 
altitudinal gradient.
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Summarizing the results of all of the analyses performed, one can 
conclude that the spatial changes in RS within mountain forests were 
mainly driven by soil chitinase activity alone, while spatial changes in 
RS in grasslands were associated with graminoid abundance. These 
relationships have been additionally demonstrated using a simple 
regression (Figures 4C,D).

4. Discussion

4.1. Spatial variability of soil respiration in 
mountain forests and meadows

Our results showed a higher RS rate in grasslands than in forests, 
which is consistent with the earlier reported difference between these 
ecosystem types (Raich and Tufekciogul, 2000; Kao and Chang, 2009). 
Meanwhile, intra-ecosystem RS variability was also higher in 
grasslands than in forests (Figure 3), which contradicts both the data 
reported for other mountain regions (Rodeghiero and Cescatti, 2008; 
Darenova et al., 2016) and our first hypothesis. On the one hand, this 
discrepancy can be  attributed to the different time scales of 
measurements and, accordingly, different sources of RS variation. 

Specifically, our data show only the spatial variation in RS at individual 
time points without including its fluctuations during a season or year 
(i.e., combined spatio-temporal variability), unlike that in the above-
mentioned studies. On the other hand, high altitude grasslands adopt 
accelerated photorespiration to complete growth and development 
within a short growing season (Streb and Cornic, 2012). Alpine 
species reach maximum photosynthetic capacity at a wide range of 
light intensity (i.e., 530–3,000 μmol photons m−2 s−1) with a higher 
interspecific variation than in lowland plants (Korner and Diemer, 
1987). This phenomenon, along with a species-specific time lag 
between photosynthesis and root-derived CO2 efflux from soil 
(Kuzyakov and Gavrichkova, 2010), could have caused high spatial 
variability in RS within grasslands in our study.

4.2. Drivers of spatial variability in soil 
respiration in mountain forests and 
meadows

In our study, the drivers of spatial variability in RS were 
fundamentally different between forests and grasslands. In forests, 
both biotic and abiotic factors influenced the spatial variability of 

FIGURE 4

Path models and simple regression revealed the effects of soil (temperature, chitinase activity, C:N ratio) and vegetation factors (species richness, 
graminoid abundance) on RS spatial variability in mountain forests (A,C) and grasslands (B,D). In the path model, numbers within double-headed arrows 
are correlation coefficients between variables, numbers within one-way arrows are standardized path coefficients indicating the size effect of the 
causal relationship among variables (*p ≤ 0.05; **0.01; ***0.001); CFI, comparative fit index; SRMR, standardized root mean square residual.
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RS. A primary biotic driver was soil chitinase activity (Figure 4). The 
chitinase is one of the key enzymes of the C-and N-cycling, 
catalyzing degradation of chitin and peptidoglycan to carbohydrates 
and inorganic N available for soil microorganisms and plants 
(Andersson et  al., 2004). With an increase in the availability of 
substrates for maintenance and growth of microorganisms and 
plants, their enzyme production would diminish, and vice versa 
(Allison et al., 2010). The relationship between chitinase activity 
and RS in forests could be explained by soil N deficiency, which is 
confirmed by significantly low contents of total and dissolved N 
forms, as well as by a high C:N ratio (Table 2). At the same time, the 
N-related enzyme LAP did not affect RS, unlike chitinase (Table 3). 
A reasonable explanation for this finding is that LAP catalyzes the 
hydrolysis of amino acids (Sinsabaugh et al., 2009), which is a less 
important source of N than amino sugars (i.e., chitin) contained in 
microbial necromass (Buckeridge et al., 2022). The main abiotic 
driver of the spatial variability in forest RS was soil temperature, 
which acted indirectly through the regulation of chitinase 
(Figure 4). The lower temperatures stimulate microbial necromass 
accumulation that would decompose primarily with increase in 
temperature, in particular by the chitinase (Bai et al., 2016; Wang 
et al., 2021). Moreover, a dominant portion of microbial necromass 
in forest topsoil is represented by fungi, which is an essential source 
of chitin and other amino sugars (Ni et al., 2020; Wang et al., 2021). 
Accordingly, in our study, a strong relationship between temperature 
and chitinase was found at colder soil conditions in forests 
compared to grasslands (Table 2). Thus, chitinase activity and its 
dependence on biotic and abiotic factors is critically important 
considering the inter-relations between C-and N-cycling in 
forest soils.

In grasslands, spatial variability in RS was related to vegetation 
structure, especially graminoid abundance, rather than chitinase 
activity (Table 3 and Figure 4). Overall, weaker relationships between 
potential drivers and RS in grasslands unlike in forests can be attributed 
to the difference in the heterogeneity of the above-and below-ground 
vegetation structure, biomass, and C allocation. Below-ground C 
allocation of photosynthates in grasslands is high, especially for some 
graminoids (Liu et  al., 2021), which can eventually cause a 
considerable fraction of autotrophic (root-derived) respiration in RS 
(Hanson et  al., 2000). Therefore, the relationship between RS and 
graminoid abundance was the most pronounced in studied grasslands. 
An important role of the vegetation structure and functioning in 
spatial heterogeneity of RS in grasslands was also confirmed by 
previous studies (e.g., Bahn et al., 2008; Fóti et al., 2016). At the same 
time, abiotic factors would be crucial for RS changes at unfavorable 
temperature and water conditions, e.g., in cold and drought periods. 
Therefore, we can expect an enormous variation in the importance of 
a number of spatial drivers of RS depending on season, as earlier 
reported by Shi and colleagues (Shi et  al., 2020) for 
grassland ecosystems.

4.3. Prospects to study and forecast spatial 
variability of soil respiration

Monitoring RS is a complicated task due to its high variability 
in space and time (Rodeghiero and Cescatti, 2008). The spatial 
variation coefficient of RS can also be higher than that of RS temporal 

variation (Rodeghiero and Cescatti, 2008; Jiang et  al., 2020). 
Therefore, the optimization of RS measurements to decrease 
uncertainties caused by spatial factors is an urgent matter. A sample 
size for RS measurements could be  optimized using multiple 
probability simulation (Rodeghiero and Cescatti, 2008). However, 
for such a model, comprehensive information on RS spatial 
variability and its site-specific drivers is needed. Previous studies of 
RS spatial variability were combined with examinations of its 
temporal dynamics (Martin and Bolstad, 2005; Kosugi et al., 2007; 
Luan et al., 2012; Jiang et al., 2020). Under such conditions, spatial 
and temporal variability are overlapped since the measurements for 
different plots by closed chamber methods take several hours to 
even several days (Jiang et al., 2020). Consequently, high temporal 
variability in RS contributes to uncertainty in its spatial variability. 
The most accurate measurements are provided by long-term 
systems for multiplexed soil CO2 flux measurements, which are able 
to evaluate both spatial and temporal flux variations without 
overlapping across a large footprint (LI-COR, 2023). However, this 
measurement system is expensive and difficult to install on steep 
slopes. In our study, we sought to minimize RS temporal variability 
in mountain ecosystems, and thus focused on its spatial variability, 
which makes our research relatively novel for such kinds of field 
experiments. Simultaneous air sampling from closed chambers in 
five ecosystems took approximately 1 h and allowed for the analysis 
of CO2 concentrations on the same day despite the time spent for 
climbing and descent. However, extrapolating our results in time 
should be performed with care because seasonal variability in RS 
was not considered in the current set-up. Nevertheless, splitting the 
drivers for spatial patterns of RS between forests and grasslands 
constitutes a useful integration for C-cycle models (Jackson et al., 
2017). Moreover, projecting our results to the consequences of 
climate change allowed us to assay not only C turnover changes but 
also drivers of its spatial variability at treeline shifts in mountains; 
therefore, further research in this direction appears to be  a 
promising endeavor (Chen et al., 2022).

5. Conclusion

This study provides a comprehensive analysis of vegetation and 
soil factors along the altitudinal gradients to identify potential drivers 
of RS spatial variability. The results have shown principal differences 
in RS spatial patterns and their drivers between forest and grassland 
ecosystems. A higher spatial variability of this process was found in 
grasslands than in forests, which contradicts our first hypothesis. Soil 
microbial activity (i.e., chitinase) contributed greatly to spatial 
variability of RS in forests, while vegetation (graminoid abundance) 
was more considerable factors in grasslands, which fully confirmed 
our second hypothesis. These findings highlighted how CO2 fluxes in 
mountain forest and grassland ecosystems are regulated by a number 
of biotic and abiotic factors, emphasizing the most probable 
mechanisms of mutual regulations of C-and N-cycles.
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