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Abstract—Underwater noise analysis allows estimation of pa-
rameters of meteorological interest, difficult to monitor with in situ
devices, especially in very harsh environments such as polar waters.
Rainfall detection is a fundamental step of acoustical meteorology
toward quantifying precipitation and, indirectly, wind. To date,
this task has been conducted with some success by using a few
frequency bins of the noise spectrum and combining their abso-
lute values and slopes into some inequalities. Unfortunately, these
algorithms do not perform well when applied to spectra obtained
by averaging multiple noise recordings made over the course of
an hour. Supervised, machine learning models allow the use of all
the frequency bins in the spectrum, exploiting relationships that
are difficult for a human observer to identify. Among the different
models tested, a binary classifier based on random forest performed
well with moderate computational load. Using a dataset consisting
of over 18 000 hourly averaged spectra (approximately 25 months
of in situ recordings) and comparing the results with measurements
from a surface-mounted rain gauge, the proposed system detects
precipitations greater than 1 mm/h with 90% probability, keeping
the false alarm probability below 0.5%. This system has demon-
strated remarkable robustness as performance is achieved without
intentionally excluding any spectra corrupted by sounds produced
by other sources, such as naval traffic and wind blowing over the
sea surface.

Index Terms—Acoustical meteorology, machine learning, noise
analysis, rainfall detection, supervised learning, underwater
acoustics.

I. INTRODUCTION

THE MEASUREMENT of rain and wind in the marine
environment is an essential operation in understanding and

monitoring natural phenomena, especially in relation to climate
change and risk prevention [1]–[4]. Satellites for meteorological
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observation provide a valuable contribution, although the spa-
tial and temporal resolutions they provide do not always meet
monitoring requirements. This problem is particularly felt in
the polar environment due to the reduced coverage that these
satellites offer at higher latitudes [3], [5]. Weather surveillance
radars, operating along the coast, and surface rain gauges and
anemometers, installed on oceanographic fixed or mobile plat-
forms, also present critical issues that make it difficult to deploy
these devices on a large scale [3], [6], [7]. For these reasons,
estimating wind speed and rainfall intensity using underwater
acoustic noise is considered a crucial technique for a better
understanding of the oceans, either as an alternative to or in
support of satellites, coastal radar systems, and meteorological
buoy networks [6], [8].

In recent years, acoustical meteorology has received consider-
able attention, demonstrating that wind and rain can be measured
with satisfactory accuracy using low-cost underwater devices
installed on fixed moorings or moving platforms, in a variety
of ocean environments [1], [3], [7], [9]–[17]. However, several
problematic issues are still present and need convincing answers
to achieve proper operation of these devices in the field [2],
[18], [19]. These issues include the possibility of performing
wind and rain estimates when only acoustic data averaged over
a significant period of time are available. On the one hand, the
deployment in polar waters of a network of measurement devices
that are capable of operating autonomously could impose a dras-
tic reduction in processing and storage resources. Indeed, such
devices might be in need of operating completely autonomously
for one or more years. On the other hand, in mobile platform
installations, it may be necessary to minimize the transmission
resources to be committed during the rare and brief periods of
surfacing. These savings requirements led Vagle et.al., in their
pioneering work [9], to propose a method for estimating wind
speed using the average of the acoustic data acquired, at various
times, over a period of one hour. Recently, a similar proposal
has also been formulated and tested for rain monitoring [20].

In the literature concerning the acoustic measurement of rain,
the intensity of precipitation is estimated through two distinct
steps [3], [7], [10]–[13], [15], [18], [20], [21], [22]: the detection
of rainfall and, if any, the estimation of its intensity. With
the exception of [20], for both operations the input data are
derived from acoustic signals gathered over a few seconds or,
at most, a few minutes. This article investigates the possibility
of detecting precipitation over a one-hour period by exploiting
only the average of consecutive acoustic spectra acquired at
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intervals of a few minutes during that hour, without performing
any processing to filter out measurements potentially affected
by noise sources other than rain. The detection also aims to
reveal intermittent rain falling for a period shorter than the hour
under examination. Furthermore, the adopted dataset consists
of spectra acquired during different deployments of the acoustic
sensor, seasons, and environmental conditions, covering about
25 months of operation, using the same platform. Over such
an extended time interval, while precipitation detection is an
essential step in quantifying rainfall, it can also be useful in
estimating wind speed, due to the combined effect of these
phenomena on underwater noise, and in monitoring of oceano-
graphic parameters, such as sea surface salinity.

The methods mentioned above [1], [7], [9], [10], [13], [14],
[21] that aim to perform rainfall detection using short-term
acoustic data (short-term being the term adopted to indicate data
gathered over some seconds or a few minutes) do not provide
satisfactory performance when hourly averaged acoustic data are
used as input. In addition, the detection is performed by decision
rules that exploit only the values and slopes of the acoustic
spectrum at a few predetermined frequencies (for this reason,
these methods will be referred to as rule-based). To overcome
this restriction, a recent paper [20] proposed machine learning
methods to estimate rainfall intensity and wind speed using all
the frequency bins of the underwater noise spectrum as input
data to exploit implicit relationships that are not evident to the
human observer. In [20], machine learning methods are also
applied for rainfall detection, using hourly averaged spectra as
input data. Unfortunately, detection is limited to precipitation
intensities greater than 1 mm/h and the performance obtained
over a one-year period is worse than that reported in [15], where
a rule-based estimation method [21] was fed with short-term
data collected by the same equipment and over the same time
period used in [20].

This article is aimed at improving the performance of rule-
based methods in rainfall detection, exploiting all the frequency
bins of the spectrum within a scheme based on supervised
machine learning models, already successfully applied to other
detection problems of the underwater acoustic domain [23]–
[25]. The new knowledge that this work introduces is twofold:
the demonstration that hourly averaged spectra can be used to
detect rainfall with better performance than that achieved by
rule-based methods fed by short-term data; and, second, an
in-depth analysis of the potential and limitations of the machine
learning models adopted, made possible by experimentation on
real data collected at sea over a period of more than two years.
In addition, the detection scheme proposed here is capable of
operating even with extremely light precipitation, being able to
detect rainfall intensity of 0.1 mm/h, a value that represents the
instrumental limit of most commercial rain gauges.

The rest of this article is organized as follows. Section II
presents a brief state-of-the-art in rainfall detection from un-
derwater noise. Section III describes the experimental setup and
data used in this study, the detection algorithms from the prior
literature, and the proposed approach, based on machine learning
models. Section IV reports and compares the detection results
obtained from rule-based methods, the proposed approach, and

a weather radar system operating simultaneously in the area of
interest. Finally, Section V concludes this article.

II. STATE-OF-THE-ART OVERVIEW

The methods proposed in past decades for rainfall detection
through underwater noise analysis are based on spectral values
and slopes at given frequencies, compared among them or
against fixed thresholds. In [9], the spectral slopes between 3
and 8 kHz and between 3 and 19.5 kHz are compared to specific
thresholds to achieve an indication of the precipitation presence.
In [1], rainfall is classified in several categories depending on the
difference between the average spectral levels in two bands: from
4 to 10 kHz and from 10 to 30 kHz. In [10], rainfall is detected
when a set of inequalities, in which the spectral levels at 5, 8,
and 25 kHz are linearly combined and compared against specific
thresholds, are satisfied. Similarly, in [7], the spectral levels at
5.4, 8.3, and 21 kHz are adopted with different coefficients and
thresholds. In addition, spectra corrupted by transient noise or
by high wind are discarded, and a continuity check is applied
to reduce the false detection rate: if no new rainfall detections
occur within 10 min of the first detection, then such a detection
is assumed to be false. At a later time, Nystuen proposed a
new version of the detection algorithm [21] in which a higher
number of inequalities combine the spectral levels at 5, 8, and
20 kHz (as is and squared) and the slopes between 2 and 8 kHz
and between 8 and 15 kHz. In [13], this algorithm is further
refined by updating a couple of threshold levels. Finally, in [14],
a detection scheme is introduced in which the minimum and
maximum spectral levels between 10 and 20 kHz are exploited.
All these algorithms are set through the authors’ observations
of acoustic spectra collected in rainy and nonrainy conditions.
Moreover, they are designed to process input data derived from
short-term acoustic signals.

A statistical assessment of the detection results is provided
only in [3], [7], and [15], whereas the other papers cited above
evaluate the proposed algorithms only on a few selected cases. In
[7], thanks to the removal of noisy samples and the introduction
of a continuity check, the probability of false alarm (Pfa, i.e.,
the probability of detecting rain in the absence of precipitation)
is 0.004. The probability of detection (Pd, i.e., the probability
of detecting rain when precipitation occurs) is 0.6 for a rainfall
intensity greater than 5 mm/h and 0.8 for a rainfall intensity
greater than 10 mm/h. In [15], the authors applied the detection
algorithm described in the work of Nystuen [21], including noisy
sample removal and a continuity check, obtaining Pfa = 0.0052
and Pd = 0.584 for a rainfall intensity greater than 0.1 mm/h.
Pd increases to 0.839 when only samples with rainfall intensity
greater than 1 mm/h are considered. Finally, in [3], Yang et al.
reported a Pd = 0.7 for a rainfall rate greater than 3 mm/h using
the acoustic device described in [13].

The machine learning approach proposed in [20] for rain-
fall monitoring applies supervised models to hourly averaged
acoustic spectra, extending the analysis to all the frequency bins
instead of only a few frequencies and slopes. For the detection
task, a binary classifier is built through the CatBoost algorithm,
setting the lower bound for rainfall intensity equal to 1 mm/h.

Authorized licensed use limited to: CNR Area Ricerca Genova. Downloaded on August 30,2021 at 07:52:00 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TRUCCO et al.: SUPERVISED LEARNING APPROACH FOR RAINFALL DETECTION FROM UNDERWATER NOISE ANALYSIS 3

When the detector is applied to the available one-year dataset
(through the cross-validation scheme), a Pfa = 0.0332 and a Pd

= 0.811 are obtained: a poorer performance than that obtained
in [15] using the same dataset but exploiting short-term data in
place of hourly averaged data.

III. MATERIAL AND METHODS

A. Experimental Measurements

The acoustic underwater noise and the rainfall intensity at sea
surface were collected from June 17, 2011 to September 6, 2013
(with a few breaks, approximately 1.5 months overall) by appo-
site sensors installed on the meteooceanographic observatory
W1M3A, moored on a deep-sea bed of 1200 m, about 80 km off
the Ligurian coast, in the northwestern part of the Mediterranean
Sea, as detailed in [15], [26], and [27].

The rainfall intensity was measured with a Vaisala RAINCAP
Sensor, comprised in a Vaisala Weather Transmitter WXT520,
placed on the upper part of the buoy trellis, at about 10 m above
sea level. Precipitation measurements were acquired at high
temporal resolution (5 s) and contribute to the measurements of
the hourly cumulative rainfall intensity [15]. During the hours
when the cumulative precipitation was acquired, the hourly
average wind speed was also computed using measurements
from a WindSonic 2-D anemometer installed on the same trellis
on the observatory at 10 m above sea level.

The underwater acoustic noise was acquired by a dedicated
oceanic recorder, based on passive aquatic listener (PAL) tech-
nology [13], [28], [29], clamped to the body of the platform at
a depth of 36 m. This device is designed to operate unattended
at sea for a long period of time powered by an internal battery,
and to acquire an average of seven acoustic noise snapshots per
hour. Each snapshot consists of a time series of 4.5 s, sampled
at 100 kHz, which is processed on board to obtain a spectrum
composed of 64 frequency bins, with a resolution of 0.2 kHz
from 0.1 to 3 kHz and 1 kHz from 3 to 50 kHz. The spectra
of the snapshots acquired in one hour (at an average interval of
about 9 min from each other) were averaged, producing a mean
spectrum that is included in the acoustic dataset used in this
article for rainfall detection.

In the entire period of operation, 18 193 hourly averaged
acoustic spectra were collected and are available for processing,
amounting to about two and a half times those considered in
Taylor et al. [20]. The concurrent measurements of the hourly
rainfall intensity are also available and are assumed, in this study,
as the ground truth. The rain gauge measured a precipitation
greater than 0.1 mm/h in 876 of the 18 193 h considered. The
maximum rainfall intensity measured was 51.5 mm/h, and the
distribution of the observed intensities is shown in Fig. 1. The
average wind speed ranged between 0.4 and 20.7 m/s with the
distribution shown in Fig. 2. Finally, the tracks of the automatic
identification system (AIS) used on ships reveal how many of
them transited near the buoy in the period of data acquisition.
Considering a circle with a radius of 5 km, centered at the
position of the buoy, the number of hours in which at least one
ship crossed the circle is 1999, of which 78 are characterized by
the presence of rain.

Fig. 1. Rainfall intensity distribution in the dataset samples.

Fig. 2. Wind speed distribution in the dataset samples.

Fig. 3 provides an example of hourly averaged spectra ac-
quired by the underwater acoustic system, comparing the spectra
acquired over two consecutive hours in which the wind speed re-
mained nearly constant. The difference between the two spectra
is mainly due to rainfall, which was absent in the first hour and
present in the second hour. The spectrum in Fig. 3(a), related
to a wind speed of about 3.5 m/s, varies visibly despite the
fact that the amount of rain accumulated in the second hour
is only 0.1 mm/h. In Fig. 3(b), where the accumulated rain is 1.1
mm/h, the difference between the spectra, both related to a wind
speed of about 2.1 m/s, increases significantly. The differences
observed should not lead to the conclusion that rainfall detection
is easy: spectra very similar to those collected when precipitation
is present can be produced by an increase of wind speed, in the
absence of rainfall. To show this fact, two spectra are introduced
in Fig. 3(a) and (b), acquired a few hours after those already
discussed, in the absence of rainfall, but with a higher wind
speed: 5 m/s instead of 3.5 m/s and 10 m/s instead of 2.1 m/s,
respectively. These ambiguities seem to confirm the need to
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Fig. 3. Comparison of spectra acquired in two consecutive hours, with (light blue lines) and without (golden lines) rainfall. The wind speed is approximately the
same. The dashed line is a spectrum acquired a few hours later, without rainfall, but with a higher wind speed. (a) Wind speed: 3.5 m/s for light blue and golden
lines; 5 m/s for the dashed line. Rainfall intensity: 0.1 mm/h for the light blue line, 0 mm/h otherwise. (b) Wind speed: 2.1 m/s for light blue and golden lines; 10
m/s for the dashed line. Rainfall intensity: 1.1 mm/h for the light blue line, 0 mm/h otherwise.

Fig. 4. Comparison of the spectrum acquired over the hour in which a ship passage occurred (light blue line) and that acquired in the hour before the passage
(golden line). Wind and rainfall are almost constant. (a) Wind speed: 2.6 m/s; no rainfall. (b) Wind speed: 3.4 m/s; rainfall intensity: 7.5 mm/h. In (c) the spectra
of two consecutive hours with constant conditions (wind speed: 15.5 m/s; rainfall intensity: 4.5 mm/h) and with no ship passage are compared.

exploit all the frequency bins of the spectrum and to learn the
implicit relationships from data that allow one to successfully
detect the rainfall. To address this need, the adoption of machine
learning methods is an effective and viable solution.

Two examples of the ship-passage effects on hourly averaged
spectra are shown in Fig. 4. Panels (a) and (b) compare the
spectrum acquired in the hour before the passage with that of

the hour in which the passage occurred. In Fig. 4(a), the average
wind speed in the two consecutive hours was about 2.6 m/s and
there was no rain. In Fig. 4(b) instead, the wind speed was about
3.4 m/s and the rainfall produced an accumulation of about 7.5
mm/h in both hours. For comparison, Fig. 4(c) shows the spectra
of two consecutive hours when the wind remained at a speed
of about 15.5 m/s and the rain produced an accumulation of
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about 4.5 mm/h, with no ship passages. Although an increase
in spectral values (on the order of a few decibels) is visible
in the spectra related to the ship passages, in almost the entire
0–25-kHz band, a similar change is also visible in Fig. 4(c)
although no ship passage induced it.

B. Rule-Based Algorithms for Rainfall Detection

The notationS(fk) is introduced to indicate the sound spectral
level of underwater noise, measured in dB re 1 μPa2 Hz-1, at the
frequency fk expressed in kHz.

In [9], two rainfall detection rules are proposed, similar to
each other, but with a different number of examined frequency
bins. They are denoted by V1 and V2

V1 S (19.5)−S (3) >−13.82 OR S (12.5)−S (3)>−10.54

OR S (8)− S (3) > −6.82

V2 S (19.5)− S (3) > −13.25 OR S (8)− S (3) > −6.82.
(1)

In [7], rainfall is detected if at least one of the following
three conditions is verified, the third condition being specific
for drizzle

S (21) + 2.35 S (5.4) > 194 (2)

S (21) > 48 AND S (5.4) > 53 (3)

S (21) > 44 AND S (21)− 0.7 S (8.3) > 14. (4)

In addition, the removal of spectra corrupted by noise and
the temporal continuity check are applied [7], as described
in Section II. These operations lose their meaning when this
algorithm is applied to hourly averaged spectra.

In [13] and [21], rainfall is detected if at least one of the
following four conditions is verified, the third condition being
specific for drizzle and the fourth for rain with high wind:

S (20)− 0.75 S (5) > 5 AND S (5) ≤ 70 (5)

S (8) > 60 AND Q (2, 8) > θ AND S (20) > 45 (6)

S (8) < 50 AND Q (8, 15) > −5 AND S (20) > 35

AND S (20) > 0.9 S (8) (7)
⎧⎪⎪⎨
⎪⎪⎩

S (20) + 0.1144 S2 (8)− 12.728 S (8) > −307
AND Q (2, 8) > θ
AND S (20) + 0.1 S2 (8)− 11.5 S (8) < −281 AND
51 < S (8) < 64

(8)

where Q(f1, f2) is the spectral slope, in dB/decade, between the
frequencies f1 and f2 (expressed in kHz):

Q (f1, f2) =
S (f1)− S (f2)

log10 (f1)− log10 (f2)
. (9)

The difference between the algorithms in [13] and [21] is only
the value assigned to the constant θ: θ = –18 dB/decade in [21]
and θ = –13 dB/decade in [13].

The algorithms proposed in [1], [10], and [14] are not in-
cluded in this collection because the work of Black et al. [1] is

mainly dedicated to the classification of rain, downstream of a
detection carried out by other means; Nystuen and Selsor [10]
represented a preliminary version of the algorithm proposed in
[7]; Kuhner [14] presented a general idea based on the maximum
spectral slope observed between 10 and 20 kHz, with no specific
detection algorithm.

C. Rainfall Detection by Supervised Learning Models

An alternative to the rule-based detection algorithms de-
scribed above is to exploit all the information available, looking
for relationships between the spectrum frequency bins (none
excluded) and the rainfall presence through machine learning
models driven by experimental observations. A supervised bi-
nary classifier (the classes of which are rainy and nonrainy)
that receives as input the frequency bins of an hourly averaged
spectrum can successfully perform precipitation detection. In
this study, standard supervised learning methods well suited to
address binary classification in the presence of a large number of
features are adopted: two linear classification techniques (linear
discriminant analysis and logistic regression), a kernel-based
method (support vector machine), and an ensemble learning
method (random forest). Given the type and size of the avail-
able data, the spectrum of the methods adopted is considered
sufficient to assess the advantage of employing a data driven
approach to effectively detect rainfall.

1) Notation for Data and Performance: To discuss the char-
acteristics of the models mentioned, the following notation
will be used. A sample is an hourly averaged spectrum and
is indicated by the vector x, x ∈ Rd. The vector is composed
of d frequency bins, called features. In this study, d is equal
to 64 and the dataset contains 18 193 samples, a fraction of
which are used for the training of the statistical models. The
training set is indicated by{(xi, yi)}Li = 1, whereL is the number
of samples used for the training phase; xi is the ith training
sample, associated with either rainy or nonrainy classes; and yi
is equal to ±1 depending on membership of xi to one of the
two classes: +1 for the rainy case and −1 for the nonrainy case.
The samples not belonging to the training set constitute the test
set. The application of the trained model to a sample x taken
from the test set allows us to assign such a sample to the +1
or −1 class. Since the actual rain condition is also known for
the samples of the test set, Pd, Pfa, the overall accuracy (OA,
i.e., the probability of correct classification) and the receiver
operating characteristic (ROC) curve can easily be estimated.
The ROC curve shows the possible tradeoffs between Pd and
Pfa and can be traced by varying the threshold used to decide
membership of the test sample x on the basis of the real-valued
score produced by the trained model, when the model is applied
to x. The area under the ROC curve (AUC) is commonly used
to quantitatively evaluate the detector positioning between the
detector choosing at random (AUC = 0.5) and the ideal detector
(AUC = 1.0).

2) Linear Discriminant Analysis: Linear discriminant anal-
ysis (LDA) is a traditional method [30], based on decision
theory and Bayes theorem, in which the probability density
functions for the samples belonging to the +1 and −1 classes
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are assumed to be multivariate Gaussian with mean vectors
µ+1 and µ−1, respectively, and the same covariance matrix Σ.
The knowledge of these class-conditional densities, fx|+1(x)
and fx|−1(x), together with the prior probabilities for the two
classes, P (−1) and P (+1), makes computation of the class
posterior probabilities possible for a given sample x, P (+1 | x)
and P (−1 | x). Specifically, the probability for the +1 class
given sample x is

P (+1 | x) =
fx|+1 (x)P (+1)

fx|+1 (x)P (+1) + fx|−1 (x)P (−1)
. (10)

Sample x is assigned to the +1 class if this probability exceeds
0.5, to the −1 class otherwise. Although the 0.5-threshold is
optimum in terms of overall classification accuracy, a different
value can be set to modify the balance between Pd and Pfa,
and, therefore, the tuning of the threshold allows the tracing
of the detector’s ROC curve. The samples belonging to the
training set are used in LDA to estimate the mean vectors, the
covariance matrix, and the prior probabilities mentioned above.
LDA is a linear classification method because membership of
sample x can be equivalently assigned working on the log-odds
function (i.e., the logarithm of the ratio between P (+1 | x) and
P (−1 | x)), which is a linear equation in x.

3) Logistic Regression: The logistic regression (LR) model
assumes the log-odds function to be a linear function in x and
derives the equations for the class posterior probabilities without
introducing any assumption about the class-conditional density
functions [30]. In the binary case, the probability for the +1
class given the sample x results

P (+1 | x) = 1

1 + exp
(
β0 + βTx

) (11)

i.e., a sigmoid function whose parameters β0 and β can com-
puted by maximizing a conditional log-likelihood function. The
maximization is achieved through an iterative procedure in
which the training set samples are exploited and the Newton–
Raphson algorithm is typically applied to find the root of the
first derivative [30]. As in LDA, sample x is assigned to the +1
class if P (+1 | x) is greater than 0.5, to the −1 class otherwise,
but different threshold values can be used to trace the detector’s
ROC curve and change the balance between Pd and Pfa.

4) Support Vector Machine: A support vector machine
(SVM) assigns sample x to one of the two classes based on
the score of the discriminant function

h (x) =
L∑

i=1

αiyiK (xi,x) + b (12)

where K(·, ·) is a kernel function and the coefficients αi and
b are optimized by solving a quadratic programming problem
[30]. This optimization problem exploits the samples of the
training set and includes a parameter C that bounds the range
for αi : 0 < αi < C, i = 1, 2, . . . , L. Sample x is assigned to
the +1 class if h(x) is positive to the −1 class otherwise. As for
previous methods, different threshold values can be used to trace
the detector’s ROC curve and change the balance betweenPd and
Pfa. In the SVM literature, the most commonly adopted kernels

are the linear function, polynomial function of order q and
Gaussian radial basis function (RBF), defined, respectively, as

K (xi,x) = xT xi (13)

K (xi,x) =
(
1 + xTxi

)q
(14)

K (xi,x) = exp
(
−||x− xi||2/2σ2

)
(15)

where σ2 is a specific parameter of the RBF kernel.
The choice ofC and σ2 (if the case) requires specific attention

and, possibly, an optimization stage [30]. In addition, although
not strictly necessary, all features of the dataset samples are often
preliminarily standardized, so that each of them has a zero mean
and a unitary variance. This operation makes features insensitive
to the scales on which they are measured and favors numerical
stability in the solution of the quadratic programming problem
mentioned above.

5) Random Forest: Random forest (RF) is an ensemble
model that aggregates the predictions individually achieved by
many decision trees, separately trained on a subset of samples
randomly chosen from the training set [30]. A decision tree
is an acyclic connected graph, where each node represents a
decision rule (called split) related to a single feature that leads
to the partition of data in two groups. To automatically set
the structure and splits of a decision tree, classification and
regression trees (CART) is a widely adopted algorithm in which
a new node is created by identifying the feature that yields the
best split in terms of a preselected metric. In an RF model, B
trees are generated and trained in an independent and identically
distributed way by performing, for each tree Tb, b = 1, …,
B, the following steps [30]: a) a subset of L samples is drawn
randomly from the training set, uniformly and with replacement
(this means that some samples are taken more than once, others
are not chosen at all); b) such a subset is used to grow the tree
Tb, for each node of which a pool of m features is selected (at
random and uniformly from the d features) and used to identify
the best feature and the best decision rule to split the node into
two daughter nodes; c) the previous step is repeated until at least
one of the predefined stopping criteria is satisfied. When all the
B trees are generated, an unknown sample x is classified as
follows: the sequence of decision rules of the bth tree is applied
to x in such a way that the corresponding class prediction ŷb(x)
is reached (namely, +1 or −1); the predictions from all the trees
of the RF are used to compute a score

g (x) =
1

B

B∑
b = 1

ŷb (x) (16)

sample x is assigned to the +1 class if g(x) is positive to the −1
class otherwise. Threshold values different from zero can be used
to trace the detector’s ROC curve and tune the balance between
Pd and Pfa. Although the setting of B and m does not critically
affect performance, it deserves some investigation, recalling that
these two parameters affect the computational burden.

6) Cross-Validation: The assessment of a trained statistical
model performance is a crucial task for which K-fold cross-
validation represents an easy and extensively applied option
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TABLE I
PROBABILITIES OF DETECTION Pd, AND FALSE ALARM Pfa, FOR THE

RULE-BASED ALGORITHMS APPLIED TO HOURLY AVERAGED SPECTRA

[30]. To exploit the available data for both training and testing a
machine learning model, the dataset is split in K subsets (called
folds), nonoverlapped, and of approximately equal size. Taking
the kth subset aside, the model is trained using the other K–1
subsets of data, and the test is performed using the data of the
kth subset. This operation is repeated for k ranging from 1 to K,
in such a way that every sample is used, in turn, to train and test
the supervised model. By combining the predictions performed
at each step k on the data subset kept aside, a prediction for each
sample of the entire dataset is finally available. Because the
prediction consists of the probability (or score) for membership
of the sample of a given class, after setting a threshold value,
estimation of OA, Pd, and Pfa is possible. In addition, the tuning
of such a threshold allows the generation of the cross-validated
ROC curve [30].

To cope with the different cardinality of the two classes in
the dataset, the dataset partition in K subsets can be performed
by a stratified scheme according to which each subset maintains
approximately the same class proportions as the original dataset.

IV. RESULTS AND DISCUSSION

To delineate the desired performance of the rain detector, it is
necessary to recall that rainfall is present in 5% of the one-hour
periods included in the dataset and that the precipitation limit,
which distinguishes between rainy and nonrainy hourly averaged
spectra is particularly low (i.e., 0.1 mm/h). In this scenario,
it is strictly necessary that the false alarm probability be very
low, while a detection probability not too close to one may be
acceptable. Consequently, the performance of a detector cannot
be considered acceptable if Pfa exceeds 0.01.

A. Performance of Rule-Based Algorithms

The application of the algorithms introduced in Section III-B
to the dataset described in Section III-A provides the results
summarized in Table I. It is important to recall that these algo-
rithms were designed to detect rainfall using short-term acoustic
spectra, whereas in this study they are applied to hourly averaged
spectra.

The algorithms in [9] achieve high Pd, but this is accompanied
by excessive Pfa. A bias in hydrophone sensitivity cannot be
the cause of the problem, because the quantities compared with
thresholds in (1) are subtractions between measurements. One
option to make the algorithms more selective is to arbitrarily

Fig. 5. ROC curves obtained by varying threshold values [9] and hydrophone
sensitivity [7], [13], [21] in the rule-based algorithms listed in Table I.

increase the threshold values, modifying the V2 rule, as follows:

S(19.5)− S(3) > −13.25 + δOR S(8)− S(3) > −6.82 + δ
(17)

where δ > 0. Varying the value of δ between 0 and 5, the ROC
curve in Fig. 5 is obtained. The Pfa reduction is obtained but,
unfortunately, it is accompanied by a significant Pd decrease.
When a similar modification is applied to the V1 rule, the
performance is worse since the ROC curve is always below that
shown in Fig. 5 for the V2 rule.

What is more, the algorithms in [7], [13], and [21] do not
provide satisfactory performance, because Pd is too low, as for
[7], or Pfa is too high, as for [13] and [21]. As discussed in
[12], the performance of these algorithms can be optimized by
considering potential errors in hydrophone sensitivity. To do this,
the values S(fk) in equations from (2) to (8), for whatever fk,
are replaced by S(fk) + ε, where ε is intended to compensate a
sensitivity bias. Varying ε between –10 and 10 dB re 1μPa2 Hz-1,
the ROC curves shown in Fig. 5 are obtained. This comparison
clearly evinces that the rule-based algorithm achieving the best
performance (with the discussed correction) is the one proposed
in [7]. In particular, for ε = 2 dB re 1 μPa2 Hz-1, a detection
probability Pd = 0.521 is accompanied by Pfa = 0.010. The
corrections introduced fail to reduce the false alarms of the other
rule-based algorithms [9], [13], [21] to acceptable values: Pfa

always remains significantly higher than 0.01.

B. Performance of the Supervised Learning Models

To assess and compare the detection performance of the
statistical models, tenfold cross-validation with stratification
in dataset partitioning is adopted. In addition, for the SVM
approach feature standardization is applied, the constant C is
set equal to 1.0, according to common practice, and the variance
σ2 of the Gaussian RBF kernel, after some tests, is set equal
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Fig. 6. ROC curves for the supervised learning models listed in Table II. (a)
LDA, LR, and RF, with a zoom for the RF model. (b) SVM with three kernel
functions.

to 8.0. For the parameters of the RF, B = 100 trees and m =
22 features are used, although a change of these values in even
rather broad ranges does not significantly affect the performance
obtained. Data processing is performed using MATLAB and, in
particular, the Statistics and Machine Learning toolbox. Addi-
tionally, it has been verified that results perfectly consistent with
those shown below can be obtained using the scikit-learn library
for the Python programming language.

The ROC curves obtained from the trained models are shown
in Fig. 6 and their performance is summarized in Table II, where
the Pd value for which Pfa = 0.01 is reported. In the cross-
validation procedure, one of the K folds into which the dataset
has been split, in turn, is not used for training but is instead
used for testing. At the end of the procedure and after setting the
decision threshold, it is possible to calculate Pd and Pfa in each
fold used for the test. The data inserted in Table II are the average

TABLE II
DETECTION PROBABILITY, Pd, FALSE ALARM PROBABILITY, Pfa, OVERALL

ACCURACY, OA, AND AREA UNDER THE ROC CURVE, AUC, FOR THE

SUPERVISED LEARNING MODELS. FOR THE PROBABILITIES,
THE AVERAGE ± THE STANDARD DEVIATION IS REPORTED.

FOR EACH CLASSIFIER, THE THRESHOLD

VALUE TV, USED TO OBTAIN

THE AVERAGE Pfa EQUAL TO 0.01, IS REPORTED

and standard deviation of the Pd and Pfa values calculated on
each fold. The average Pfa is 0.01 since the threshold is set
precisely to achieve this result. The threshold values used for
each classifier are also included in Table II and should be read
recalling that the optimal threshold values (i.e., those values that
maximize OA) are: 0.5 for LDA and LR; 0 for SVM and RF.

The linear classifiers (i.e., LDA and LR) perform moder-
ately better than the best rule-based algorithm, increasing the
probability of detection to about 0.6. A further advantage is
offered by the SVM and RF classifiers for which probability
of detection exceeds 0.7. The change of the kernel function for
the SVM classifier does not significantly alter the performance,
although the linear case shows a lower detection ability and
the Gaussian case reports the worst AUC figure. The OA values
are all greater than 0.97, but this finding has little relevance
because it is strongly influenced by the correct classification
of nonrainy samples (probability 0.99, Pfa being 0.01) which
are by far the most numerous. Overall, the best option among
the models considered is the RF classifier because it achieves
the best performance figures, shows a stability better than that
of SVM classifiers with polynomial or RBF kernels, requires a
computational load lower than that of such SVM classifiers, and
is not appreciably affected by changes in the parameter setting.
Accordingly, in the remainder of this section, further analysis
and performance comparisons will be carried out with reference
to the RF-based classifier. Indeed, the goal is not to identify the
best model, but rather to demonstrate that the machine learning
approach is well suited for rainfall detection also in case of
drizzle phenomena, characterized by low rainfall intensity.

A portable computer with an Intel Core i7 CPU of 1.9 GHz
and 16 GB of RAM memory trains the RF classifier, using a
MATLAB routine and the entire dataset, in about 20 s. The
execution of the detection task on more than 18 000 samples of
the dataset requires less than 2 s.

C. In-Depth Analysis and Comparisons

In Fig. 6(a), the zoom of the ROC curve for the RF model
demonstrates that Pd remains greater than 0.6 even if Pfa is
reduced by as much as 0.0035. More precisely, the following
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Fig. 7. Detection probability for the rainy samples with a rainfall intensity
greater than or equal to G. Three RF-based classifiers, with different false alarm
probabilities, are considered.

probability pairs, {Pd, Pfa}, lie on that curve: {0.661, 0.006},
{0.644, 0.005}, {0.623, 0.004}, {0.588, 0.003}.

The ability of the classifier to detect the precipitation can be
analyzed as a function of the rainfall rate [7], [15], as shown in
Fig. 7. In this case, Pd is estimated using the hourly samples
in which the cumulated rainfall, measured by the rain gauge on
the platform in one hour, is equal to or greater than a value G.
The Pd curves shown in Fig. 7 are related to three choices of
the threshold value, leading to different Pfa: 0.010, 0.005, and
0.003. Pd increases rapidly with G, reaching, respectively, 0.921,
0.897, and 0.876 for G = 1 mm/h. Although the probabilities
of detection of the three detectors show significant differences
for G < 2 mm/h, for rainfall intensities higher than this value
the three detectors provide similar Pd. It is therefore possible
to design acoustic detectors capable of detecting rainfall of
intensity greater than 2 mm/h with a probability greater than
0.9, while keeping a false alarm probability of 0.003.

The sharp Pd increase with G observed in Fig. 7 shows that
the missed detections are mainly related to drizzle phenomena
characterized by low precipitation intensity. This relation is con-
firmed by the average of the rainfall intensities recorded by the
surface rain gauge when the precipitation is detected or missed
by the underwater acoustic device. Among the 876 acoustic
samples collected in rainy conditions (with intensity greater than
or equal to 0.1 mm/h), the RF-based classifier correctly detects
620 of them (70.8%) and misses the remaining 256 samples
(29.2%). The average rainfall intensity measured for the detected
samples is 2.98 mm/h, whereas the average intensity for the
missed samples is 0.71 mm/h. The small fluctuations that the
curves in Fig. 7 show, especially for G greater than 2 mm/h,
are mainly due to the limited number of samples available to
train the RF model (in the training phase) and to estimate the
detection probability (in the test phase). The number of acoustic
samples with rainfall greater than 3 mm/h is about 200, while
the number of those with rainfall greater than 4 mm/h is reduced
to less than 150.

Moving from missed detections to false alarms, an analysis
of wind distribution provides some interesting insights. Fig. 8
shows the wind speed histograms for rainy samples correctly
detected (620 samples), nonrainy samples correctly classified
(17 145 samples), and nonrainy samples raising false alarms
(172 samples, corresponding to Pfa = 0.01). The average wind
speeds for these three categories are 8.5, 4.6, and 9.3 m/s,
respectively. It is evident that the false alarm samples present
a wind distribution more similar to that of the rainy samples
than to that of nonrainy samples.

However, the histogram of nonrainy samples shows that there
are over a thousand samples with wind speed greater than 10
m/s that are correctly classified. To analyze this issue in detail,
Fig. 9 shows the estimated Pfa when the samples for which the
wind speed is greater than W, W � [0.1, 10] m/s are considered.
The three detectors already examined in Fig. 7 are included.
Notwithstanding the considerable rise of Pfa with increasing
wind speed, the probability of correct classification for nonrainy
samples remains satisfactory (e.g., for W= 10 m/s, Pfa increases
from 0.01 to 0.08, but the probability of correctly classifying
a nonrainfall sample is still high: 0.92). Therefore, the wind-
related similarity only partially explains why the detector is
misled and false alarms occur.

Finally, the performance of the RF-based detector during
the period of data collection is examined in Fig. 10, where
the height of the bars indicates the rainfall intensity mea-
sured by the rain gauge and the colors distinguish samples
correctly detected (light blue bars) from missed alarm samples
(orange bars). Samples raising false alarms are inserted as white
bars with black edges, and an arbitrary height of 2 is set for
them. The two zoom panels show the typical behavior that
characterizes the 25-month span of data collection with good
uniformity.

As described in Section III-A, 1999 out of the 18 193 data
set samples are characterized by the passage of a ship within 5
km of the platform during the observation hour. These samples
are not discarded and are used, like all others, to train and test
the statistical model. It is verified a posteriori that Pd and Pfa

values estimated on these samples do not differ significantly
from those already reported, thus supporting the robustness of
the proposed detector. Fig. 11 shows a further zoom of a portion
of the 25-month span introduced in Fig. 10, in which the one-
hour intervals at which a ship passage occurred are indicated
by a black diamond. Again, it can be verified that there is no
correlation between the ship passages and false alarms or missed
detections.

Since the rainy samples most susceptible to missed detection
are those characterized by modest precipitation intensity, it
is reasonable to expect that a Pd of 70.8% would allow the
detection of rainy samples with the greatest impact in terms
of cumulative precipitation. Fig. 12 compares the cumulative
rainfall profiles over the 25-month span obtained by considering
all rainfall events measured by the rain gauge (876 hourly
samples) or only those detected by the proposed underwater
acoustic system (620 hourly samples). It can be emphasized
that although the detected rainy samples are 70.8% of the total,
these samples, at the end of the observation period, gather 91.0%
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Fig. 8. Histograms of wind speed for: (a) nonrainy samples correctly classified; (b) rainy samples correctly detected; (c) nonrainy samples raising false alarms.

Fig. 9. False alarm probability for nonrainy samples with a wind speed greater
than W. Three RF-based classifiers with different probabilities of false alarm (on
the entire dataset) are considered.

of the cumulative precipitation (i.e., 1851 mm out of a total of
2035 mm).

The performance achieved by the RF-based detector acting
on hourly averaged spectra can also be compared with those ob-
tained by other underwater acoustic systems [3], [7], [15] acting
on short-term spectra, summarized in Section II. By using data
in Fig. 7, it is immediately possible to observe that the proposed
system, at the same Pfa values and rainfall intensities, always
provides a significantly higher detection capability. Moving
from short-term spectra to hourly averaged spectra, according
to the data presented in Section IV-A, the performance obtained
from the detection algorithms used in [3], [7], and [15] worsen.
As a result, the supervised learning models adopted in this study
achieve a detection performance significantly better than those
obtained from rule-based detection algorithms and better even
than that obtained from the binary classifier proposed in [20].

Another useful comparison is with the rainfall detection ca-
pability of a weather radar installed on Mount Settepani, located
at about 1400 m above sea level, about 87 km away from
the buoy, covering the area of investigation and the data of

which were used in [15]. In that study, rainfall detection by
radar at the W1M3A observatory is characterized by Pfa =
0.009 accompanied by Pd = 0.728 for G = 0.1 mm/h and Pd

= 0.846 for G = 1 mm/h. The data in Fig. 7 show that the
performance of the proposed acoustic system is very close to
that of radar: slightly worse for G = 0.1 mm/h and slightly
better for G = 1 mm/h. However, it is important to emphasize
the qualitative nature of this comparison because the radar
performance refers to a time period of about 11 months [15], thus
significantly shorter than the 25-month period considered in this
study.

V. CONCLUSION

This study concerned the possibility of detecting precipita-
tion, from drizzle phenomena to events of high intensity, using
the underwater acoustic noise spectrum obtained from the aver-
age of the instantaneous spectra acquired, at various times, over
the course of an hour. Since each sample is representative of
an entire hour, to maintain sufficient temporal coverage, it was
necessary to analyze all the spectra acquired, even those altered
by the passage of ships, high wind, and other concurrent noises.

A dataset composed of more than 18 000 h of measurements
at sea allowed an in-depth experimentation of different rainfall
detection methods. Although the rainfall detection by rule-based
algorithms taken from the literature have not provided satisfying
performance on this type of spectrum, machine learning methods
have shown that the detection can be carried out successfully. In
this analysis, kernel-based and ensemble-learning models have
demonstrated the best performance among the experimented su-
pervised classifiers. In particular, the RF-based binary classifier
has shown a satisfactory balance between computational burden
and performance, reaching a detection probability greater than
90% when precipitation exceeds 0.7 mm/h and Pfa is 1% or,
alternatively, when precipitation exceeds 1.4 mm/h and Pfa is
0.3%. This level of performance is slightly better than that
obtained by a weather radar operating in the experiment area,
and therefore the proposed method represents a promising alter-
native to obtain an estimate of rainfall intensity in areas where
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Fig. 10. Rainfall intensity during the 18 193 h of observation (one sample per hour; about 25 months of data collection), with indication of detected rainy samples
(620 h), missed rainy samples (256 h), and false alarm samples (172 h). The zoom panels show two examples of the occurrence of the three cases on a fine scale.

Fig. 11. Zoom of a portion of the 25-month span shown in Fig. 10, with the indication (black diamond) of the one-hour intervals at which a ship passage occurred.

Fig. 12. Cumulative rainfall profiles over the 25-month span obtained by considering all rainfall events measured by the rain gauge (light blue line) or those
detected by the underwater system (golden line).
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environmental constraints do not allow the installation of rain
gauges or radar systems. This is even more noteworthy in polar
areas, where global warming is changing the hydrological cycle
of those regions, thus increasing rainfall with respect to snow
precipitation [31].

While the presence of high wind, especially above 10 m/s,
induced a noticeable increase in the probability of false alarm,
the performances did not undergo significant alterations in the
hours in which a ship transited in the area where the underwater
measurement device was placed. Similarly, no fluctuations in
performance were observed on a seasonal basis, attributable to
varying underwater propagation conditions. It is worth recalling
that rainfall detection was based on the amount of precipitation
accumulated over the course of an hour, and it is not possible to
determine whether this amount is due to transient, intermittent,
or continuous rain.

Although very promising, supervised learning models require
a training phase that necessitates extensive collection of under-
water acoustic spectra, accompanied by concomitant precipi-
tation measurements to be used as ground truth. On the other
hand, this is also partially necessary for rule-based algorithms
that need specific calibrations to account for geographic location
and hydrophone sensitivity. The possibility of using the trained
detector in geographic areas other than the one in which the
training data were collected is a topic for future investigation.
However, it is reasonable to assume that in similar environmental
settings, a trained detector can continue to operate successfully.

The performance obtained working on averaged spectra sug-
gests that machine learning models may also be advantageous
for rain detection using short-term acoustic spectra. This future
research development is accompanied by a farther-reaching one:
to design statistical learning models that act as regressors for
accurate estimation of precipitation intensity and wind speed,
making best use of information contained in multiyear time
series of underwater acoustic noise.
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