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Abstract—A viscous free-surface flow energy decomposition
analysis is conducted in the present paper. In the presence of
a free surface, the viscous dissipation for a Newtonian liquid can
be decomposed into two terms: an enstrophy component and a
free-surface deformation component. Equations for such terms in
the weakly compressible SPH (WCSPH) formalism are devised.
They require the discretization of a volume and a surface integral,
respectively. Applying energy conservation, a double-checking
of the free surface term is developed and applied, confirming
the quality of the surface integral SPH evaluation, even in the
presence of moderately fragmented free surface. Application to
a large amplitude standing wave with breaking is presented.

I. Introduction

Breaking waves induced mechanical energy dissipation is
important for the design of earthquake sloshing dampers for
buildings and bridges. Its modelling is an extremely challeng-
ing problem with mesh based VOF techniques due to the dif-
fusion at the fragmented interface. Sun & Fujino [1] looked at
the topic by semi-empirical methods and Iafratti [2] analyzed
the vorticity generation during dam-breaks. Bouscasse et al.
[3], [4] demonstrated the importance of wave breaking dissi-
pation in damping angular motions, by performing an analogy
with a hydraulic jump. However, insight on the dissipation
mechanisms due to breaking is yet an open problem.

Colagrossi et al. [5] conducted a decomposition analysis of
mechanical energy dissipation contributors in small amplitude
gravity waves. That analysis is pursued here by extending it
to large amplitude waves with wave breaking and by directly
evaluating the free surface terms through SPH summations.

The paper is organized as follows: physical problem, gov-
erning equations and boundary conditions are first presented;
the dissipation sources are then individualized through volume
and surface integrals; the implementation of these integrals in
SPH is presented and applied to a standing wave, discussing
the influence of its amplitude, the fluid viscosity and the onset
of breaking influence. Finally some conclusions are drawn.

II. Physical problem and governing equations

A. Governing equations

A fluid domain Ω is considered whose boundary, ∂Ω,
consists of a free surface, ∂ΩF , and of a solid boundary
∂ΩB (Fig. 1); in practical applications periodic boundaries
may be also considered. Since WCSPH will be employed
at the discrete level, compressible Navier-Stokes conservation
equations are of application:
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Fig. 1. Layout of the physical domain


Dρ
Dt

= − ρ div(u) ,

Du
Dt

= f +
div(�)
ρ

,

(II.1)

where D/Dt represents the Lagrangian derivative, u the flow
velocity, ρ the fluid density, � the stress tensor, � the rate of
strain tensor and f is a generic specific body force. Thermal
conductivity effects are here neglected. The pressure p is
linked to density and internal energy through a state equation
which changes depending on the nature of the fluid (gas or
liquid). For example in the weakly-compressible regime for a
liquid a simple adiabatic linear state equation can be used to
link the pressure and density fields:

p = c2
0 (ρ − ρ0) (II.2)
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where, c0 is the speed of sound, supposed constant, and ρ0 and
p0 are respectively the density and the pressure of the fluid
at rest. The weakly-compressible regime (density variation
smaller than 0.01ρ0) is expected if the Mach number of the
flow remains enough small during the time evolution (see e.g.
[6]).

The fluid is assumed to be Newtonian and hence its stress
tensor takes the form:

� = (−p + λ tr� ) 1 + 2 µ� , (II.3)

where � is the rate of strain tensor, i.e. � = (∇u + ∇uT )/2.
Finally, µ and λ are the viscosity coefficients.

B. Boundary conditions (BCs)
A no-slip BC is imposed along the bottom, ∂ΩB. Along

the free surface, both kinematic and dynamic BCs should be
fulfilled. The kinematic free-surface BC is satisfied because of
the lagrangian nature of the SPH.

The stress on the fluid domain boundaries ∂Ω is:

�n = [−p + λ div(u)] n + µ ( n× ω) + 2 µ∇u n (II.4)

In this work, the surface tension is considered negligible,
therefore, null stresses on free surface are enforced. This
means that on ∂ΩF the stress is zero and therefore the
following equality holds:

[p − λ div(u)]nF + µ (ω × nF) = 2µ
∂u
∂n

(II.5)

where the pressure and the friction stress components balance
the stress term due to the deformation of the free surface.

Eq. (II.5) can be split in the normal and tangential compo-
nents by projecting it on the normal vector to the free surface
nF and on the free surface tangent hyperplane, which, in 2D,
is defined by its tangent vector τF (Fig. 1). Equation (II.5) can
be then rearranged as:

p = λ div(u) + 2µ
∂u
∂n
· nF

∀r ∈ ∂ΩF

ω · (τF × nF) = − 2
∂u
∂n
· τF

(II.6)

which are the two dynamic free-surface boundary condi-
tions. The pressure and the vorticity on the free surface are
linked by its geometrical configuration and the fluid normal
velocity gradients [7].

Considering that the stress on the free surface is zero
together with the eq. (II.3) we get that τ · � n = 0, which
implies:

∂u
∂τ
· nF +

∂u
∂n
· τF = 0. (II.7)

This allows to change the normal derivatives in the second eq.
of (II.6) in tangential derivatives.

In particular, in 2D, the latter becomes:

ω
2D
= 2

∂u
∂τ
· nF = 2

∂un

∂τ
− 2 uτ κ, (II.8)

being κ the curvature of the free surface in the considered
point and [uτ , un] the corresponding tangential and normal
components of the velocity field.

III. Energy Conservation

A. General

The power that the fluid delivers or receives from the solid
boundary ∂ΩB is given by integrating the elementary power
acting on each surface element of ∂ΩB, due to the stress forces.
Denoting by n the unit normal vector pointing out of the fluid
domain we get:

P f luid/body = −

∫
∂ΩB

Tn · uB dS (III.9)

The power −P f luid/body = Pbody/ f luid := Pext has to be
converted into the total energy of the fluid. The surface
integral (III.9) can be extended to the whole boundary ∂Ω

since no power can act on the fluid through the free surface.
An equivalent way to define the power using the divergence
theorem gives therefore:

Pext =

∫
Ω

div (Tu)dV (III.10)

The rhs of eq. (III.10) can be expressed as :

Pext =

∫
Ω

(div T) · udV +

∫
Ω

T : D dV (III.11)

The external power is therefore separated in two different parts.
In the present work the external power Pext is assumed zero.

Using momentum conservation (second equation of II.1)
and assuming that the body force f admits a potential field
F so that ∇F = f , the first term of the lhs of (III.11) can be
expressed as: ∫

Ω

div (�) · u dV = ĖP + ĖK (III.12)

being EP and EK respectively the potential and the kinetic
energy. Their sum gives the mechanical energy:

EM := EP + EK (III.13)

The second term of the rhs of (III.11) is the internal energy
time derivative ĖI . It can be expressed as:

ĖI =

∫
Ω

T : D dV = PC − PD − P
λ
B , (III.14)

where the four terms in the rhs are:

PD := −2 µ
∫

Ω

D : D dV

PC := −
∫

Ω

p div(u) dV

P λ
B := −λ

∫
Ω

[div(u)]2 dV

(III.15)

The power PC is associated with the fluid compressibility
and is a pure reversible term. Using the equation of state and
the continuity equation, by integration, PC can be reshaped as
a potential energy (i.e. PC = ĖC). In the case where a simple
linear state equation is used, this term becomes:

EC(ρ) = EC(ρ0) + c2
0

∫
Ω

[
log

(
ρ

ρ0

)
+
ρ0

ρ
− 1

]
ρ dV (III.16)
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where EC(ρ0) is the internal energy value set for the fluid at
rest condition (i.e. ρ = ρ0).
P λ

B is the dissipative power caused by the fluid compress-
ibility and it is negligible within the weakly compressible
regime [5]. PD is the classical viscous dissipation term for
a Newtonian fluid.

Therefore, assuming Pext = 0 and P λ
B ≈ 0 eq. (III.11) can

be written as:
ĖM + ĖC = PD ≤ 0 (III.17)

the sum of the power due to the inertial force and the power
associated to the reversible compressibility is balanced by the
power dissipated by the fluid.

B. decomposition of the viscous dissipation term

Using the definition of PD (equation III.15) and adding and
subtracting the enstrophy, such term can be written as:

PD = −2µ
∫

Ω

(∇u : ∇T u) dV − 2µ
∫

Ω

ω2/2 dV (III.18)

To proceed in the analysis it is useful to consider the relation:

∇u : ∇T u = ∇ · (∇uu) − ∇(div(u)) · u . (III.19)

Using the equation (III.19) and the divergence theorem, eq.
(III.18) becomes:

PD = −2µ
∫
∂Ω

(∇u u)·ndS − µ
∫

Ω

ω2 dV+2µ
∫

Ω

∇(div(u))·u dV

(III.20)
The divergence theorem can be applied on the last term and
eq. (III.20) can be reshaped as:

PD = PFS + Pwall + P
µ
B + Pω (III.21)

where the four terms in the rhs are:

PFS := 2µ
∫
∂ΩF

[−(∇u u) · n + div(u)(u · n)] dS

Pwall := 2µ
∫
∂ΩB

[−(∇u uB) · n + div(u)(uB · n)] dS

P
µ
B := −µ

∫
Ω

[div(u)]2 dV .

Pω := −µ
∫

Ω

ω2 dV

(III.22)
For the sake of simplicity, in this work, the body surfaces
are assumed to be fixed (i.e uB = 0) and therefore Pwall is
zero. The term P µ

B similarly to P λ
B can be neglected in the

weakly compressible regime. The volume integral term Pω is
the dissipation due to the enstrophy while PFS is a power
linked to the deformation of the fluid domain due to the free
surface motion.

Rearranging eq. (III.22) and eq. (III.17) in the present
framework we get the energy balance:

ĖM + ĖC = PFS + Pω (III.23)

In the next section a brief description of how the above
terms can be evaluated at the discrete level, with SPH, is given.
Equation (III.23) is then used for studying the time evolution

of a viscous standing wave. We show how the free-surface
term PFS and the enstrophy term Pω depend on the Reynolds
number and on the wave amplitude.

IV. Conservation of energy in the SPH framework
A. SPH scheme

The SPH scheme adopted in this work is:

Dρi

Dt
= − ρi

∑
j

m j

ρ j
(u j − ui) · ∇iWi j

Dui

Dt
= −

∑
j

m j

ρi ρ j
( p j + pi)∇iWi j + µ

∑
j

m j

ρi ρ j
πi j ∇iWi j + gi

Dei

Dt
= −pi

∑
j

m j

ρi ρ j
(u j − ui) · ∇iWi j + µ

∑
j

m j

ρi ρ j
πi j(u j − ui) · ∇iWi j

Dri

Dt
= ui(t) , p = c2

0(ρ − ρ0)
(IV.24)

with
πi j = K

(u j − ui) · (r j − ri)
‖r j − ri‖2

(IV.25)

where K = 2(n + 2) and n is the spatial dimension of the
problem at hand, ρi, pi, ei, ui and mi are respectively the
density, the pressure, the internal energy, the velocity and the
mass of the i-th particle. The body force term f takes here
the form of standard gravity acceleration g = −gk, k being
the unit vector in the z direction. It has to be remarked that
energy conservation has been included in order to track the
evolution of the internal energy.

B. SPH approximation of energy integrals

Linear momentum and energy are exactly conserved in the
present SPH scheme. Considering the particle system on the
SPH model, the mechanical and internal energies of the fluid
domain are computed in SPH as:

E SPH
M =

∑
i

mi
u2

i

2
+ mi g zi

 , E SPH
I =

∑
i

mi ei

(IV.26)
where the specific internal energy of he i-th particle is given
by the energy equation in system (IV.24). The total internal
energy variation is hence:

Ė SPH
I = −

∑
i

∑
j

mi m j

ρi ρ j
pi(u j − ui) · ∇iWi j +

+ µ
∑

i

∑
j

mi m j

ρi ρ j
πi j(u j − ui) · ∇iWi j

(IV.27)
The first term in the right-hand side is linked to the power
component PC , due to the compressibility, and the second is
connected to viscous components PD and P µ

B . Following the
definition given in section III at continuum, it is possible to
define the two power components:
P SPH

C = −
∑

i

∑
j

mi m j

ρi ρ j
pi (u j − ui) · ∇iWi j

P SPH
D+B = − µ

∑
i

∑
j

mi m j

ρi ρ j
πi j (u j − ui) · ∇iWi j

(IV.28)
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As shown in [8], it is not possible to separate the two
components PD and P µ

B in the SPH viscous operator and
for this reason the notation P SPH

D+B is kept in the following.
Furthermore, in [8] it is demonstrated that the SPH viscous
operator adopted in the present scheme forces the constraint
λ = µ. Therefore the limit for the convergence of P SPH

D+B is

lim
h→0;N→∞

P SPH
D+B = PD + P

µ
B (IV.29)

Substituting the equation of state (II.2) and the SPH con-
tinuity equation in P SPH

C , after some math, it is possible to
recover the equation III.16 at the discrete level:

E SPH
C = E SPH

C (ρ0) + c2
0

∑
i

mi

[
log

(
ρi

ρ0

)
+
ρ0

ρi
− 1

]
. (IV.30)

Equation (IV.27) can be rewritten in a compact way as:

Ė SPH
I = Ė SPH

C − P SPH
D+B . (IV.31)

Thanks to the symmetry property of the kernel function it
is possible to demonstrate that the system (IV.24) conserves
exactly the energy of the particle system (see e.g. [9]):

Ė SPH
M + Ė SPH

I = 0 (IV.32)

Considering that the viscous operator used in the present
SPH model is a pure dissipative term (see e.g [10], ) it follows
that:

Ė SPH
M + Ė SPH

C = P SPH
D+B ≤ 0 (IV.33)

therefore, the second law of thermodynamics is respected at
the discrete level.

With the exception of kinetic energy, potential energy and
compressible energy, the terms are defined as a power in
these sections. The power terms are directly derived from the
numerical equations or from interpolations on the data (see
next subsection). In order to quantify the dissipation of energy
connected to the different effects along a simulation, it is useful
to integrate the power terms in time. In the following ∆EY

X is
a notation referred to the definition:

∆EY
X(t) =

∫ t

t0
PY

X dt (IV.34)

In the next sections, the energy dissipated by the particle
system, at the end of the simulation, is made non dimensional
using the mechanical energy given at the initial condition. The
ratio ∆E SPH

D+B(t f )/EM0 gives in this way a clear indication of the
dissipation level attained at the end time, t f , of the period of
interest.

C. Energy components through Moving Least Square interpo-
lation on scattered data

From the previous section it has been shown that from the
SPH equation it is possible to identify the main energy com-
ponents. Those components can be also derived using Moving
Least Square (MLS) interpolation formula for scattered data.
In particular in this work a first order MLS formula is used
in the following (see e.g. [11], [12]). Through this formula,
the velocity gradient, 〈∇u〉 MLS, divergence and vorticity fields,

〈div(u)〉 MLS, 〈ω〉 MLS, can be retrieved form the SPH outputs
(i.e. from the particle positions, velocities and volumes):

〈∇u〉 MLS(ri) =
∑

j∈Fluid

u j ⊗ ∇W MLS
i j V j

〈ω〉 MLS(ri) =
∑

j∈Fluid

u j × ∇W MLS
i j V j

〈divu〉 MLS(ri) =
∑

j∈Fluid

u j · ∇W MLS
i j V j

(IV.35)

Eqs. (IV.35) are necessary to directly evaluate, from eqs.
(III.22), the power components related to enstrophy, P MLS

ω , and
to free surface, P MLS

FS .

D. Free surface terms

In section (III-B), it is shown how the viscous dissipation
can be decomposed in a volume integral P MLS

ω and a boundary
integral PFS on the free surface. The discrete and lagrangian
nature of SPH makes unclear the definition of a discrete free-
surface integral and its evaluation is not straightforward for
the following reasons: i)

1) particles belonging to the free-surface need to be de-
tected and, as shown in [13], this identification is not
unique but depends on the specific algorithm and from
the parameters connected with it.

2) once the particles on the free surface have been iden-
tified, it is necessary to calculate the normal vector to
this surface

3) if the free surface is highly fragmented it can be difficult
to perform connections needed for the surface integra-
tion (see e.g. [14])

Using the algorithm proposed in [13], a subset of particles FS
belonging to the free surface can be defined. The algorithm
gives also the evaluation of the normal vector field, and the
surface integral PFS defined by eq. III.22 can be approximated
as:

P MLS
FS := 2µ

∑
k∈ FS

[
〈div(u)〉 MLS

k uk − 〈∇u〉 MLS
k uk

]
· nk ∆S k

(IV.36)
where the length of the surface elements is simply approx-
imated as ∆S k = (Vk)1/nDim . Also for Eq. (IV.36) the MLS
interpolation is needed to evaluate the velocity gradient for
the particles involved in. When the free surface is highly
fragmented, the free-surface terms defined in (IV.36) can be
inaccurate. Under such conditions the surface integral PFS can
be evaluated by subtraction using the energy balance (III.23),
the relation (IV.33), and the MLS interpolation (IV.35) for
evaluating the enstrophy term P MLS

ω :

Psub
FS := P SPH

D+B − P
MLS
ω (IV.37)

where the superscript sub is used to differentiate this term from
the one calculated through (IV.36).

It has to be remarked that due to the exact energy conserva-
tion of the SPH scheme, the errors in eq. (IV.37) arise exclu-
sively from those of the MLS interpolation for the integrand
of the enstrophy term Pω in eqs. (III.22). On the other hand,
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the evaluation of P MLS
FS through the summation (IV.36) is more

complex since it involves the MLS interpolation, detection of
free-surface particles and evaluation of free-surface normal and
surface elements.

V. Numerical tests
A. General

The problem investigated in this section is the viscous at-
tenuation of a standing wave in deep water condition. Periodic
conditions are used for the vertical boundaries while the sea
bottom is modelled through a solid flat surface where no-slip
condition is enforced (see Fig. 1). Because of the deep water
condition, the bottom solid boundary has a negligible role and
therefore the vorticity field is mainly concentrated near the free
surface. In order to discuss the influence of viscosity on the
components PFS and Pω, a range of Reynolds numbers, Re
∈ [125−2000], has been considered. In addition, the non-linear
effects connected to large wave amplitudes, A, are investigated.
Indeed, for large amplitude the free surface starts to break
inducing large effects on the components PFS and Pω. For this
first test-case, and for all the combination (A,Re) investigated,
the term PFS remains always dominant with respect to Pω.

The damping of viscous gravity waves has been recently
studied in [15] where an analytical solution of the linearized
Navier-Stokes equation has been derived for a wide range of
Reynolds numbers and water depths. In [5] the same problem
has been considered in the framework of the SPH model where
it is shown that, using a proper spatial resolutions and a proper
number of interacting neighbours, a good agreement between
SPH and the analytical solution can be obtained. In the present
work this previous analysis is extended to analyse varying the
Reynolds number and to the wave amplitude. In particular the
maximum wave steepness considered in this work is larger
than the breaking limit kA = 0.68 (see e.g. [16]), being A
the wave amplitude and k the wave number. In this way, the
effect of breaking wave on the viscous dissipation can be also
discussed for this scenario.

Fig. 2. Vorticity field for the standing wave problem for two time instants
t = 0 and t = T/4, being T the linear theory period of oscillation [16].

Figure 2 describes the initial configuration of the problem.
Here, L is the wave length and H = L is the still water depth,
the dimensionless wave number kH is therefore equal to 2π.
Note that the latter value means that the analysis is performed
in a deep water regime ( i.e. kH ≥ π). The boundary layer of

the free-surface is well visible from the vorticity fields plotted
in Fig. 2 while the bottom boundary layer is not visible in the
range of values used because of the deep water regime. As a
consequence, the effect of the bottom boundary layer can be
neglected, hence simplifying the analysis.

The free surface is initially flat in order to simplify particle
positioning. The initial pressure and velocity fields were
evaluated using the analytical solution of [15]. The initial value
of the mechanical energy is computed and denoted as EM0.
The potential energy is set equal to zero at the initial time (i.e.
EM0 = EK0). The amplitude of the standing wave is set through
the parameter ε = 2A/L. The Reynolds number for this
problem is defined as Re = H

√
gH/ν to avoid dependencies

of ε on this parameter. Five Reynolds numbers and four wave
amplitudes are investigated to describe different dissipation
laminar regimes. The period of oscillation, T , depends on
the two parameters Re and ε. For high Re and small ε, T
is close to the predicted by linear theory [16], Tlin = 2π/

√
gk.

Since kH = 2π in present example, Tlin =
√

2π
√

H/g. Taking
advantage of this,

√
H/g will be used to make time non-

dimensional in some graphs.
For the SPH simulations presented in this subsection the

maximum spatial resolution adopted is H/∆x = 800 (corre-
sponding to a total number of particles equal to 640000) and
the smoothing length is h/∆x = 2.8 (Wendland C2 kernel is
used for all the simulations). Indeed, using these parameters
the results presented in [5] are close to a convergence limit.

The final time of the simulations, hereinafter t f , has been
chosen (see Table I) large enough so that mechanical energy
is dissipated until its value is approximately 1% of its initial
value, EM0.

t f /Tlin ε = 0.1 0.2 0.3 0.4
Re = 125 2.4 1E-04 1.2E-03 3.2E-03 6.4E-03
Re = 250 4.0 1.9E-03 3.0E-03 5.2E-03 8.1E-03
Re = 500 6.4 7.2E-03 7.8E-03 1.1E-02 1.7E-02
Re = 1000 12 5.6E-03 6.3E-03 7.6E-03 1.1E-02
Re = 2000 20 6.4E-03 1.1E-02 1.1E-02 7.1E-03

TABLE I
Energy dissipated at the end of the simulation with respect to the initial

value EM0 : i.e. [EM0 − ∆E SPH
D+B(t f )]/EM0.

When a low viscosity liquid like water is considered, the
velocity field associated with a gravity wave can be considered
practically irrotational and divergence free. Therefore, such
velocity field can be expressed through a potential velocity,
i.e., u = ∇Φ. Under these conditions, Pω is negligible and the
viscous dissipation can be expressed using only the component
PFS which becomes:

PD ' PFS ' − 2µ
∫
∂ΩF

∇∇Φ∇Φ · ndS ' − 2µ
∫ L

0

(
Φxy Φx + Φyy Φy

)
dx

(V.38)
where the right hand side, is a linearized approximation

valid for small ε. This is the relation used in [17] (see
pag. 234) to estimate the viscous damping of water waves.
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This consideration highlights that, for gravity wave dynamics,
PFS is generally dominant with respect to Pω. In the next
subsections we show how those two contributions change with
the viscosity of the flow and the intensity of the velocity field
given in the initial condition.

B. High viscosity & small amplitude: Re=125, ε = 0.1

For this case, the initial energy EM0 is mostly dissipated
(about 80%) by the viscous effects in just one oscillation cycle.

Figure 3 displays the evolution in time of the kinetic energy
EK and the dissipation caused by enstrophy ∆Eω. From the
analytic solution of [15], in addtion to EK(t), the enstrophy
term ∆Eω(t) value is also given. The SPH predictions are in
good agreement with the analytical ones. For this case, at the
end of the simulation, the dissipation associated with enstrophy
amounts to 40% of the total dissipation. It is remarkable that,
with a so high viscosity fluid, the free surface term is still the
dominant one.

Fig. 3. Left: Kinetic energy, EK (t) as a function of time for Re=125 ε=0.1.
Right: Dissipation linked to enstrophy ∆Eω(t) as a function of time.

C. High viscosity & large amplitude: Re=125, ε = 0.4

Snapshots of the vorticity field are pictured in Figure 4.
Because of the high viscosity, the breaking of the free surface
is however inhibited.

The vorticity is generated at the free-surface. Indeed, the
boundary condition (II.8) requires ω = 2 ∂un/∂τ, which
remains confined on the free-surface boundary layer and is
partially diffused inside the field during the wave oscillations.
During each period the vorticity intensity decreases due to the
mechanical energy dissipation.

Compared to the previous low amplitude case, the kinetic
energy ratio ∆Ek/EM0 presents a slightly less sudden decrease
while the period of oscillation increases (left plot of Figure
5). Nevertheless, also in this case the initial energy is, to
a high extent, dissipated in the first wave oscillation. The
component due to the enstrophy ∆Eω/EM0 behaves similarly,
being slightly larger level just during the first cycle (right
plot of figure 5). These results show that the change in the
amplitude, ε, has a limited effect on the behaviour of the
energy decay. The final value of ∆Eω is close to 40% of
the initial energy EM0 for both amplitude ratios, ε, analysed.
In next section, it is shown that this is not the case when
increasing the Reynolds number because of the breaking wave
events.

Fig. 4. Vorticity field, Re=125, ε=0.4.

Fig. 5. Kinetic energy ∆Ek (left) and dissipation term ∆Eω as as a function
of time, Re=125, ε=0.1, 0.4.

The energy term ∆EFS , evaluated through ∆E MLS
FS , eq.

(IV.36), and through ∆Esub
FS , is plotted in time in Figure 6. The

difference between the two plots is around 0.2% in relative
terms, which means that the parameters used for the numerical
simulations allow to solve in a good way the present test-case.

Fig. 6. Dissipation through the free surface term, ∆EFS as a function of
time, Re=125, ε=0.4. Direct computation, eq. ( IV.37), and subtraction, eq.
(III.23).
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D. Low viscosity & small amplitude: Re=2000, ε = 0.1

In this third test case the viscosity of the fluid is highly
reduced setting the Reynolds number equal to 2000. In this
condition the free-surface boundary layer becomes much thin-
ner compared to the previous cases and therefore the spatial
resolution needs to be set adequately to resolve this region.
The mechanisms are globally the same than those observed in
the, equal amplitude, more viscous case of section V-B, but
in this case more than ten periods of oscillation are needed to
dissipate 80% of the initial energy EM0.

Left panel of Figure 7 presents the comparison with the
analytical solution of [15] in terms of kinetic energy decay.
The matching between the two curves is very good similarly to
what is shown in [5] in the same range of Reynolds numbers.
Right plot of figure 7 depicts he comparison with the analytical
solution of [15] in terms of the enstrophy component Eω. For
this test-case the latter reduces to only 7% and therefore the
dissipation in mainly due to the free-surface component EFS .

Fig. 7. Kinetic energy ∆Ek (left) and dissipation term ∆Eω as as a function
of time, Re=2000, ε=0.1.

E. Low viscosity & large amplitude: Re=2000, ε = 0.4

For this case large deformations of the free surface occur.
They induce in the first cycle the formation of an overturning
wave and a subsequent plunging breaking event. Some snap-
shots during the time evolution are reported in Figure (8).

To resolve accurately the breaking event, the spatial resolu-
tion has been doubled, (H/∆x = 800).

Left plot of Figure 9 shows the kinetic energy decay for the
two wave amplitudes, ε = 0.1 and ε = 0.4. For the latter the
dissipation process is much faster; being this fact related to
the breaking phenomena, which induces extra dissipation. As
a matter of fact, due to the vorticity entrapped by the breaking,
the enstrophy component |∆Eω| largely increases when com-
pared to the small amplitude case (right plot of Figure 9). The
collapse of the entrapped cavities (last snapshots of Figure 8)
induces a sudden decrease of ∆Eω, with around 8% of the
whole kinetic energy being lost in one breaking event. These
significant energy losses had been predicted by Szymczak [18]
in the context of liquid jets impacting on solid walls.

Finally, Figure 10 depicts the time evolution of term ∆EFS

evaluated through ∆E MLS
FS , eq. (IV.36), and through ∆Esub

FS . It is
remarkable that the two plots are in a fair agreement even for
this complex case, with breaking phenomena, which make the
evaluation of the surface integral (IV.36) more difficult.

Fig. 8. Vorticity field, Re=2000, ε=0.4, H/∆x = 800.

Fig. 9. Kinetic energy as a function of time, Re=2000, ε=0.4.

Fig. 10. Dissipation through the free surface term as a function of time,
Re=2000, ε=0.4.
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F. Summary of the influence of the Reynolds number and the
wave amplitude on the viscous dissipation

In previous sections, four cases of matrix I have been
discussed in detail, showing how the viscous dissipation dis-
tributes between the components ∆Eω and ∆EFS . The results
of all 20 cases of that matrix are summarized in Figure 11, in
which ∆Eω, measured at the end of the simulations, is plotted
as a function of Reynolds number and wave amplitude. As
the wave amplitude is set larger, the enstrophy component
of dissipation, in modulus, tends to grow for all Reynolds
numbers. However, this increase sees a drastic change for the
highest Reynolds, for which large breaking takes place in the
first period of oscillation. In this case, the vorticity generated
by the cavities collapse induces a large increase of |∆Eω|.

Fig. 11. Energy dissipation through enstrophy component ∆Eω at the end of
simulations, varying Re and ε. Dashed lines are analytical results from [15].

VI. Conclusions
An energy decomposition technique for viscous free-surface

flows has been presented and applied to the WCSPH modelling
of a standing wave, for which a matrix of cases, covering a
large range of Reynolds numbers and wave amplitudes, has
been set. For the high Reynolds and large amplitude case,
wave breaking appears. Its influence in mechanical energy
dissipation has been discussed. It has been found that:

1) The dissipated mechanical energy can be written as the
sum of two terms: the enstrophy volume integral and a
surface integral along the free surface.

2) Applying energy conservation, a double-checking of the
free surface term is developed and applied, confirming
the quality of the surface integral SPH evaluation, even
in the presence of moderately fragmented free surface.

3) For low amplitude cases the free-surface contribution to
dissipation is substantially larger than the enstrophy one.

4) For large amplitude cases, the flow becomes very ener-
getic, eventually leading to steep and/or breaking waves.

5) In the case with wave breaking, the related vorticity gen-
eration, in the first breaking event, induces a mechanical
energy dissipation of around 8% of the initial energy.

It remains as future work to apply the methodology presented
in the paper to more complex fragmented free surface flows
for which, the dissipated energy may influence the external
dynamics of a building, vehicle, etc.. It remains also to
compare the results with those of mesh based methods and
to incorporate gas phase and surface tension in the analysis.
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