

ACCORDION receives funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 871793

Adaptive edge/cloud compute and network continuum over a heterogeneous
sparse edge infrastructure to support nextgen applications

Deliverable D6.3

ACCORDION System Implementation (I)

Ref. Ares(2021)2904384 - 30/04/2021

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 2 of 26

DOCUMENT INFORMATION
PROJECT

PROJECT ACRONYM ACCORDION

PROJECT FULL NAME

Adaptive edge/cloud compute and network continuum over a

heterogeneous sparse edge infrastructure to support nextgen

applications

STARTING DATE 01/01/2020 (36 months)

ENDING DATE 31/12/2022

PROJECT WEBSITE http://www.accordion-project.eu/

TOPIC ICT-15-2019-2020 Cloud Computing

GRANT AGREEMENT N. 871793

COORDINATOR CNR

DELIVERABLE INFORMATION

WORKPACKAGE N. | TITLE WP6 | Integration, Pilot Implementation & Evaluation

WORKPACKAGE LEADER OVR

DELIVERABLE N. | TITLE D6.3 | ACCORDION System Implementation (I)

EDITOR Emanuele Carlini (CNR)

CONTRIBUTOR(S)

Emanuele Carlini (CNR), Alain Vailati (HPE)

Jakub Rola (BS), Luca Ferrucci (CNR), Hanna Kavalionak (CNR),

Konstantinos Tserpes (HUA), Ferran Diego (TID)

REVIEWER Maria Pateraki (OVR)

CONTRACTUAL DELIVERY DATE 30/04/21

ACTUAL DELIVERY DATE 30/04/21

VERSION 1.0

TYPE Demonstrator

DISSEMINATION LEVEL Public

TOTAL N. PAGES 26

KEYWORDS

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 3 of 26

EXECUTIVE SUMMARY
This document covers the implementation activities put in place in the ACCORDION consortium to enable a
smooth integration of the distributed ACCORDION platform. The first part of the document describes the
three core components of the platform, while the second part describes the first integration testing
performed on such components.

This document has been prepared during an intensive phase of iteration in the installation and
implementation procedure of the components. Further improvements are planned for a comprehensive
evaluation of Use Cases that is due at M18.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 4 of 26

DISCLAIMER
ACCORDION (871793) is a H2020 ICT project funded by the European Commission.

ACCORDION establishes an opportunistic approach in bringing together edge resource/infrastructures
(public clouds, on-premise infrastructures, telco resources, even end-devices) in pools defined in terms of
latency, that can support NextGen application requirements. To mitigate the expectation that these pools
will be “sparse”, providing low availability guarantees, ACCORDION will intelligently orchestrate the compute
& network continuum formed between edge and public clouds, using the latter as a capacitor. Deployment
decisions will be taken also based on privacy, security, cost, time and resource type criteria.

This document contains information on ACCORDION core activities. Any reference to content in this
document should clearly indicate the authors, source, organisation and publication date.

The document has been produced with the funding of the European Commission. The content of this
publication is the sole responsibility of the ACCORDION Consortium and its experts, and it cannot be
considered to reflect the views of the European Commission. The authors of this document have taken any
available measure in order for its content to be accurate, consistent and lawful. However, neither the project
consortium as a whole nor the individual partners that implicitly or explicitly participated the creation and
publication of this document hold any sort of responsibility that might occur as a result of using its content.

The European Union (EU) was established in accordance with the Treaty on the European Union (Maastricht).
There are currently 27 members states of the European Union. It is based on the European Communities and
the member states’ cooperation in the fields of Common Foreign and Security Policy and Justice and Home
Affairs. The five main institutions of the European Union are the European Parliament, the Council of
Ministers, the European Commission, the Court of Justice, and the Court of Auditors (http://europa.eu.int/).

Copyright © The ACCORDION Consortium 2020. See https://www.accordion-project.eu/ for details on the copyright
holders.

You are permitted to copy and distribute verbatim copies of this document containing this copyright notice, but
modifying this document is not allowed. You are permitted to copy this document in whole or in part into other
documents if you attach the following reference to the copied elements: “Copyright © ACCORDION Consortium 2020.”

The information contained in this document represents the views of the ACCORDION Consortium as of the date they
are published. The ACCORDION Consortium does not guarantee that any information contained herein is error-free, or
up to date. THE ACCORDION CONSORTIUM MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, BY
PUBLISHING THIS DOCUMENT.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 5 of 26

REVISION HISTORY LOG
VERSION No. DATE AUTHOR(S) SUMMARY OF CHANGES

0.1 15/03/2021 Emanuele Carlini (CNR) Table of Contents

0.2 07/04/2021

Emanuele Carlini (CNR)

Hanna Kavalionak (CNR)

Alain Vailati (HPE)

Jakub Rola (BS)

Added content for Sections 2,

3, and 5

0.3 11/04/2021 Luca Ferrucci (CNR)
Added content for Integration

Testing (Sect 6.)

0.4 13/04/2021 Konstantinos Tserpes (HUA)
Added content for the HUA

resources

0.5 15/04/2021 Ferran Diego (TID)
Added the installation of the

orchestrators

1.0 (final) 28/04/2021 Emanuele Carlini (CNR) Finalization

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 6 of 26

GLOSSARY
EU European Union

EC European Commission

H2020 Horizon 2020 EU Framework Programme for Research and Innovation

K3S Lightweight Kubernetes

CLI Command Line Interface

GUI Graphical User Interface

QoE Quality of Experience

ITM Intermediate TOSCA Model

VIM Virtual Infrastructure Manager

Minicloud A single instance of the Edge Infrastructure pool framework

VM Virtual Machine

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 7 of 26

TABLE OF CONTENTS

1 Relevance to ACCORDION .. 8
1.1 Purpose of this document ... 8
1.2 Relevance to project objectives .. 8
1.3 Relation to other workpackages ... 8
1.4 Structure of the document .. 8

2 Introduction ... 9
2.1 Platform Overview .. 9
2.2 Integration actions .. 9

3 Edge Infrastructure Pool Framework ... 11
3.1 Installation procedure ... 11

3.1.1 VIM (Virtual Infrastructure Manager) ... 11
3.1.2 Monitoring .. 12
3.1.3 ACES (ACCORDION Edge Storage Component) ... 13
3.1.4 RID (Resource Indexing and Discovery) ... 14

3.2 Available resources ... 14

4 Edge/Cloud Continuum Management Framework .. 15
4.1 Installation procedure of the Dynamic Orchestrator .. 15
4.2 Available resources ... 15

5 Application Management Framework ... 17

6 Testing the Integration .. 19
6.1 Testing Environment ... 19
6.2 Testing procedure ... 20

7 Conclusion and Next Steps ... 26

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 8 of 26

1 Relevance to ACCORDION

1.1 Purpose of this document

This document illustrates the status of the implementation and integration of the whole ACCORDION
platform. To this end, the document contains information on the installation of the macro components of
the platform, as well as the initial testing procedures that have been carried out. This deliverable does not
enter in the details of the installation for each single software module of the platform, as those have been
covered in many details in the following deliverables:

• D3.2 - Edge infrastructure pool framework implementation (I)
• D4.2 - Edge/Cloud continuum management framework implementation (I)
• D5.2 - Application management framework implementation (I)

1.2 Relevance to project objectives

This deliverable describes the efforts and the actions performed by the consortium to put together all the
pieces of software that have been implemented in the first 16 months of the project. Therefore, its relevance
regards all technical objectives of the project, namely:

• Obj1: Maximize edge resource pool
• Obj2: Maximize robustness of cloud/edge compute continuum
• Obj3: Minimize overheads in migrating applications to cloud/edge federations
• Obj4: Realize NextGen applications

1.3 Relation to other workpackages

This deliverable focus on the implementation and integration of the platform. Therefore, the content of the
document mostly reflects the work done in the technical work packages, namely WP3, WP4, and WP5. The
deliverable has an impact on the work package of the Use Case (WP6 - Integration, Pilot Implementation &
Evaluation), that are using the ACCORDION platform presented here to test and evaluate the pilot
prototypes.

1.4 Structure of the document

The document is structured as follows. Section 2 presents the methodology of implementation and
integration, including a broad platform overview, the integration actions, and the testing procedure that has
been put in place to test this initial version of the system. Section 3, 4, and 5 describe the installation of the
three main macro-components of the ACCORDION Platform. Section 6 discusses in details the testing
procedure of the integrated platform. Finally, Section 7 concludes the document.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 9 of 26

2 Introduction

2.1 Platform Overview

The first release of the system implementation of ACCORDION is a basic platform resulting from the
composition of the work done in the past months by the technical WPs. The platform is composed of three
main core components, each identifying a related set of services to support the ACCORDION vision. At the
current status, the components offer a basic set of functionalities which is planned to build upon in the next
iterations of the project. For the full list of current supported functionalities, please refer to the following
deliverables D3.1, D4.1, and D5.1.

Each macro-component has been installed on different hardware in different geographical positions.
Following this installation, a testing procedure has been executed to verify the installation and provide a first
glance on running the NextGen applications on ACCORDION. This work lays the basis for the platform
evaluation that is due to M18 with deliverable D6.5.

The core macro-components of the ACCORDION platforms are the following:

• Application Management Framework. Encompasses the work done in WP5, and it contains those
methodologies and procedures to assist application developers working with ACCORDION. For this
deliverable the most notable function of this macro-component is the hosting of application images
and application models.

• Edge/Cloud Continuum Management Framework. The decision-making component of the platform.
This component contains the software artifacts that resulted from WP4. In the current versions, the
most prominent service in this macro-component is the Orchestrators, which takes the decision of
where to deploy applications.

• Edge Infrastructure Pool Framework. This macro-component manages the pool of available edge
resources via a series of dedicated services (developed within WP3) that run on the edge. For this
deliverable, the core service is the virtual infrastructure manager, which manages the deployment
and orchestration of applications at the edge. A single instance of the Edge Infrastructure pool
framework is also referred to as Minicloud.

The next sections describe in detail the installation procedure of each component, as well as the
computational and network resources on which they have been installed.

2.2 Integration actions

The integration of the ACCORDION platform has required a coordinated effort among all partners. To support
such effort, the consortium has taken a series of actions that have been taken to assure a smooth integration
process.

From an organizational standpoint, a weekly consortium call has been performed since M13 to specifically
discuss integration related matters. Relevant operations made during these calls have been the definition of

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 10 of 26

an integration testing strategy (described in Section 6), as well as the definition and monitoring of the
technical action to reach the targeted integration. These actions include:

Implementation of Use Cases. The services that compose the Use Case applications have been implemented.
UC#2 and UC#3 realized their application by using docker containerization. UC#1 used a mix of docker
container and windows VM.

Definition of application models of Use Cases. This action has required the generation of two documents for
the description of an application for each Use Case. The first is a TOSCA-like document that describes the
application in general. The second is a YAML document that describe the deployment of the application in
the edge/cloud continuum.

Developments of components and interfaces. With respect to their definition in D3.1, D4.1, and D5.1 several
components have been improved and functionalities have been added. These advancements have been due
to a refinement of the interfaces and the management of the flow of information.

Installation of components. All the relevant components have been installed into a collection of distributed
computational resources. This has required all components to refine the installation procedures written in
D3.2, D4.2, and D5.2, as well as a few “hands-on" meetings to debug and provide feedback.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 11 of 26

3 Edge Infrastructure Pool Framework

3.1 Installation procedure

This section describes the procedure that has been followed to install the Edge Infrastructure Pool
Framework. The test environment is composed by a single k3S node, which take both the role of master and
worker. The ACCORION services (namely: monitoring, edge storage and resources indexing) have been
installed on top of such K3S installation.

The installation procedure below assumes a Linux machine and the possession of the gitlab.com access
credentials.

The first installation step to verify and install some dependencies with the following command:

sudo apt install git curl python3-pip ufw x11-xserver-utils

After that it is possible to install all the modules of the Edge Infrastructure Pool. The following sections briefly
describe the installations procedures of all the services involved.

3.1.1 VIM (Virtual Infrastructure Manager)

To start installation, it is necessary to download installation scripts, all installation scripts are versioned on
gitlab.com (see D5.2 for more details).

$git clone https://gitlab.com/accordion-project/wp3/vim-installation

Then, change the execution permission to the installation scripts:

$ chmod 775 vim-installation/*.sh

 The script executed to install K3S master node is install_first_node.sh

$./vim-installation/install_first_node.sh

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 12 of 26

Now as K3S cluster is up and running, one can proceed to install on top of Kubernetes, Kubevirt the
framework for virtual machine execution, executing from command line the installation script:

$./vim-installation/install_kubevirt.sh

The last log line shows all Kubevirt pods running, and the installation has succeeded. In order to interact with
virtual machine execution, install the CLI Virtctl with the relative script:

$./vim-installation/install_virtctl.sh

To check if it is working:

$ kubectl get nodes -o wide

3.1.2 Monitoring

To start installation, is necessary to download installation scripts from Gitlab.

$ git clone https://gitlab.com/accordion-project/wp3/monitoring-installation

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 13 of 26

Then, from installation script folder that has been cloned, run the following script to prepare the
environment:

$ cd monitoring-installation/

$ sudo python3 Prepare.py

Then copy kubectl config file to script folder and execute Configs.py

$ cp -r ../.kube .

$ python3 Configs.py

3.1.3 ACES (ACCORDION Edge Storage Component)

To install edge storage, first as usual, download installation scripts from Gitlab into home directory:

$ git clone https://gitlab.com/accordion-project/wp3/edge-storage-component

The script will be placed into folder edge-storage-component, move current directory to that give execution
permission and start installation of installScript.sh script.

$ cd edge-storage-component/

$ chmod 775 installScript.sh

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 14 of 26

The execution of the “minio” service can be checked by opening on a browser on the localhost at this url:
htpp://localhost:9011

3.1.4 RID (Resource Indexing and Discovery)

To install Resource Indexing and Discovery, download installation scripts from Gitlab into home directory:

$ git clone https://gitlab.com/accordion-project/wp3/resource-indexing-discovery

Change current directory and execute installation script run-k3s.sh script

$ cd resource-indexing-discovery/installation/

$ sudo ./run-k3s.sh

3.2 Available resources

For this first integration, the Edge Infrastructure Pool Framework has been installed on a single VirtualBox
virtual machine, equipped with 16GB of RAM, 2 intel-9 CPUs, and 20GB of disk. From the perspective of
Kubernetes, this machine works both as master and worker node. The machine is accessible via a public IP.
The machine is under NAT with the host; therefore, for the VIM to be accessible from the Internet port of
6443 of the VIM has been mapped to the port 9443.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 15 of 26

4 Edge/Cloud Continuum Management Framework

4.1 Installation procedure of the Dynamic Orchestrator

In this paragraph is described the procedure that has been followed to install the main component of the
edge/cloud continuum Management Framework: the dynamic orchestrator. The installation procedure of
the other components has been described in deliverable D4.2. The installation procedure below assumes a
Linux machine and the possession of the gitlab.com access credentials.

The first installation step is to create a virtual environment and activate the environment:

$ cd conda create --name dynamic_orchestrator python=3.6

$ conda activate dynamic_orchestrator

To install dynamic orchestrator, first as usual, download installation scripts from Gitlab into home directory:

$ git clone https://gitlab.com/accordion-project/wp4/dynamic-orchestrator

and then install some dependencies with the following command:

$ cd dynamic-orchestrator

$ pip install -r config/requirements.txt

To check if the installation is working:

$ python __main__.py

4.2 Available resources

For the purposes of the installation of the Management Framework, we employed 5 separate VMs in a private
cloud hosted by HUA. The private cloud is featuring 1 modular system with 16 servers (blades), 2 optical
switches, which connect the servers and the storage units together with FC. 1 server Oracle Sun Server T4 to
serve multicore applications and other requirements. 1 unified storage Oracle Sun ZFS 7320 with a total
capacity of 70TBytes.

The framework that manages the entire enterprise infrastructure is oVirt. An open-source distributed
virtualization solution, that uses the KVM hypervisor. It was founded by Red Hat as a community project on
which Red Hat Enterprise Virtualization is based.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 16 of 26

Using oVirt, we reserved a pool of resources for ACCORDION each of which features the following
characteristics:

VM IP vCPUs RAM (GBs) Disk (GBs) OS

ACCORDION-1 83.212.240.38 2 8 40 Ubuntu 20.04.02 LTS

ACCORDION-2 83.212.240.46 2 8 40 Ubuntu 20.04.02 LTS

ACCORDION-3 83.212.240.47 2 8 40 Ubuntu 20.04.02 LTS

ACCORDION-4 83.212.240.48 2 8 40 Ubuntu 20.04.02 LTS

ACCORDION-5 83.212.240.49 2 8 40 Ubuntu 20.04.02 LTS

Table 1: VMs for the ACCORDION Management Framework

Each VM is allocated to an Edge/Cloud Continuum Management Framework component, namely:

• Resource Orchestrator: which is embedded in a Docker container, which occupies about 50MB of
RAM, a VCPU and about 300MB of storage. It needs a host based on Linux (or Windows with the
WSL2.0 framework installed).

• Network orchestrator: which runs on a docker containers, we are using ubuntu 18.04 LTS 64bits, I
believe 20.04 LTE should be ok. At this stage of the project, we only require 1 vCPU, an additional
1GB of RAM and 2 GB of storage.

• Security component: which runs on Docker containers (SonarQube + PostgreSQL DB + NGINX). The
environment used for private tests is Ubuntu 20.04 LTS (VM) + docker v. 20.10.3 + docker-compose
v. 1.28.2. RAM: 2GB RAM is required (and at least additional 1GB for the OS). Only 64-bit systems
are supported. For the storage, about 2GB for the installation + the storage needed for the DB data.

• Privacy component: which needs a VM similar to the one above
• Resilience component: which needs a VM with at least 4 GBs RAM, 2 vCPUs and 20GBs storage.

Ideally, the component requires a GPU too, in order to support online training scenarios but due to
the lack of such infrastructure and in alignment with the component development plans, this will be
delivered in the next iteration.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 17 of 26

5 Application Management Framework

The detailed description of components that are developing in the scope of WP 5 is in the deliverable 5.1.
The detailed information of the installation procedure and the user manual is available in the deliverable 5.2.
Table 1 presents the summary of the two above mention deliverables.

Component Short description Technologies Deployment API/ exposing
resource

Application
Model

Artefact

Provide application
models that use
extended TOSCA

grammar to describe
application components,

their actions and their
relationships

not applicable not applicable D5.1 section 2

Converter Converter convert AMA
TOSCA file to required

k3s configuration files in
yaml format

PYTHON 3 It is the library used
inside the Compute

resource
orchestrator

D5.2 section 2.1

QoE validator PYTHON 2.7+ It is the library used
inside the Compute

resource
orchestrator

D5.2 section 3.1

Application
Bucket

Store provided by the
ACCORDION user source

code, application
images, and deployment

requirements

Spring Boot,
MongoDB

It is deployed at the
Bluesoft server

http://82.214.143.1
19:31725

The API is
described with

OpenAPI standard
in yaml file1

Web-based
GUI

Visual portal for the
administrators and

developers for

Angular, web
technologies

In progress In progress

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 18 of 26

interacting with the
Accordion Platform

Internal
GitLab

instance

It provides the
repository functionality
and act as resource and
authorization server in

OAuth 2

Open source
multi

technologies
component

It is deployed at the
Bluesoft server

http://82.214.143.1
19:31730/

GitLab community
documentation2

Table 1. Summary of the services composing the Application Management Framework

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 19 of 26

6 Testing the Integration

This section describes the testing procedures to check the correctness and basic functionalities of the
ACCORDION platform. Every test consists of executing the start application scenario of one of the three Use
Cases of ACCORDION. The tests are not designed to stress the internal functionalities of the various
components for this integration phase of the ACCORDION project. Such functionalities will be tested in the
next phases of the development of the ACCORDION framework. Basically, the testing procedure consists in
starting an application loaded into a repository into the edge, such that all the ACCORDION stacks is involved.
The next sections provide a description of the testing environment as well as a detailed discussion of the
actual testing procedure.

6.1 Testing Environment

The start application scenario is preceded by the deployment of the application scenario, which had been
executed offline. Before the execution of tests, the Docker containers for the components of each Use Case
had been stored and validated inside the Application Bucket (see Section 5). At the current stage, the
platform only supports the fetching of docker images. The support to Virtual Machines is going to be added
in the next releases of the platform.

Mirroring the macro-components described in Section 2.1, the ACCORDION Platform is then composed of
three different logical locations:

• The Application Management Framework, which contains the Application Bucket service (mentioned
above).

• Several public servers on which are deployed the Orchestrator components.
• A single Minicloud, on which is installed an instance for each Edge Infrastructure Pool Framework

component. The Minicloud is composed of a single Kubernetes K3s cluster with a single node and is
installed on a different host with respect to the Continuum Management Framework.

The testing procedure assumes every core component to be correctly configured, installed and their
requirements fulfilled to obtain a ready-to-start service. The installation procedure of each component and
the hardware and software resources on which they are deployed are described in sections 3, 4 and 5,
respectively.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 20 of 26

Figure 1: Sequence diagram of the testing procedure

6.2 Testing procedure

The testing procedure follows the sequence diagrams shown in Figure 1. The first step is to submit the start
application request to the Orchestrator component. It is executed through the following POST operation
over an extension of the HTTP Rest interface described n D4.2 section 2, at the following endpoint:

$ POST /orchestrator/appmodel/startapp?name=<UC_app_nome>

The query string parameter name must be one of the values in the set { ’ovr’, ‘orbk’, ’plexus’}, each referring
to the application of the Use Cases 1, 2 and 3 of ACCORDION, respectively.

The returned json-formatted messages and codes are the following:

• 200 {'message': 'Application with the submitted name has been deployed successfully’} when the
application has been correctly deployed

• 500 {'message': <specific_error_text_message>}: the application has not been correctly deployed.
Possible reasons could be:

o Application image does not exist
o The deployment on the VIM is failed due to a Kubernetes error
o Connection error with the VIM or the Application Bucket

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 21 of 26

The Orchestrator has a table (hardcoded in this initial version) to map the app name into a private application
identifier (UC_app_id), which is an alphanumeric string value that the Application Bucket uses to uniquely
identify internally the application to be deployed. This identifier is submitted as a parameter for the following
GET request to the Application Bucket to fetch the application model:

$ GET POST http://82.214.143.119:31725/application?id=<UC_app_id>

Alternatively, an alternative REST (which is currently under implementation) call indicates directly the
application owner name, the scenario and a flag which is set to True to fetch the latest version of the
component images of the Use Case; if the flag is set to False, a parameter to indicate the version must be
specified in the call. Since the tests only perform the start application scenario, the parameter to specify it is
not needed.

The returned json-formatted messages and codes are the following:

• 200: The request is successful. In Figure 2 is shown the returned json-formatted messages for the
‘orbk’ Use Case, translated in Yaml.

• 404 {'Could not find the application model with id: <UC_app_id>’}: The
request failed. The application model for the requested ID does not exist in the application bucket.

Figure 2: returned message from the Application Bucket for the ‘orbk’ Use Case

The document contains four different sections, where the registry and requirements are the most important
sections for test purposes:

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 22 of 26

• details: base information about application; in particular, id, name and version number.
• registry: information about the stored images in the git repository. There is a repository section for

each different application component image.
• requirements: the application model for the start application scenario of the requested Use Case. It

is a TOSCA Yaml Simple profile model, partially modified for the tests to simplify the process of the
Converter component and to satisfy requirements of Use Cases. We refer to this part as the
Intermediate TOSCA Model (ITM). ITM is grouped by target environment: the start application
scenario is represented by the PRODUCTION environment, as shown in Figure 2. The ITM is contained
in the toscaDescription key.

• metadata: additional information about the record creation and modification

The document is submitted to the Converter component. Its function is to convert the ITM into a set of K3s
configuration files that are supported by the Virtual Infrastructure Manager component (VIM) and that
describe resources and mandatory actions to fetch images from the Application Bucket and deployed the
various components of the selected Use Case over the K3S cluster. Figure 3 shown the output K3s YAML files
for the three Use Cases.

Figure 3: K3s Yaml files produced by the Converter component for each Use Case

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 23 of 26

All the output K3S files are stored locally inside the filesystem of the container of the Orchestrator component
and not exposed externally.

The next step is to deploy all the application components on the VIM. In order to perform this action, the
Orchestrator component needs to communicate remotely with the VIM component. To this end, the Python
Kubernetes standard client library has been integrated in the Orchestrator component, which is able to
communicate with the Master Node and, in particular, the API server of a remote Kubernetes installation. A
particular configuration file is needed to access the remote VIM. Such configuration file is generated before
starting the tests, and reflect the characteristics of the particular Kubernetes installation. Figure 4 shows an
example of this configuration file.

Figure 4: configuration file to access the remote Kubernetes cluster installation of the VIM

The configuration file specifies the credentials needed to access the remote Kubernetes installation and in
particular the IP address of the Master node, specified in the server key. Such configuration is then loaded
by the Kubernetes client library and all the YAML files of the tested Use Case are submitted to the VIM by
invoking specific library function calls.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 24 of 26

After the completion of this step, the VIM starts to deploy the application component images over the
Kubernetes cluster on the Minicloud, interpreting and executing the submitted YAML files. To perform this
action, VIM needs to access the Application Registry to fetch and download the Docker container or VMs
images of the application components: such operation is performed automatically by exploiting the
functionalities of Kubernetes to download Containers from a registry represented by a git repository. In
Figure 5 is shown a part of the YAML K3s configuration file needed to deploy an instance of the Game Server
service component over the Minicloud.

Figure 5: K3s deployment descriptor for the Game Server of the ORBK Use Case

After fetching the needed application component images, the VIM component starts the application
components.

Finally, after the deployment of the application, the Monitoring starts to collect metrics about the running
applications services (i.e., pods), by using the Prometheus infrastructure. Figure 6, show the trend of the total
amount of memory used by the game server of the ORBK Use Case over a period of two days.

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 25 of 26

Figure 6. Total memory timeseries for the ORBK game server service

 ACCORDION – G.A. 871793

D6.3 ACCORDION Systems Implementation (I) Page 26 of 26

7 Conclusion and Next Steps

This document describes the status of the installation and integration of the ACCORDION Platform. At the
current stage, the platform can fetch resources from an application repository, convert them into a specific
format, and pass them to an execution environment. The platform can serve the purpose of an initial testing
of the Use Case. Further integration actions are planned and will be performed in the close future. These
actions include:

- The improvement of the interfaces of the current installing services, following the feedback received
by the Use Case pilot testing.

- The installation of multiple Minicloud instances, possibly on different hardware configurations
including System-on-Chip clusters (i.e., Raspberry Pi).

- New testing integration procedures (possibly automatic), which also include all the other services in
the ACCORDION Platform.

Finally, the next version of this deliverable is expected for M31.

