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Abstract: Magnesium alloys are an exciting challenge for the biomaterials field given their well-
established biodegradability and biocompatibility. However, when exposed to biological fluids,
their rapid degradation and hydrogen release are the main drawbacks for clinical applications.
This work aimed to investigate the influence of the current density applied during the plasma
electrolytic oxidation (PEO) treatment on the durability of an AZ31 magnesium alloy. In particular,
specific interest was directed to the degradation rate undergone by the PEO coating, obtained under
two different current density conditions, when exposed to Hank’s solution at 37 ◦C to simulate
the physiological environment, employing the techniques of potentiodynamic polarization and
electrochemical impedance spectroscopy. Experimental results highlighted that the plasma electrolytic
oxidation technique resulted in an improvement in the corrosion resistance of the magnesium alloy in
the test solution. The current density affected the morphology of the coating. In particular, the anodic
oxide coating obtained by applying the highest current density showed a higher thickness and fewer
but larger pores, while the lowest current density generated a thinner PEO coating characterized by
several but smaller pores. Surprisingly, the best corrosion resistance has been exhibited by the anodic
oxide coating grown at the highest current density.

Keywords: AZ31; biodegradable alloy; plasma electrolytic oxidation; corrosion; physiological
environment

1. Introduction

Magnesium (Mg) is a material suitable for all applications that require the temporary
use of a medical device. The use of Mg alloys, which degrade inside the human body, avoids
the need for a second surgery for their removal. In addition, the released magnesium ions
have no allergic potential, do not cause distinct inflammatory reactions [1], and are removed
by phagocytosis [2]. Currently, the use of materials based on Mg and its alloys in the
biomedical sector is already widely practiced for the realization of cardiovascular stents and
bone implants thanks to their good biocompatibility [3,4]. However, the main drawbacks
of the clinical use of magnesium-based alloys are their fast corrosion, hydrogen release,
and the increase in the alkalinity of body fluid during the degradation process. Therefore,
great interest is directed to the control of the degradation rate of Mg alloys including
through the application of bio-inspired [5] or biodegradable polymeric coatings [6,7] or
an oxide layer obtained by electrochemical treatments [8]. In addition to the increased
corrosion resistance, Plasma electrolytic oxidation (PEO) treatment, also known as micro-
arc oxidation (MAO), is a flexible and environmental friendliness process [9]. Basically,
it is an electrochemical treatment that, operating above the breakdown voltage, induces
the formation of protective oxide coatings capable of increasing the corrosion resistance
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of the treated surface and, simultaneously, promoting cell adhesion and proliferation
on the surface [10]. This treatment also has the advantage of being able to be applied
for complex-shaped medical devices. Many publications have addressed the effect of
electrolytes on the composition of the coating and resultant properties [11–13]. In particular,
the current density plays a key role in electrochemical treatments. Zhuang et al. [14] coated
AZ31 magnesium alloy with an oxide layer through PEO treatment in a phosphate-based
electrolyte varying the current density from 5 to 20 A/dm2. Research showed that the
best corrosion resistance is offered by the coating produced using a current density of
10 A/dm2. Lee et al. [15] produced PEO coatings on AZ31 magnesium alloy in an acid
electrolyte containing K2ZrF6 applying three different current densities, 100, 150, and
200 mA/cm2. The best result in terms of corrosion resistance was obtained by applying
100 mA/cm2. Kajanek et al. [16] studied the influence of four different values of current
density, 25 mA/cm2, 50 mA/cm2, 100 mA/cm2, and 150 mA/cm2, using a phosphate-
based electrolyte to treat an AZ31 magnesium alloy. In this case, the higher corrosion
resistance was exhibited by the PEO coating obtained by applying a current density of
50 mA/cm2. Conversely, Bala Srinivasan et al. [17] carried out PEO treatment on AM50
magnesium alloy by applying three current density values, 15 mA/cm2, 75 mA/cm2,
and 150 mA/cm2. They found better electrochemical performance for the sample coated
adopting the lowest current density. All the authors above mentioned performed the
electrochemical characterization in a NaCl aqueous solution, which has a concentration
higher than in the real biological environment. To the best of the authors’ knowledge, no
investigations studied the influence of applying a different current density to obtain PEO
coatings in silicate-based solutions, characterizing them in a simulated body environment
and at body temperature. To rectify this, this work investigated the effect of the current
density applied during the PEO coating treatments of a magnesium alloy on its degradation
rate when it is in contact with a simulated body fluid to verify its potential use in biomedical
applications.

2. Materials and Methods

AZ31 magnesium alloy sheets (50 mm × 20 mm × 3 mm), the composition of which
is given in Table 1, were used as coupons. Sodium silicate and sodium hydroxide were
purchased from Sigma-Aldrich (Sigma-Aldrich, Milan, Italy). The chemical composition
of Hank’s solution, used as a fluid simulating the body environment, was 0.185 g/L
CaCl2·2H2O, 0.09767 g/L MgSO4, 0.4 KCl g/L, 0.06 KH2PO4 g/L, 0.35 g/L NaHCO3,
8.0 g/L NaCl, 0.04788 g/L Na2HPO4, 1.0 g/L D-Glucose, without Phenol Red and sodium
bicarbonate [18].

Table 1. Elemental composition by weight of AZ31 magnesium alloy.

Element Al Zn Mn Si Cu Fe Ni Others Mg

2.5–3.5 0.7–1.3 0.2–1 0.05 0.01 >0.05 >0.05 0.4 Balance

2.1. Preparation of the Substrate

The metallic samples were prepared by polishing with SiC paper from P240 to
P1200 [19] to remove contamination layers and native oxides. Subsequently, the sam-
ples were ultrasonically cleaned in a bath of acetone and ethanol and finally dried in air.
An insulating scotch tape was used to shield the samples leaving an exposed area of 1 cm2

to the electrolyte.

2.2. Plasma Electrolytic Oxidation

Plasma electrolytic oxidation was performed using the cell setup shown in Figure 1.
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Figure 1. Schematic diagram of the system used to perform the electrochemical treatment.

AZ31 alloy specimens and a platinum sheet were used as the anode and cathode,
respectively, and connected to a power source (TDK-Lambda, Milan, Italy). A magnetic
stirrer operating at 200 rpm continuously mixed the electrolytic solution during PEO
treatment. A circulating system of cooling water was employed to keep the temperature
at 18 ◦C. The PEO treatment was conducted by applying two current density values, i.e.,
15 and 30 mA/cm2, for 20 min in an electrolytic solution consisting of 5 g/L Na2SiO3
and 2 g/L NaOH. This procedure ensures greater resistance to corrosion of the substrate
than that obtained using a phosphate-based solution [20], at pH 12 and with an electrical
conductivity of 20.3 mS/cm.

The abbreviations used to identify the samples are listed in Table 2.

Table 2. Abbreviation used to identify the samples.

Acronym Description of the Sample

Mg Bare magnesium alloy sheet

Mg_PEO15 Bare magnesium alloy treated by PEO applying a current density
of 15 mA/cm2

Mg_PEO30 Bare magnesium alloy treated by PEO applying a current density
of 30 mA/cm2

2.3. Characterization Techniques

The morphological analysis of the surfaces of the magnesium alloy, bare and PEO
coated, was performed using a field emission Scanning Electron Microscope (SEM, Mod.
FEI QUANTA 200 F). The observations were collected by operating in a high vacuum, at
the voltage of 20 kV, on previously metalized surfaces with a thin layer of a gold-palladium
alloy to make them electrically conductive. The PEO coatings thickness was calculated
non-destructively at 10 different points by an eddy current thickness instrument (DU-
ALSCOPE® MP0R, Fisher, Milan, Italy), and the average value was reported. They were
observed using a Confocal Laser Scanning Microscope (Olympus 5100, Milan, Italy). A
structural analysis was performed by grazing incidence X-ray diffraction (GIXRD) mea-
surements over the range of 2θ from 20◦ to 60◦ and a scan rate of 0.02◦/min with the aid of
a Panalytical X’Pert system. The electrochemical properties of samples were analyzed by
potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) by using
Gamry Interface 1000 (Gamry Instruments, Warminster, PA, USA). The potentiodynamic
polarization tests were performed in DC and were destructive characterizations, while
the EIS measurements were performed in AC and were non-destructive techniques. The
former is useful to determine the corrosion current density, while the latter allows the
identification of possible electrochemical mechanisms driving the degradation process. The
electrochemical tests were performed in Hank’s solution at 37 ◦C ± 0.5 ◦C employing a
conventional three-electrode electrochemical cell, including a saturated calomel electrode
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(SCE) as a reference electrode, a platinum electrode as a counter electrode and the tested
samples as the working electrode. The exposed area of samples was 1 cm2. Before mea-
surements, the open circuit potential (OCP) was recorded for 10 min. The potentiodynamic
polarization tests were performed starting from −0.3 V vs. OCP to a current density value
of 10−2 mA/cm2 and applying a scanning rate of 0.166 mV/s. EIS analysis was conducted
by imposing a sinusoidal potential of 10 mV in the frequency range of 50 kHz to 0.02 Hz.
All measurements were performed three times to ensure the tests’ repeatability, and the
mean values are reported.

3. Results and Discussion
3.1. Potential-Time Curves

Studying the coating formation process and predicting its characteristics can be useful
to record the variation in voltage during the PEO process [21]. The voltage-time curve
recorded in this study is presented in Figure 2.
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Figure 2. Voltage-time curves of the samples treated applying a current density of 15 mA/cm2 (blue
curve) or 30 mA/cm2 (green curve).

The potential–time responses during the PEO process, carried out in DC constant
current mode, can be characterized by four steps [21]. In the first step, the voltage increases
linearly with time, and the substrate’s dissolution is accompanied by the formation of a thin
transparent passive barrier layer on the surface of AZ31 Mg alloy. In the second step, when
the so-called breakdown potential is reached, many visible small white micro-sparks appear
at the anodic site (Figure 3a). In the third stage, the size of micro-sparks gradually increases,
becoming orange, and the spark density on the surface decreases significantly (Figure 3b).
In the fourth stage, intense arc discharges appear partially destroy the oxide layer.

The breakdown potential was recorded at about 170 V, after less than 2 min for the
Mg_PEO15 sample, and at about 200 V, after more than 2 min for the Mg_PEO30 sample.
The change in the micro-sparks’ color, from light grey to orange, was recorded at 420 V, after
4 min, and after about 13 min for the Mg_PEO30 and Mg_PEO15 samples, respectively.

The PEO coating developed at a higher current density experienced a higher final
voltage than that detected for the coating produced at a lower current density [11]. The
final voltage of the coatings produced at the current density of 15 or 30 mA/cm2 was 430
and 450 V, respectively.
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Figure 3. Micro-spark development during (a) the second step and (b) the third step of the PEO treatment.

The trend in the curves indicates a different thickness of the surface coating. In partic-
ular, the higher breakdown potential value of the Mg_PEO30 sample could be expected
to result in a thicker anodic oxide coating. Thus, the current density value plays an im-
portant role in the PEO treatment and results in differences in the oxide layer growth
and morphology.

3.2. Morphological Analysis

The morphological analysis was conducted on the magnesium alloy AZ31 samples
before and after the PEO treatment through scanning electron microscope analysis. The
results are reported in Figure 4.
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Figure 4. Morphological analysis of Mg (bare sample), Mg_PEO15 (sample coated by PEO treat-
ment carried out at 15 mA/cm2), and Mg_PEO30 (sample coated by PEO treatment carried out at
30 mA/cm2).

All surfaces examined showed a “pancake-like” porous structure attributable to the
emission of gas bubbles from the discharge channels during the deposition of the molten
oxide. The presence of pores with different shapes and sizes, randomly distributed on each
coated surface, is clearly seen. In particular, the Mg_PEO15 samples showed numerous
pores much smaller than those presented by the Mg_PEO30 samples. The average pore size
for the Mg_PEO15 samples was about 500 nm. While the Mg_PEO30 samples presented
an average pore size of about 2 µm. The reduction in the number of pores as the current
density increases can be easily explained by the pores tending to merge as they grow.

The different thicknesses of the coatings have been confirmed by experimental mea-
surements. The results obtained were 6.1 ± 0.8 µm and 10.2 ± 1.5 µm for Mg_PEO15 and
Mg_PEO30, respectively, in line with previous results [10,13]. A duration of 20 min means
that the average growth rate values of the coatings formed at 15 mA/cm2 and 30 mA/cm2

were about 0.3 µm/min and 0.2 µm/min, respectively. Thus, a high current density leads
to a high growth rate.

Hussein et al. [22] showed the structure of a PEO coating consisting of three layers:
a porous outer layer, a dense middle layer, and a thin dense inner layer; while Zhang
et al. [23] highlighted the different thicknesses of the individual layers depending on the
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applied current density. In light of these considerations, the coating obtained under the
highest current density could be composed of a thicker inner dense layer than the coating
grown by applying the lowest current density. The latter information can be deduced by the
potential-time curve, in particular from the value of the breakdown potential. The higher
the value of this parameter, the thicker the inner dense layer. In addition, the substrate’s
dissolution can be shown from the cross-section images, shown in Figure 5, in which the
interface between the substrate and the coating was wavy and jagged, as indicated by [10].
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3.3. XRD Analysis

Figure 6 shows the GIXRD spectra of the PEO coatings. The Mg peaks are visible
in both patterns, although they are more intense for the Mg_PEO15 samples (blue line).
This result can be ascribed to the thickness of MG_PEO15, which is thinner than that of
Mg_PEO30, and, therefore, probably more penetrable by X-rays, as also observed by [17,20].
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Peaks attributed to the orthorhombic and insoluble Mg2SiO4 phase (JCPDS No. 85-
1364) [22] due to the reaction between SiO3

2− ions from Na2SiO3 present in the electrolyte,
and Mg2+ ions from the substrate, were identified only in the Mg_PEO30 samples, according
to the reaction:

2 Mg2+ + SiO3
2− + 2 OH− →Mg2SiO4 + H2O (1)

Conversely, MgO phase (JCPDS No. 78-0430) formation was displayed by both sam-
ples, resulting from the dehydration of Mg (OH)2 due to the high temperature during the
sparking discharge process [8].
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3.4. Electrochemical Analysis
3.4.1. Potentiodynamic Polarization

The potentiodynamic polarization curves recorded in Hank’s solutions at the human
body temperature are shown in Figure 7. This kind of test offers significant kinetic infor-
mation and reveals the relative anodic and cathodic contributions [24]. Due to the pitting
phenomena shown by the samples, Tafel’s approximation cannot be applied to evaluate the
samples’ corrosion rate. Despite this, the value of the corrosion current of the samples can
be estimated using the intersection of the potential corrosion value and the extrapolation of
the cathodic branch of the potentiodynamic curve.
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Figure 7. Potentiodynamic curves of the investigated samples exposed to Hank’s solution at 37 ◦C.

The corrosion potential, Ecorr, and the corrosion current density, icorr, values are
reported in Table 3.

Table 3. Corrosion potential and current density of corrosion values of the investigated samples in
Hank’s solution.

Parameter Mg Mg_PEO15 Mg_PEO30

Ecorr (V vs. SCE) −1.43 ± 0.03 −1.35 ± 0.02 −1.28 ± 0.04

icorr (A/cm2) 2 × 10−4 ± 0.6 × 10−4 4 × 10−5 ± 0. 5 × 10−5 5 × 10−6 ± 0. 3 × 10−6

Usually, a positive corrosion potential, Ecorr, and a low corrosion current density,
icorr, mean a lower corrosion rate and good anti-corrosion behavior. As expected [9], the
bare metal shows a high corrosion rate, equal to 2 × 10−4 A/cm2. Conversely, for PEO-
coated samples, the corrosion potential increased with the employed current density. For
the Mg_PEO30 sample, the corrosion current density decreased by almost two orders
of magnitude, suggesting a good corrosion protective property compared with the bare
magnesium. In contrast with the literature [14,15], the coating formed at a higher current
density (30 mA/cm2) showed the best corrosion resistance, recording the lowest current
density of corrosion, although it is characterized by larger pore size and a thicker anodic
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oxide layer. The existence of an inner dense layer thicker than the samples treated with the
lowest current density, as explained above, has probably allowed a better electrochemical
response. In addition, the presence of Mg2SiO4 on the Mg_PEO30 sample, missing in the
crystallographic observations for the Mg_PEO15 sample, could have contributed to the
improvement in the corrosion resistance, as studied by Fukuda et al. [25].

In Figure 8, the pictures of the surface appearance after the potentiodynamic polar-
ization experiments are displayed. The Mg_PEO15 sample showed many pits randomly
distributed on its surface, while only a few little pits could be seen on the Mg_PEO30 sam-
ple.
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Figure 8. Surface appearance optical images after potentiodynamic polarization test in Hank’s
solution at 37 ◦C of the (a) MG_PEO15 and (b) Mg_PEO30 samples.

3.4.2. Electrochemical Impedance Spectroscopy Analysis

Electrochemical Impedance Spectroscopy is a well-consolidated technique used to
determine the protective properties of coatings of many materials [26,27]. EIS results can be
interpreted by fitting the data using a so-called equivalent electrical circuit representative
of the “equivalent” electrical behavior of the system under investigation [28]. The electrical
equivalent circuits, in some conditions, are well-defined, as for unpainted metal exposed to
an aggressive environment, for which a Randles equivalent circuit can be used. For coated
and complex systems, different equivalent circuit models can be employed to investigate
systems and processes [29].

As is well-established, a good and intact protective coating, a so-called capacitive
coating, is characterized by a straight line with a slope of −1 for the impedance modulus
and a phase angle equal to 90◦ in the full frequency range [30]. Since the PEO coatings
have a porous matrix, one must expect imperfect capacitive behavior. Actually, the low
corrosion resistance of magnesium represents an advantage to producing biodegradable
implants. The limit is its degradation rate, which must be controlled to allow the natural
healing process of the hosting tissues.

The results of the EIS measurements, reported as Bode plots in Figure 9, confirmed the
electrochemical behavior observed with the potentiodynamic polarization tests.
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Figure 9. (a) Impedance modulus and (b) phase angle plots of samples characterized in Hank’s
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The impedance modulus curve of the Mg sample (Figure 9a—red line) shows an s-type
shape, with resistive behavior in the high-frequency domain, capacitive behavior in the
medium frequencies, depicted in the phase angle plot as a maximum (Figure 9b), and
another resistive trend in the lowest frequency range, in which the impedance modulus
value reached the typical value of a metal prone to corrode as the bare magnesium alloy,
of about 3.5 × 103 A/cm2. The impedance modulus and phase angle plot curves of the
anodized samples showed a different aspect. First of all, it was possible to observe the
presence of well-distinguished two-time constants, better displayed in the phase angle plot
as peaks, each of which represents the interaction of the electrolyte with an interface [31].
As previously mentioned, the PEO coating generally is made of three layers, i.e., an outer
porous layer, an intermediate dense layer, and an inner dense layer; each of which con-
stitutes an interface. The pseudo-capacitive behavior at the start of the test, for the PEO
coatings, represented by a negative slope of the impedance modulus graph in the higher
frequency range (Figure 9a) and the first time constant at high angular values in the corre-
sponding phase angle plot (Figure 9b) suggested electrolyte interaction with the external
interface of the coatings. The different slopes showed by the two anodized samples, lower
for the Mg_PEO15 sample, prove the different barrier protection offered by the interfaces
to cross the corrosive medium, i.e., less protective for this sample. Immediately after, at
high-medium frequencies, their barrier protection was altered due to the penetration of
the corrosive medium in the pores of the PEO coating, as manifested by the phase angle
reduction in Figure 9b.

From the medium frequencies to the lowest ones, the curves of the anodized samples
exhibited a significant deviation. The Mg_PEO15 samples showed a second time constant,
suggesting an interaction with a second interface. The impedance modulus value of
104 Ω cm2 could be assigned to the inner layer. With a reduction in the frequency, there
was a continuous and unstable degradation in the protective properties. The impedance
modulus recorded values comparable with those of the magnesium substrate, suggesting
the penetration of the electrolytes to the PEO coating/substrate interface. Conversely, the
Mg_PEO 30 sample displayed the second time constant at lower frequencies, suggesting a
retarding of the electrolyte passage towards the substrate. The impedance modulus value
of more than 105 Ω cm2 indicated a better corrosion resistance of the Mg_PEO30, as shown
by the wider loop recorded in the Nyquist plots depicted in Figure 10.
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Figure 10. Nyquist plots of samples characterized in Hank’s solution at 37 ◦C.

The Nyquist plot of the Mg sample was characterized by a semicircle, confirming
the single time constant highlighted in the phase angle plot (Figure 9b). Regarding the
anodized samples, the Nyquist plots were more complex, presenting a low-frequency hook.
In addition, in the high-medium frequency range, the curves presented a similar behavior
to that shown by Sreekanth et al. [32]. They studied the influence of various additives on
PEO coatings grown on AZ31 magnesium alloys. Given the porosity of these coatings, the
authors declared that, when PEO treatment is performed in silicate or aluminate-based
electrolytic solution, at higher frequencies the electrolytic species, used to electrochemically
characterize the coatings, easily diffuse inside the coatings, reaching the internal dense
barrier layer at lower frequencies, where they form adsorbed intermediates. Thus, they
represented this behavior by the equivalent electrical circuit (ECC) depicted in Figure 11.
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Figure 11. The equivalent electrical circuit used by [32] to simulate the electrochemical behavior of
PEO coatings obtained in silicate or aluminate-based electrolytic solutions.

The ECC included a resistor representing the solution resistance (Rs) in series to a
Warburg element (Ws), to simulate the diffusion behavior recorded in the high-frequency
range [26]. These elements are followed by a parallel path composed of a constant phase
element and resistor representing the capacitive (CPEpo) and resistance (Rpo) behavior
of the PEO porous layer, respectively. In turn, they were in parallel to another resistor
representing the resistance of the barrier layer (Rb), in series to an inductor (L) to simulate
the adsorbed intermediates at the low-frequency domain.

Therefore, a clear difference is shown between the anodized samples. The increase
in current density involving a PEO coating made of larger pores led to an increase in the
diffusive and inductive behavior of the Mg_PEO30 sample, compared to the Mg_PEO15
sample, whose coating has smaller pores. Although the Mg_PEO30 was characterized by
larger pores, it presented a higher corrosion resistance to the biological electrolyte, probably
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due to a thicker barrier inner layer compared to that formed on the Mg_PEO15 sample and
the presence of Mg2SiO4 in the anodic oxide coating.

4. Conclusions

The purpose of this paper was to investigate the effect of current density on the
morphology, thickness, and electrochemical behavior of an oxide anodic layer grown on
AZ31 magnesium alloy sheets through a plasma electrolytic oxidation treatment. The
higher currents resulted in an increase in the thickness of the coating and the presence of
Mg2SiO4, with consequent inhibition of the corrosive phenomena, despite having larger
pores than the lower-current-density Mg_PEO 30 samples.

It is clear that to use magnesium alloys for the production of biomedical devices it is
necessary to both guarantee a certain corrosion resistance to allow the reference tissues to
reform and ensure that the degradation process of the magnesium occurs with somewhat
controllable kinetics. This contribution confirms that PEO treatment, with the possibility of
growing a porous oxide layer, seems to be a good candidate for such purposes.
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