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ABSTRACT
Several Web search services enable their users with the possibility

of sorting the list of results by a specific attribute, e.g., sort “by

price” in e-commerce. However, sorting the results by attribute

could bring marginally relevant results in the top positions thus

leading to a poor user experience. This motivates the definition

of the relevance-aware filtering problem. This problem asks to re-

move results from the attribute-sorted list to maximize its final

overall relevance. Recently, an optimal solution to this problem has

been proposed. However, it has strong limitations in the Web sce-

nario due to its high computational cost. In this paper, we propose

ϵ-Filtering: an efficient approximate algorithm with strong approx-

imation guarantees on the relevance of the final list. More precisely,

given an allowed approximation error ϵ , the proposed algorithm

finds a (1-ϵ)–optimal filtering, i.e., the relevance of its solution is

at least (1-ϵ) times the optimum. We conduct a comprehensive

evaluation of ϵ-Filtering against state-of-the-art competitors on

two real-world public datasets. Experiments show that ϵ-Filtering
achieves the desired levels of effectiveness with a speedup of up to

two orders of magnitude with respect to the optimal solution while

guaranteeing very small approximation errors.
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1 INTRODUCTION
Many online search services provide answers to their users by

estimating the relevance of the contents they deliver with respect

to specific queries. The typical example of this kind of services is

Web search, where users express their information needs by means

of textual queries to a search engine that provides back a list of

documents maximizing the relevance of the list w.r.t. the query.
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Other examples of services built around this approach are social

networks, streaming platforms, e-commerce sites, etc. Many of

these services allow the users to further interact with the provided

contents. For instance, social networks allow to look for the “most

recent” stories posted by friends, while shopping services provide

a useful “sort by price” listing of the items matching a specific user

query. These approaches work by sorting the matching results by a

specific attribute, e.g., by time or by price. However, sorting merely

by a specific attribute may lead to a poor user experience since the

list usually contains many results that are marginally relevant for

the user [14, 15]. A simple example motivates the observation above.

The query “iphone” on amazon.com returns more than 100, 000

results. When results are sorted by relevance, the first page of

results consists of several iPhone models and related accessories.

A completely different scenario is achieved when the results are

sorted by increasing price: in this case the first page of results is a

list of low-price covers and gadgets. The two lists are dramatically

different in terms of relevance of the results. The second list leads

to a poor user experience because the user now needs to examine

several items before she finds something relevant.

The problem above can be addressed as a filtering task. The goal

is to retain at most k results from the original list so to maximize

the overall effectiveness without changing the per-attribute sorting

chosen by the user. Therefore, the Filtering@k problem is as follows.

Filtering@k : Given a list ofn relevance scoresR = ⟨r1, . . . , rn⟩,
a positive integer k and a search quality metric Q , the problem

asks to find the sub-list of R of size at most k that maximizes Q .

Finding a solution to the Filtering@k problem is hard when tak-

ing into account search quality metrics such as the widely-used

Discounted Cumulative Gain (DCG) [6, 8, 16]. Indeed, we observe

that to get an optimal solution neither it is sufficient to select the

most relevant results of the list nor we can consider only the subse-

quences of exactly k elements. For example, given the list of four

results having relevances ⟨2, 2, 4, 1⟩, the optimal DCG@3 is obtained

by filtering out the first two elements, despite they are individually

more relevant than the last one. Moreover, all sub-sequences of

three results achieve a lower DCG@3 than the optimal one.

Recently, the Filtering@k problem has been investigated by

Spirin et al. [14]. The authors propose an optimal solution based

on a standard Dynamic Programming approach [4], which runs in

Θ (nk) time. The proposed solution, hereinafter called OPT, has two

important drawbacks. First, its time complexity makes its use un-

feasible for online search services that needs to potentially handle

several thousands of results per-query within small time budgets,

e.g., 100ms for 99th-percentile per-query response time [2, 7, 9]. Sec-

ond, it cannot be applied to distributed search engines as it works

by taking global decisions on the complete list of results. The filter-

ing problem is thus often addressed with two heuristics based on
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thresholding: Topk and Cutoff. Topk selects the k most relevant ele-

ments, while Cutoff selects the elements whose relevance is greater

than a given threshold. Spirin et al. propose to combine Topk and

Cutoff with OPT to obtain two new heuristics called Topk-OPT and

Cutoff-OPT. These two strategies are useful to trade effectiveness

for efficiency. Filtering@k is thus solved by using either exact but

slow algorithms or fast but inaccurate heuristics.

In this paper we contrast the weakness of the above approaches

by proposing ϵ-Filtering, a novel approximate algorithm to effi-

ciently perform the relevance-aware filtering of search results.

ϵ-Filtering trades-off between efficiency and effectiveness through

a parameter ϵ controlling the approximation error. It finds a (1-ϵ)–
optimal filtering in Θ

(
n + k2 log

1−ϵ (ϵ/k)
)
time. We experimentally

evaluate ϵ-Filtering on two real-world public datasets proving that

it provides a significant speedup in time w.r.t. the optimal solu-

tion by Spirin et al. [14]. To the best of our knowledge, this is the

first contribution toward defining a fast approximate algorithm for

solving the relevance-aware filtering problem.

In detail, the contributions of the paper are the following:

• we start by presenting a theoretical analysis of the Cutoff-

OPT and Topk-OPT heuristics in the filtering scenario [14].

We show that the former does not provide any performance

guarantee while the latter finds a 0.5–optimal filtering in

Θ
(
n logk + k2

)
time.

• we then propose ϵ-Filtering, a new efficient approximate algo-

rithm with strong performance guarantees. Given an approx-

imation error ϵ , ϵ-Filtering finds a (1-ϵ)–optimal filtering in

Θ
(
n + k2 log

1−ϵ (ϵ/k)
)
time.

• we present a comprehensive experimental evaluation on real-

world datasets. Experiments show that ϵ-Filtering is faster

than Topk-OPT and Cutoff-OPT while providing more ef-

fective solutions. We also show that ϵ-Filtering achieves a

speedup of up to two orders of magnitude w.r.t. OPT while

guaranteeing very small approximation errors.

The rest of the paper is structured as follows: Section 2 discusses

the related work while Section 3 presents a theoretical analysis of

Cutoff-OPT and Topk-OPT heuristics and introduces ϵ-Filtering.
Section 4 provides a comprehensive evaluation of ϵ-Filtering against
OPT, Cutoff-OPT, and Topk-OPT on real-world data. Finally, Sec-

tion 5 concludes the work and outlines future work.

2 RELATEDWORK
The relevance-aware filtering problem has been addressed so far

by using either optimal but slow algorithms or fast but inaccurate

heuristics. We now present a review of the main contributions.

Optimal filtering. Spirin et al. propose an optimal algorithm, OPT,

to address the relevance-aware filtering problem [14]. The authors

employ dynamic programming [4] to design aΘ(nk) time algorithm

to solve the filtering problem. Indeed, OPT iterates over the prefixes

of the results listR to obtain optimal solutions of any length j < k . In
this way, OPT incrementally fills a memoization matrixMn×k . Each

entryM[i, j] of the table stores the best relevance score achievable
on the prefix of R of length i by using exactly j elements. At each

step, OPT chooses the best decision between: i) appending the i-th
element of R, ri , to the optimal subsequence of length j − 1 of the

prefix i − 1, or ii) taking the optimal subsequence of length j of
the prefix i − 1. Specifically, it fills the table using the following

recursive definition

M[i, j] = max

{
M[i − 1, j]
M[i − 1, j − 1] + score_item(ri , j)

where score_item(ri , j) is the gain of relevance score of the ele-

ment ri when placed in position j. Clearly, the score of the empty

list is 0, hence M[·, 0] = M[0, ·] = 0. Once M is filled, a best

score in the last row of M identifies an optimal solution. If the

score_item() function can be computed in constant time, e.g.,

score_item(ri , j) = (2ri − 1)/log
2
(j + 1) for the DCG metric [6],

then OPT runs in Θ (nk) time.

Heuristics. Two naïve heuristics, Cutoff and Topk , can be em-

ployed to solve the relevance-aware filtering problem. The former

selects the elements of the list whose relevance is greater than a

given threshold, while the latter works by selecting the k most rel-

evant elements of the list. Spirin et al. [14] experimentally showed

that these two heuristics are more effective when their results are

further filtered by OPT. We call Cutoff-OPT and Topk-OPT the

resulting approaches. They also present a comprehensive evalua-

tion on learning to rank datasets [13] and they conclude that the

performance of the optimal solution is superior w.r.t Cutoff-OPT

and Topk-OPT. However, the authors do not provide a theoreti-

cal analysis of the guarantees of the two heuristics. In this paper

we provide such analysis. We first show that Cutoff-OPT does not

provide any performance guarantee. We then prove that the effec-

tiveness achieved by Topk-OPT may be up to two times worse than

the optimum. Therefore, their application may lead to a significant

degrade of the relevance of the filtered list.

Related problems. Carmel et al. explore a similar problem in mail

search, where they propose to rank the search results of Yahoo

Mail [3] by relevance. The authors investigate a mixed approach

promoting the most relevant results on top of time-ranked results.

Results show that supplementing time-sorted results with relevant

results leads to better performance than the traditional time-sorted

view. This proposal by Carmel et al. is only partially related to our

one. While they investigate how to couple relevance ranking with

time-based ranking so to enable a two-dimensional view in mail

search, we propose to directly address the relevance-aware filtering

of result lists by removing irrelevant results from an attribute-

ordered list of results.

3 APPROXIMATE FILTERING
In this section, we first analyze the effectiveness of the two existing

heuristics, Cutoff-OPT and Topk-OPT, proving their weak guar-

antees. We then introduce ϵ-Filtering, a new efficient approximate

algorithm with much stronger guarantees. We present the results

by using DCG [1, 6] as search quality metric Q .

3.1 Analysis of heuristics
The goal of this section is to analyze Cutoff-OPT and Topk-OPT.We

show that Cutoff-OPT may be arbitrarily worser than OPT, while

Topk-OPT is 0.5–optimal.



Cutoff-OPT. Cutoff-OPT applies OPT to the elements of the list

whose relevance is greater than a given threshold. Cutoff-OPT does

not provide any performance guarantees. Indeed, its performance

strictly depends on the fixed threshold: the higher is the threshold,

the more efficient and less accurate is the filtering, because an

increasing number of elements is pre-filtered. It is thus trivial to

find worst-case lists for Cutoff-OPT, where either i) the algorithm is

not able to filter any element, or ii) it filters all of them. Therefore, in

the former case Cutoff-OPT does not improve the time complexity

of OPT, i.e., it runs inΘ(nk) time, while in the latter case its solution

is arbitrarily worse than the optimal one.

Topk-OPT. Topk-OPT provides stronger guarantees than Cutoff-

OPT. Its time complexity isΘ
(
n logk+k2

)
in the worst case. Indeed,

it selects the top-k elements in Θ
(
n logk

)
time. These elements are

further filtered by OPT in Θ
(
k2

)
time. As far as the quality of its

solution is concerned, we prove that i) there exist an infinite family

of lists for which the solution provided by Topk-OPT is roughly 2

times worser than the optimum, ii) this is actually the worst case,

i.e., the approximation factor is always at most 0.5.

The first point is proven by using the following family of lists.

We have a list Rk for each possible value of the parameter k of

the Filtering@k problem. The list Rk = ⟨m, . . . ,m, 1,m̃, . . . ,m̃⟩ of

length 2k − 1 is made of two subsequences of equal elements of

length k − 1 separated by 1. The value ofm is (1 − d(k))/
∑k−1
i=1 d(i),

whered(i) is the discount factor of the DCGmetric, i.e., 1/log
2
(i+1).

Instead, m̃ is smaller thanm but infinitely close tom.

Topk-OPT chooses the first k elements of Rk , while OPT takes its

last k elements. The scores achieved by the two strategies are 1 and(
2−d(k)+(1−2d(k)+d(k)2)/

∑k−1
i=1 d(i)

)
, respectively. For increasing

values of k , the score of OPT tends to be 2 times better than the

score of Topk-OPT, i.e., Topk-OPT is 0.5–optimal. For example, for

k = 20, OPT is roughly 1.7 times better than Topk-OPT.
As far as the second point above is concerned, we need to prove

that the worst approximation factor of Topk-OPT is at most 0.5 as

stated by the following theorem.

Theorem 1. Topk-OPT is 0.5–optimal.

The proof of the theorem is omitted due to the lack of space. Here,

we just give its intuition. Consider the elements that belong to the

solutions computed by Topk-OPT and OPT. We can show that the

intersection between the two solutions is non-empty, i.e., there is

at least one common element. The worst effectiveness of Topk-OPT
is achieved when the common elements are in the middle of the list

R, and the elements selected by Topk-OPT only and OPT only are

on the left and right of these common elements, respectively. Given

the structure above for the list, the proof follows by appropriately

choosing the relevances of its elements.

Finally, it is worth highlighting that we could not improve the

above weak guarantees by increasing the number of elements se-

lected by the Topk pruning in Topk-OPT. Indeed, we can easily

change each list Rk to match the same worst-case scenario and,

thus, proving the following corollary of Theorem 1.

Corollary 2. The solution obtained by applying OPT to the top-k ′

elements of R, with any k ′ ≥ k , is 0.5–optimal.

In conclusion, Topk-OPT allows to reduce the time complexity of

the filtering fromΘ(nk) toΘ(n logk+k2), but it can only guarantee

a 0.5 approximation error.

3.2 ϵ–Filtering
The weak approximation guarantees provided by the heuristics

motivate us to propose ϵ-Filtering, an approximate algorithm that

finds a (1-ϵ)-approximation in Θ
(
n + k2 log(1-ϵ )(ϵ/k)

)
time, for any

0 < ϵ < 1. ϵ-Filtering is composed of three steps followed by OPT:

right pruning, discretization, and thresholding.

Right pruning. This step is a lossless pruning which filters out

any element followed by at least k elements with a greater or equal

relevance. The intuition behind this step is that when an element

a is filtered out by the right pruning, there are at least k elements

on its right that could be selected by OPT in place of a, without
worsening the solution. The example below shows this intuition.

Example 3. Let R be the list ⟨0.9, 1, . . . , 1⟩ of 21 elements and

k = 20. The element a = 0.9 is the only element discarded. Every

solution including the element a can be improved by replacing it

with a non selected element. Indeed, the solution A of k elements,

A = ⟨0.9, 1, . . . , 1⟩, has DCG of about 6.9, while the solution O =
⟨1, . . . , 1⟩ has DCG of about 7.

Let right-k-maximal be any element followed by less than k
elements with a greater or equal relevance. The following lemma

proves the correctness of the right pruning.

Lemma 4. There exists an optimal filtering composed of only right-
k-maximal elements of R.

Proof. By contradiction, let us assume that all existing optimal

solutions contain at least one element that is not right-k-maximal.

Let Ô be any optimal solution with the highest number of right-k-
maximal elements. The contradiction arises by showing that we

can replace the rightmost non right-k-maximal element of Ô with

a right-k-maximal one without reducing the relevance of the list.

Thus, showing that Ô is not the optimal solution with the highest

number of right-k-maximal elements.

Let r̂ be the rightmost non right-k-maximal element of Ô and

p̂ be its position in Ô . By definition, there are at least k elements

having relevance greater than or equal to r̂ on its right. Furthermore,

at least k of these elements are right-k-maximal. Since the size of Ô
is at most k , at least one of them is not in Ô . Let r be the leftmost

of them, i.e., the leftmost right-k-maximal element of R located on

the right of r̂ . The relevance of r is greater than or equal to r̂ . Let p
be the position within Ô where r should be placed if selected. We

differentiate between two cases.

i) All elements of Ô between p̂ and p are greater than or equal

to r̂ . Let O be the solution obtained from Ô by removing r̂ and

by inserting r . The solution O has a score greater than or equal

to the one of Ô and uses an extra right-k-maximal element, thus

contradicting the hypothesis.

ii) At least one element of Ô between p̂ and p is strictly smaller

than r̂ . Let r̂ ′ be the rightmost element with this property. LetO be

the solution obtained from Ô by removing r̂ ′ and by inserting r . The
solution O has a score strictly greater than Ô , thus contradicting
the optimality of Ô . □



Algorithm 1 Right pruning

Input: A list R of n relevances and a size threshold k
Output: The list of the right-k-maximal elements of R
1: result = List()

2: heap =MinHeap()

3: for (i = n; i > n-k and i > 0; i -= 1) do
4: heap.push(R[i])
5: result .append(i)

6: for (i = n-k ; i > 0; i -= 1) do
7: if (R[i] > heap.min()) then
8: heap.replace_min(R[i])
9: result .append(i)

10: return result .reverse()

The right pruning can be computed in Θ(n logk) time. Indeed,

in this time we can compute all the right-k-maximal elements by

employing a priority queue while scanning the list from right to left.

At each step of the scanning, the data structure contains the top-k
elements seen so far. If the current element enters the priority queue

then it is right-k-maximal. This strategy is detailed in Algorithm 1.

Unfortunately, the right pruning does not guarantee an effective

pruning of the original list. Indeed, there are lists where it does not

reduce the number of elements to process with OPT. For example,

when the elements of R are all distinct and sorted in decreasing

order, all of them are right-k-maximal. We thus discuss how to

improve the right pruning by using the next discretization step.

Discretization. This step aims at decreasing the number of ele-

ments selected by the right pruning in the worst case. This is done

by creating a new list Rϵ from R such that i) Rϵ has a smaller num-

ber of distinct elements than R, and ii) the relevance of the optimal

filtering of Rϵ is guaranteed to be at least (1−ϵ) times the relevance

of the optimal filtering of R. This way, the use of the previous right
pruning is more effective in terms of removed elements still almost

preserving the optimal solution.

The idea is to discretize the relevance of the elements of R to

decrease the number of distinct elements. This discretization step

trades-off between the approximation error of the solution and

the obtained number of distinct elements. Let ϵ be the desired

approximation error of ϵ-Filtering, with 0 < ϵ < 1. Let rmin and

rmax be the minimum and maximum relevance of the elements in

R, respectively. The idea of the discretization step is to partition

the range [rmin, rmax] intom intervals of elements. The elements

belonging to the same interval are approximated in Rϵ with the

same relevance score, which equals the smallest relevance of the

interval. The tricky part of this strategy is to decide how to partition

the range [rmin, rmax] to guarantee a ϵ approximation error and the

minimum number of intervalsm. Let д(r ) be the gain function used

by the DCG metric, i.e., д(r ) = 2
r − 1. We partition the range into

intervals such that the ratio between the gains д(·) of the minimum

and maximum relevances of each interval is at least (1-ϵ). We call

ϵ–intervals the intervals in this partition. The following example

shows how the discretization step works on the worst case list

shown for the right pruning.

Example 5. Let R be the list ⟨3, 2.99, 2.98, . . . , 0.01⟩ of 300 ele-

ments and ϵ = 0.5 the desired approximation error. Let д(r ) be
the gain function used by the DCG metric, i.e., д(r ) = 2

r − 1.

The ϵ–intervals of R are the following ten intervals: [0.01, 0.019),

[0.019, 0.039), . . . , [1.45, 2.17), [2.17, 3.0]. Within each interval the

ratio between the gain of the maximum and the gain of the mini-

mum is (1-ϵ). For example, for the last interval we haveд(2.17)/д(3) ≈
0.5. The listRϵ is as follows ⟨2.17, . . . , 2.17, 1.45, . . . , 1.45, . . . , 0.01⟩.

The following lemma extends Lemma 4 to Rϵ and shows that

the right-k-maximal elements of Rϵ can be exploited to find a (1-ϵ)-
optimal filtering of R.

Lemma 6. There exists an (1-ϵ)-optimal filtering of R composed of
only right-k-maximal elements of Rϵ .

Proof. To prove the claim we need to show that the optimal

filtering of Rϵ is (1-ϵ)-optimal for R. Let O be an optimal filtering

of R. Let Ôϵ be the filtering built by selecting from Rϵ the same

elements composing O . The gain of each element of Ôϵ is at least

(1-ϵ) times the gain of its counterpart inO . Therefore, the relevance

score of Ôϵ is at least (1-ϵ) times the relevance score of O . In par-

ticular, every optimal solution Oϵ of Rϵ has a score greater than or

equal to the relevance score of Ôϵ , therefore Q(Oϵ ) ≥ (1-ϵ) Q(O).
The proof follows by applying Lemma 4 to Rϵ and by showing

that there exists a solution having score Q(Oϵ ) composed of only

right-k-maximal elements of Rϵ . □

The discretization of R into Rϵ reduces the number of distinct

elements from n tom. The following property provides an upper

bound form.

Property 7. The number of ϵ–intervals of R is

m ≤

⌈
log(1-ϵ )

(
д(rmin) /д(rmax)

)⌉
Proof. Each ϵ–interval is such that the gain of the minimum

element of the interval is (1-ϵ)-times the gain of its maximum.

Therefore, by starting from the most relevant element of R, rmax,

the number of intervals m is the minimum value satisfying the

following inequality: д(rmax) (1-ϵ)
m ≤ д(rmin). □

The discretization step introduces an approximation error ϵ to
reduce tom the number of distinct elements in the list R. This way,
the combination with the right pruning guarantees that at mostmk
elements are selected.

However, the upper bound onm depends on both the minimum

and the maximum relevances in R, namely, rmin and rmax. If the

gap between them is large, thenm is large as well. In particular, it

is possible to design an adversarial list R where the discretization is

ineffective and the right pruning is forced to select all the elements.

This is done by fixing a value of rmin and by choosing rmax to be

large enough so thatm equals n. Then, R is a decreasing list having

an element for each ϵ–interval. This way, Rϵ coincides with R and

the pruning selects all itsm = n distinct elements.

Thresholding. This stepworks by removing those elementswhose

relevance is below a given threshold. In this way, we increase the

value of rmin in the resulting list, referred as R−, and, thus, we
reduce the numberm of possible ϵ–intervals. The threshold should



be chosen so that i) the relevance of the optimal filtering of R− is at

least (1 − ϵ) times the relevance of the optimal filtering of R, and ii)

the value ofm is guaranteed to be always much smaller than n. In
this way, we can remove several elements with a small degradation

of the solution as shown in the following example.

Example 8. Let R be the list ⟨5, 0.1, . . . , 0.1⟩ of 10 elements and

k = 10. The optimal filtering selects the full list R, whose DCG is

about 31.25. If we remove all elements having relevance 0.1 then

the list R− is ⟨5⟩. The optimal filtering of R− has a DCG score of 31,

namely, it is a 0.99-approximation.

The following Lemma 9 says how to fix a threshold t to meet

the desired approximation error ϵ .

Lemma 9. Let R−ϵ be the list obtained by removing the elements of
R below the threshold t = д−1 (ϵ д(rmax) /k) and then by discretizing
the remaining elements using the ϵ–intervals. The optimal filtering
of R−ϵ is a (1-ϵ)-approximation.

Proof. Let O and Ô be the optimal filterings of R and R−ϵ , re-
spectively. The ratio ϵ/k is a value strictly smaller than 1, hence the

threshold t is strictly smaller than rmax. Let us consider the worst

case list whose results, a part of the maximum, are infinitely close

to the threshold t , but smaller than it, and are all placed on the

right of rmax. The solution Ô is thus formed by the singleton ⟨rmax⟩

while the solution O is the list

〈
rmax, t̃, . . . , t̃

〉
. Let д(r ) be the gain

function used by the DCG metric, i.e., д(r ) = 2
r − 1, and d(r ) be

its discount function, i.e., d(p) = 1/log
2
(p + 1). The approximation

factor achieved by using Ô is

(1 − ϵ) =
Q(Ô)

Q(O)
=

д(rmax)d(1)

д(rmax)d(1) + д
(
t̃
) ∑k

i=2 d(i)
,

which can be rewritten as

д
(
t̃
)
=

ϵд(rmax)d(1)

(1-ϵ)
∑k
i=2 d(i)

.

The gain function д() is a strictly increasing function, hence it

admits an inverse function. Moreover, the discount function d() is
always smaller or equal than 1 and the factor (1-ϵ) is strictly smaller

than 1, thus the denominator is strictly smaller than k . Therefore,
the proof follows by using the previous rough approximations. □

The discretization and the thresholding steps can be combined

together to effectively reduce the number of distinct values of the

list R. Indeed, the threshold t limits the number of ϵ–intervals and
thus the number of distinct values involved in the computation of

the right-k-maximal elements. In particular, we can easily derive

the following property by replacing rmin in Property 7 with the

threshold t of Lemma 9.

Property 10. The number of ϵ–intervals of R−ϵ is

m ≤

⌈
log(1-ϵ )(ϵ/k)

⌉
.

The property above states that the maximum number of ϵ–
intervals of R−ϵ can be upper bounded by a quantity that is indepen-

dent from the length of R and its elements. As each right-k-maximal

element r is followed by at most k elements having a relevance

greater than or equal to r , the number of right-k-maximal elements

of R−ϵ can be upper bounded by a quantity depending on ϵ and

Algorithm 2 ϵ-Pruning

Input: A list R of n relevances, a size threshold k and a target

approximation error ϵ
Output: The list of the right-k-maximal elements of R−ϵ
1: result = List()

2: heap =MinHeap()

3: cuto f f = get_epsilon_cutoff(k , ϵ , max(R))
4: i = n
5: for (; heap.size() < k and i > 0; i -= 1) do
6: if (R[i] > cuto f f ) then
7: heap.push(R[i])
8: result .append(i)

9: intervals = get_eps_intervals(ϵ , max(R), heap.min())

10: for (cur = 1; i > 0; i -= 1) do
11: if (R[i] > intervals[cur ]) then
12: heap.replace_min(R[i])
13: result .append(i)
14: while (intervals[cur ] < heap.min()) cur += 1

15: return result .reverse()

k only. Indeed, there are at most km ≤ k
⌈
log(1-ϵ )(ϵ/k)

⌉
right-k-

maximal elements in R−ϵ .
We refer to the strategy that finds the right-k-maximal elements

of R−ϵ as ϵ-Pruning. An efficient implementation of ϵ-Pruning is

reported in Algorithm 2. The proposed algorithm computes the

threshold t using the formula of Lemma 9 (line 3) and the ϵ–intervals
bounds (line 9). The algorithm scans the list R and uses a priority

queue to keep track of the top-k right-k-maximal elements of R−ϵ
seen so far. We use a cursor cur to keep track of the ϵ–interval of
the smallest element of the priority queue. If the current element

fits into a higher ϵ–interval then it is right-k-maximal for R−ϵ and it

enters into the priority queue (line 11). Here, we do not discretize all

elements of R, because it would require to find the corresponding

ϵ–interval of each element even if it is not necessary. Instead, we

use the cursor cur to find the corresponding ϵ–interval of only the

elements entering into the priority queue. Since the cursor just

advances in the intervals array (line 14), the number of times we

update the cursor position is independent of the length of the list

and it is limited by the number of intervals, i.e., Θ (m).

Since the maximum number of right-k-maximal elements of R−ϵ
is km, Algorithm 2 costs Θ (n + km logk) time. The first factor is

due to the cost of a linear scan of the list R, while the second factor

is due to the cost of Θ(km) updates of a priority queue of size k .
Therefore, ϵ-Pruning is an efficient and effective way for reducing

the number of elements to be processed by OPT.

ϵ−Filtering. Our algorithm is then the combination of ϵ-Pruning
and OPT. Theorem 11 shows that ϵ-Filtering finds a (1-ϵ)-optimal

solution and trades-off between effectiveness and efficiency through

the approximation error ϵ .

Theorem 11. ϵ-Filtering finds a (1-ϵ)-optimal filtering in

Θ
(
n + k2 log(1-ϵ )(ϵ/k)

)
time.

Proof. ϵ-Filtering is composed of two phases: ϵ-Pruning and

OPT. ϵ-Pruning finds the right-k-maximal elements of R−ϵ , which,



according to Lemma 4, contain the optimal solution of the approx-

imate list. OPT finds the optimal solution of the right-k-maximal

elements of R−ϵ , which is (1-ϵ)-optimal according to Lemma 9.

The time complexity of ϵ-Pruning is Θ (n + km logk) while the
one of OPT isΘ

(
k2m

)
when applied to theΘ(km) elements selected

by ϵ-Pruning. The claim follows from Property 10. □

ϵ-Filtering solves the relevance-aware filtering problem by com-

bining three steps, i.e., right pruning, discretization, and thresh-

olding, with OPT. ϵ-Filtering provides strong guarantees on the

effectiveness of the filtered list and trades efficiency for effective-

ness driven by the approximation error ϵ .

Distributed setting. Real-world search services exploit distributed
query processing architectures [2, 12] to deliver content to their

users. Typically, a distributed environment consist of a set of indices

each one queried by a search engine. On top of them, a meta-search

engine distributes the query to all search engines. Each of them

query its index in parallel and produce a ranked list of top-k results

that is sent back to the meta-search engine. Finally, the meta-search

engine aggregates the results and send them to the user.

OPT cannot be applied in a distributed query processing architec-

ture since it computes the optimal solution by taking into account

all the results available. One possibility to overcome this issue is to

deploy OPT in the meta-search engine. However, sending all the

results matching a query from a search engine to the meta-search

engine is unfeasible. This would lead to high network communi-

cation overhead between machines. Moreover, by applying OPT

on partial lists of results, i.e., on a search engine level, the final

solution is not guaranteed to be optimal.

ϵ-Filtering can be applied in a distributed query processing ar-

chitecture as it preserves the approximation guarantees. The ap-

plication of ϵ-Filtering to a distributed scenario requires: i) each

search engine to apply ϵ-Pruning to the local results and to send

the right-k-maximal elements to the meta-search engine, ii) the

meta-search engine to merge the lists received by preserving the

per-attribute sorting and to apply ϵ-Filtering to the merged list. By

exploiting Property 10, we can prove that the number of elements

transferred by each search engine is at most k ⌈log(1-ϵ )(ϵ/k)⌉ thus
confirming the feasibility of the approach.

4 EXPERIMENTS
We evaluate the performance of ϵ-Filtering and its competitors on

two real datasets, namely GoogleLocalRec and AmazonRel. The

two datasets are built around two different real-world use cases

and by exploiting state-of-the-art relevance estimators. Moreover,

they present a high number of results per query thus allowing us

to perform a comprehensive assessment of the efficiency of the

filtering methods.

The GoogleLocalRec dataset is built by using the Google Local

data and a state-of-the-art recommender system (TransFM) that

recently achieved the best performance in the task of sequential

recommendation [11], i.e., the task of predicting users’ future be-

haviour given their historical interactions. The GoogleLocalRec

dataset is made up of a large collection of temporal and geographical

information of businesses and reviews [5]. We used the GoogleLo-

calRec dataset to produce, given a user, a list of relevant businesses

to recommend to her. In particular, we focused on the city of New

York, which is the city with the highest density of data. Therefore,

we preprocessed the dataset by following the methodology de-

scribed in the original paper [11] and we trained a recommendation

model (TransFMcontent) using the reviews of the businesses within

a radius of 50Km from the center of New York. Then, we randomly

selected 10, 000 test users. For each test user, we sorted the busi-

nesses in New York by distance and we estimated their relevance

by predicting the recommendation score with the TransFMcontent

model. The GoogleLocalRec dataset we built is thus composed of

10, 000 users, also referred to as queries. Each user comes with a

list of exactly 16, 000 recommendations.

The AmazonRel dataset is built by using one of the winning

solutions
1
of the Crowdflower Search Results Relevance

2
Kaggle

competition, whose goal was to create an open-source model to

help small e-commerce sites to measure the relevance of the search

results they provide. However, the test set distributed as part of the

Kaggle competition contains only few results associated with each

query. Therefore, we extended the test set using the Amazon dataset

introduced by [10], whose data come from the Amazon e-commerce

website and span from May 1996 to July 2014. We added to the

original result list of each query all Amazon items having at least

one of the query terms in the title or in the description. Then, we

sorted the results by price andwe computed their relevance by using

the winning solution of the Crowdflower Search Results Relevance

competition. The resulting AmazonRel dataset is composed of 260

queries. We then removed 10 queries characterized by less than 500

results. The resulting dataset is made up of 250 queries and each

query comes with 100, 000 results on average.

Metrics. We assess the performance of ϵ-Filtering and its competi-

tors by using two different metrics.

• DCG (⟨r1, ..., rn⟩) =
∑n
p=1

2
rp −1

log
2
(p+1) , which actively rewards rel-

evant results. It is composed of an exponential gain function for

relevance, д(r ) = 2
r − 1, combined with a smooth discount factor

for position, d(p) = 1/log
2
(p + 1).

• DCG-LZ (⟨r1, ..., rn⟩) =
∑n
p=1

rp
p , which penalizes the results

that are not in the top positions. It combines a linear gain func-

tion for relevance, д(r ) = r , with the Zipfian discount factor for

position [8], d(p) = 1/p.

We employed the two aforementioned metrics because they are

widely used within the IR community [6, 8, 16]. Moreover, due

to their differences in д(·) and d(·), they provide a very different

evaluation: DCG actively promotes the relevance, while DCG-LZ

actively discounts the results that are in the lower positions of the

ranked list.

Filtering methods. We compare the performance of ϵ-Filtering
against three strong competitors introduced by Spirin et al. [14]:
OPT, Topk-OPT, and Cutoff-OPT. The relevance threshold used

by Cutoff-OPT is query-based and it is defined as (rmax + rmin) /2

where rmax (rmin) is the maximum (minimum) relevance of the list.

1
https://github.com/geffy/kaggle-crowdflower

2
https://www.kaggle.com/c/crowdflower-search-relevance

https://www.amazon.com
https://github.com/geffy/kaggle-crowdflower
https://www.kaggle.com/c/crowdflower-search-relevance
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Figure 1: Average filtering time (top) and worst approxima-
tion error (bottom) of ϵ-Filtering by varying ϵ and k .

Testing details. All algorithms are implemented in C++11 and

compiled with GCC 5.4.0 using the highest optimization settings.

The tests were performed on a machine with eight Intel Core i7-

7700 cores clocked at 3.60GHz, 64GiB RAM. We report the results

of each method as the average execution time (in milliseconds) of

five independent runs.

Reproducibility. To ease the reproducibility of the results we

release the GoogleLocalRec and AmazonRel datasets along with our

implementation of OPT, Topk-OPT, Cutoff-OPT, and ϵ-Filtering3.

4.1 Assessment of ϵ-Filtering
We now present an analysis of the performance of ϵ-Filtering as

a function of several parameters, i.e., ϵ , k , and n. Due to space

limitation, we report these experiments on the GoogleLocalRec

dataset only. We report the average performance achieved on the

10, 000 test queries.

Assessment by varying ϵ and k . The parameter ϵ drives the effi-

ciency of ϵ-Filtering through the granularity of the approximation.

As shown in Section 3.2, it guarantees the desired approximation

error by controlling the width of the ϵ–intervals. Figure 1 (top)

shows the average filtering time achieved by ϵ-Filtering by varying
ϵ (x-axis) from 0.001 to 0.5. Each line refers to a different value of

k ∈ {20, 50, 100, 200}. As expected, the filtering time increases when

decreasing the desired approximation error ϵ . The reported results

are always below 0.3 milliseconds. Specifically, the filtering time

ranges from 0.1ms to 0.3ms when k = 200 and it softly increases

with values of ϵ smaller than 0.05 for all values of k tested. This

3
https://github.com/hpclab/fast-approximate-filtering
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Figure 2: Average filtering time of ϵ-Filtering and OPT by
varying n and ϵ .

ensures that, even when decreasing the desired approximation error

below 0.05, ϵ-Filtering is a feasible solution for online applications

characterized by tight time constraints.

Figure 1 (top) also shows that the parameter k impacts the ef-

ficiency more than the approximation error ϵ . The trend is clear

when increasing k from 100 to 200: the difference in time is greater

than the one achieved by varying ϵ . This is due to the fact that the

parameter k appears as a quadratic factor in the formula defining

the cost of ϵ-Filtering (see Theorem 11).

Figure 1 (bottom) reports the worst, i.e., maximum, approxima-

tion error achieved on all test queries by varying the parameters

ϵ and k . Indeed, this experiment helps to understand what is the

real approximation achieved by the filtering. The gray dashed line

reports the theoretical approximation error that is represented by

those points whose approximation is exactly ϵ . The experimental

worst approximation error sharply decreases when decreasing ϵ .
The achieved error is always far from the theoretical approximation

error. This result confirms that ϵ-Filtering achieves in practice very

good approximations of the optimal solution.

Assessment by varying n. We now evaluate the performance

of ϵ-Filtering and OPT by varying n: for each n′ < n we evaluate

all strategies on the first n′ results sorted by distance of each test

query. The result of this analysis is reported in Figure 2. We perform

the experiment by setting k = 100. Results show the average time

needed by ϵ-Filtering and OPT to process the 10, 000 test queries.

The time required by OPT to filter the lists grows sharply when

increasing n, while the time required by ϵ-Filtering on the same

lists increases slowly. The time required by the latter doubles from

1, 000 to 16, 000 results, while the time required by the former

increases by 17 times in the same range. It is worth highlighting that

a remarkable property of ϵ-Filtering is that the difference in time

between different values of ϵ is almost constant when increasing n.
Indeed, given an approximation error ϵ , the average filtering time

of ϵ-Filtering is marginally affected by the size of the list. Therefore,

ϵ-Filtering is a feasible solution for relevance-aware filtering when

dealing with very long lists of results.

Speedup. The parameter ϵ affects the number of elements pre-

filtered by ϵ-Pruning which in turn must be processed by OPT.

Figure 3 (top) shows the fraction of elements removed by ϵ-Pruning
on average. As expected, the number of elements it discards grows

https://github.com/hpclab/fast-approximate-filtering


Table 1: Average filtering time (above) and worst approximation error (below) achieved by OPT, Cutoff-OPT, Topk-OPT and
ϵ-Filtering with n = 16, 000 by varying k . Time is reported in milliseconds. The best results are in bold.

Strategy GoogleLocalRec by varying k AmazonRel by varying k
20 50 100 200 20 50 100 200

OPT 0.206 0.540 1.019 1.991 0.198 0.537 1.010 1.976

Cutoff-OPT

(no guarantees)

0.156 (1×) 0.353 (2×) 0.670 (2×) 1.281 (2×) 0.199 (1×) 0.454 (1×) 0.868 (1×) 1.686 (1×)

0.20 0.29 0.34 0.38 0.23 0.33 0.39 0.43

Topk-OPT
(0.5-approximation)

0.017 (12×) 0.022 (25×) 0.032 (32×) 0.055 (37×) 0.018 (11×) 0.025 (21×) 0.039 (26×) 0.067 (30×)

0.15 0.14 0.13 0.11 0.14 0.14 0.13 0.13

ϵ -Filtering
(ϵ=0.1)

0.012 (17×) 0.026 (21×) 0.058 (17×) 0.149 (13×) 0.011 (19×) 0.018 (29×) 0.037 (27×) 0.094 (21×)

0.08 0.07 0.06 0.04 0.06 0.05 0.05 0.04

ϵ -Filtering
(ϵ=0.01)

0.015 (13×) 0.035 (16×) 0.076 (13×) 0.188 (11×) 0.013 (16×) 0.025 (22×) 0.054 (19×) 0.138 (14×)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ϵ -Filtering
(ϵ=0.001)

0.021 (10×) 0.043 (13×) 0.087 (12×) 0.203 (10×) 0.016 (13×) 0.030 (18×) 0.062 (16×) 0.151 (13×)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 3: Average fraction of pre-filtered elements (top) and
average speedup (bottom) of ϵ-Filtering by varying ϵ and k .

when decreasing the approximation error ϵ and, specifically, it is
almost flat when ϵ is smaller than 0.01. In particular, with k up

to 100, our strategy pre-filters more than 95% of the elements on

average. This important reduction of the original list to less than

5% of the elements boosts the filtering performance by reducing

the amount of work done by OPT to filter the list.

Figure 3 (bottom) shows the average speedup of ϵ-Filtering
against OPTmeasured on all the test queries. Results show a speedup

of more than one order of magnitude for almost all combinations

of parameters tested. Specifically, with ϵ = 0.01 and k up to 100,

our strategy is from 15 to 30 times faster than OPT when using the

DCG metric, and from 14 to 16 times faster when using the DCG-

LZ metric. It is worth highlighting that the speedups achieved by

using the DCG-LZ metric are smaller than the ones achieved by the

DCG metric because the former is computationally less expensive

to compute. When increasing ϵ to 0.05, with k = 20, ϵ-Filtering
is 37 and 15 times faster than OPT using both DCG and DCG-LZ,

respectively. When further increasing ϵ to 0.1, the speedup is even

bigger and improves the previous results of about 30%.

4.2 Experimental Comparisons
We now assess the performance of ϵ-Filtering against the state-of-

the-art competitors introduced by [14], i.e., OPT, Topk-OPT and

Cutoff-OPT, by setting n = 16, 000, i.e., the maximum length of the

results lists available in the GoogleLocalRec dataset.We perform the

same experiment on the AmazonRel dataset by employing, for each

query, the first 16, 000 results sorted by price. In the latter dataset,

we discard the queries with less than 16, 000 results. The results

of the experiment are summarized in Table 1, where, by varying

k ∈ {0.1, 0.01, 0.001}, for each method we report i) the average

filtering time, ii) the speedup achieved over OPT, and iii) the worst

approximation error achieved on all queries. The results reported

refer to the DCG-LZ metric. The performance of OPT ranges from

about 0.2ms (k = 20) to about 2ms (k = 200). Cutoff-OPT and

Topk-OPT achieve a better performance than the one of OPT. The

speedup of Cutoff-OPT ranges from 1× to 2×. The best performance

in terms of average filtering time is achieved by Topk-OPT with

a speedup ranging from 25× to 37× when k ∈ {50, 100, 200} on

the GoogleLocalRec dataset. Furthermore, Topk-OPT achieves the

best performance with a speedup of 30× when k = 200 on the

AmazonRel dataset.

It is worth reminding that Cutoff-OPT has no proven approxima-

tion guarantees while Topk-OPT is 0.5–optimal. To assess the actual

performance, we experimentally evaluate the worst approximation

error achieved by the two heuristics. We observe that the perfor-

mance of Cutoff-OPT ranges from 0.2 (k = 20) to 0.38 (k = 200) on

the GoogleLocalRec dataset while it scores from 0.23 (k = 20) to

0.43 (k = 200) on the AmazonRel dataset. Topk-OPT shows better



Table 2: Average filtering time (above) and worst approxima-
tion error (below) achieved by OPT, Cutoff-OPT, Topk-OPT
and ϵ-Filtering with k = 100 and by varying n. Time is re-
ported in milliseconds. The best results are in bold.

Strategy AmazonRel by varying n
50, 000 100, 000 200, 000 500, 000

OPT 5.003 9.809 19.280 47.536

Cutoff-OPT

(no guarantees)

2.255 (2×) 4.660 (2×) 8.863 (2×) 8.387 (6×)

0.20 0.04 0.02 0.00

Topk-OPT
(0.5-approximation)

0.073 (68×) 0.119 (82×) 0.209 (92×) 0.474 (100×)

0.11 0.10 0.11 0.05

ϵ -Filtering
(ϵ=0.1)

0.059 (85×) 0.086 (114×) 0.138 (139×) 0.292 (163×)

0.05 0.05 0.05 0.03

ϵ -Filtering
(ϵ=0.01)

0.082 (61×) 0.112 (87×) 0.166 (116×) 0.324 (147×)

0.00 0.00 0.00 0.00

ϵ -Filtering
(ϵ=0.001)

0.091 (55×) 0.124 (79×) 0.179 (108×) 0.336 (141×)

0.00 0.00 0.00 0.00

performance. The worst approximation error of the latter heuristic

ranges from 0.15 (k = 20) to 0.11 (k = 200) on the GoogleLocalRec

dataset while on the AmazonRel dataset the difference is smaller as

it scores from 0.14 (k = 20) to 0.13 (k = 200). The results in terms

of worst approximation error show that the two heuristics are far

from being optimal.

The performance of ϵ-Filtering in terms of speedup w.r.t. OPT

ranges from 10× to 29×. As expected, the best speedup is achieved

when ϵ = 0.1. When decreasing the approximation error ϵ , the
speedup reduces as ϵ-Filtering takes more time to compute a more

accurate solution. Nevertheless, ϵ-Filtering achieves noteworthy

speedups, from 10× to 18×, even when employing ϵ = 0.001, i.e.,

when we require a 1‰ approximation error. In terms of worst ap-

proximation error, ϵ-Filtering achieves results ranging from 0.08 to

0. In details, when ϵ = 0.1 the worst approximation error measured

ranges from 0.08 to 0.04 for the GoogleLocalRec dataset, while it

ranges from 0.06 to 0.04 for the AmazonRel dataset. The result

highlights superior performance of ϵ-Filtering w.r.t Topk-OPT and

Cutoff-OPT. Indeed, when ϵ ∈ {0.01, 0.001}, the worst approxi-

mation error achieved by ϵ-Filtering is 0, i.e., it is always able to

compute the optimal solution for all the queries of the two datasets

while achieving speedups ranging from 10× to 29× over OPT. There-

fore, ϵ-Filtering is able to compute solutions that are either optimal

or very close to the optimal with a significant reduction of the

filtering time.

Since the AmazonRel dataset is made up of longer lists, i.e., up

to 600, 000 results per query, we now analyze the performance of

the different methods by varying n. The results reported in Table 2

refers to the DCG-LZ metric. We perform the analysis by varying

n: for each n′ < n we evaluate all strategies on the first n′ results
sorted by price. We discard the queries with less than n′ results.
We perform the experiment by setting k = 100. We observe that,

by increasing n, the performance of OPT significantly degrades.

When dealing with lists of 500, 000 items, OPT needs 48ms to com-

pute the solution, while when n = 100, 000 it needs about 10ms.

This confirms that OPT is not always a feasible choice. The Cutoff-

OPT heuristic shows limited speedups compared to the ones of the

heuristic Topk-OPT. Indeed, the speedup achieved by Topk-OPT
improves by increasing the value of n. It is particularly fast even

with very long lists (n = 500, 000) achieving a speedup of 100×

over OPT. However, the results show that, by increasing n, the
time spent by Topk-OPT grows faster than the one of ϵ-Filtering.
This result confirms the theoretical analysis we provide in Sec-

tion 3, where we show that the time complexity of Topk-OPT, i.e.,
Θ
(
n logk + k2

)
, has a factor logk more than the one of ϵ-Filtering,

which is Θ
(
n + k2 log(1-ϵ )

ϵ
k
)
.

ϵ-Filtering is the best performing method for all values ofnwhen
ϵ = 0.1. In these settings, ϵ-Filtering is remarkably faster than the

two heuristics. The best speedup, i.e., 163×, is achieved with lists

of 500, 000 items. When decreasing ϵ to lower values, i.e., 0.01 and

0.001, the performance of ϵ-Filtering does not degrade significantly
achieving a maximum speedup of 141× in the latter case. Moreover,

when ϵ ∈ {0.01, 0.001}, the worst approximation error achieved

is always zero meaning that ϵ-Filtering always found an optimal

solution for all tested queries.

5 CONCLUSIONS AND FUTUREWORK
We proposed ϵ-Filtering, an efficient approximate algorithm for

solving the relevance-aware filtering problem with strong approx-

imation guarantees on the relevance of the final list. Given an

allowed approximation error ϵ , the proposed algorithm finds a

(1-ϵ)–optimal filtering, i.e., the relevance of its solution is at least

(1-ϵ) times the optimum. We proposed a comprehensive evalua-

tion of ϵ-Filtering against three state-of-the-art competitors, i.e.,

OPT, Topk-OPT, and Cutoff-OPT, on two real-world public datasets.
Experiments show that ϵ-Filtering achieves the desired levels of

effectiveness with a speedup of up to two orders of magnitude

with respect to the optimal solution, OPT, while guaranteeing very

small approximation errors. Indeed, experiments shows that, when

decreasing ϵ to small values, e.g., 0.01 and 0.001, the worst ap-

proximation error achieved is always zero meaning that ϵ-Filtering
always finds the optimal solution on all tested queries while achiev-

ing speedups ranging from 10× to 147× over OPT.

As future work, we plan to investigate more restrictive classes of

right-k-maximal elements. Indeed, the right-k-maximal elements

assume a central role in our work and the discovery of new classes

of these elements that can be efficiently identified could lead to even

faster approximate algorithms. We also plan to evaluate ϵ-Filtering
in a real-world distributed query processor to comprehensively

assess its performance in this scenario.
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