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1 Introduction

The quantitative analysis of metal-forming processes is difficult because non-
linearities of different kinds are present in the problem, such as, for example,
the elastic-plastic flow in a finite deformation context and the progressive
contact, with or without friction, between the workpiece and the dies, not
to mention the problem arising from the heat generated by the dissipation
of the plastic work.

In this paper we examine with the problem of the contact, without fric-
tion, between a deformable body, simulating the workpiece, and several
moving rigid surfaces, representing the dies. We describe an algorithm ap-
propriate to solve this problem and which can be used in a finite element
scheme.

The algorithm has been implemented into the in house developed code
NOSA, which can deal with elastoplasticity problems in the finite deforma-
tion range, and, at the end of the paper, the results obtained using NOSA
in a bulge test case are compared with the experimental data and with the
results from widely known general-purpose codes like ABAQUS and MARC.

The problem of the contact between an elastic body and a rigid wall
was stated, early on, in a differential form, by Signorini in 1933 [1], and
was numerically approached in the Seventies using the Lagrange multiplier
method or the penalty-function scheme. The analysis of the contact in
presence of finite deformations was carried out first by Oden, Cheng and
Kikuchi [2, 3, 4, 5] in the middle of the Eighties, and, to get an idea of the
state of the art in this area, the proceedings of NUMIFORM ’89 and of the
symposium recently held in Ziirich can be consulted [6, 7].

The algorithm described in this paper differs from the most common
methods used by commercial codes, namely:

1. the incremental equilibrium equation is calculated on the current con-
figuration of the deformable body, thus directly giving the Cauchy
stress tensor [8];

2. the elastic-plastic constitutive response of the material is completely
described by an ordinary differential equation system where the yield
condition is stated in the space of deformation, so no prediction of



the increase in stress is needed. Moreover, the system is numerically
integrated, taking those at the beginning of the increment as initial
conditions: in this way the artificial unloading, which can be produced
by stress redistribution in a high stress gradient zone or by the motion
of the node in establishing the right contact conditions, is avoided;

3. the contact algorithm is based on the direct application of boundary
conditions, i.e. an automatic procedure has been set up that trans-
lates, at each iteration, the contact conditions between the workpiece
and rigid dies into the appropriate boundary conditions applied to the
boundary nodes.

This method avoids the drawbacks of the Lagrange multiplier ap-
proach, such as the increase in the number of degrees of freedom and
the presence of zeroes on the diagonal of the evolution matrix, and the
inaccurate representation of the contact, characteristic of the penalty-
function scheme.

The algorithm described is similar to the one outlined by Nagtegaal
and Rebelo [9], and implemented into the MARC program, but it is
more accurate in the representation of rigid dies and is simpler because,
due to the particulaties of the above mentioned stress increment cal-
culation method, it avoids the increment being necessarily broken up,
when a boundary node comes into contact with a die.

2 The equation of the motion

PRy

We describe the motion of a deformable body subjected to the action of
external forces and kinematic constraints and deformed by contact with
other rigid bodies; the friction forces are not considered in the present article.

Referring to [10, 8], let By be the initial configuration of the deformable
body, B, be the configuration at time 7 € [0,7] and 8B, be its boundary,
which is supposed to be regular. Denoting by p the points of By and by z
those of B;, the motion of the body is given by class C® mapping

x(p,7) : Box [0,7] = B- : z=x(p,7), (2.1)

and the displacement u from the initial configuration is defined by

u(z,7y=z—p=x(p,7)—p-

At every point of 9B, let three orthogonal unit vectors ey, ez, e3 be cho-
sen; for each 7 = 1,2, 3, three disjoint subsets Si (), S}’(T), Se(r) of 0B;
can be singled out in such a way that S;(r) and S},('r) are the subsets of
boundary 9B, where the components along the direction e; of displacement
and force, respectively, are prescribed and S(7) is the set of points in con-
tact with the rigid bodies. Moreover, a particular reference triad is chosen
on S.(7) in such a way that e; is the outward normal unit vector n on Se(r).



So on 0B, we have

SL(r)US(r) USe(r) = 8B, i=1,2,3, (2.2)
ei(z, 1) u(z, 1) = bi(z, 7), x € S::,(T), i=1,2,3, (2.3)
ei(z,7)  T(z,T)n(z, ) = 0i(z, T), z€Si(r), 1=1,2,3, (2.4)
n(z,7) - (W(z,7) — u(z,7)) =0, z € S(7), (2.5)
n(z,7)- T(z, m)n(z, T) = ”c(xa ) <0, z € Se(r), (2'6)

where §; is the i-th assigned component of the displacement with respect to
the initial configuration By of the body, T is the Cauchy stress tensor, o; is
the i-th assigned component of the external forces per unit surface, U, is the
assigned velocity of the rigid bodies and = is the contact pressure.

The equations (2.3) to (2.6) are the boundary conditions for the equili-
brium equation

divT(z,7) + fo(z,7) =0, z€DB;, (2.7)

where f,(z,7) is the body force.
Let w(z,7) be an arbitrary velocity field on B, such that

ei(z,7) - w(z,7) =0, z€Si(r),i=123, (2.8)

n(z,7) - w(z,7) =0, z€S8(r)-. (2.9)
Multiplying (2.7) by w and integrating over B, we get

/Br(w-divT—kw-fb)dV:O. (2.10)

By differentiating (2.10) with respect to time we get [8]
[ 4D (€(D) = 2TD + tx(D)T) + L - LT}V +
B,

— [ Ao (st uD)f) yav + (211)
3

“’E/; {w- ((oiei) + (tr(D) = n- LTn)oie; )} dA +
$=1 j('r)

+/ w-(r.LTn)}dA = 0,
SC(T){ ( )}

with
L := gradu, the spatial velocity gradient,
D = %(L + LT), the stretching,
and with
L* = gradw,
D* = %(L* + L*7T),

the corresponding “virtual” quantities. In (2.11) C is the constitutive 4th
order tensor which, applied to stretching D, gives the Jaumann derivative

of the Cauchy stress 1.e.:




T.=T+TW — WT = C[D],

where W := (L — LT) is the spin of the motion.
The incremental equation (2.11) is used to calculate the stiffness tangent
matrix, an essential ingredient for the finite element schemes.

3 The constitutive law

We shall now introduce the ordinary differential equation system which de-
scribes the constitutive response of the material in order to obtain the ex-
pression of C; in the following we refer mainly to [11].

Denoting by F(r) the deformation gradient with respect to the initial
configuration, at a fixed material point, we have L(r) = F(r)F~'(r). More-
over we know [11, pag. 16] that F(r) can be uniquely decomposed as

F(r)y = V(r)P(7), (3.1)

where V() is a positive-definite symmetric tensor and P(r) takes into ac-
count the plastic deformation and the rigid rotation which the material
undergoes at the point being considered.

We mdlcate by L? = pp! the plastic velocity gradient and by DP :=
H(ILP+ 2 ) and WP := 3(LP - 2 ) the plastic stretching and spin, respec-
txvely

For A, a second order tensor, Ao denotes the deviatoric part of A,
i.e.Ag = A — (3 tr A)I, with I the identity tensor.

We assume that there is no plastic change of volume so that we have
tr DP = 0, and we refer to (Do(r) — DP(r)) and (D(r) — DP(7)) as the
elastic shearing and the elastic stretching, respectively.

In what follows we hypothetize that the material undergoes only small
elastic shearing (the most important case of small elastic stretching is derived
as a particular case). Moreover we consider von Mises materials, so that
denoting the Kirchhoff stress tensor by

K(r) := det(F(r))T(7) = g3 (r)T(7), (3.2)
the yield locus is the sphere Yo(7),
Yo(r) = {Ko € Symg | || Ko(r) = C(7) || = p(7) }, (3.3)

where C(7) and p(r) are the center and the radius of Yo(7), respectively,
and Symy, is the set of the deviatoric symmetric tensors.
In these conditions, the constitutive equations are {11, pag.48]:

I<0 = Q“VO) (34)
Ri=K+KW—WK =20u(D - DP)+0xtr(D)I + ¢ tx(D) Vo,  (3.5)

where g, A and ¢ are functions of 6, in particular po := p(1) and Ao := A(1)
are the Lame moduli.
We introduce the deformation measures £ and EP defined by
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E:=E+EW-WE =D,
EP .= EP + EPW — WEP = D,
with the initial condition
E(0) =0,
E?(0) = 0.
If we define
H:=0E,
HP .= 0E?,
from (3.6) and (3.7) we get
4§m—ﬁP:BU%—lﬁ)+%U%—£V%
and, because {11, pag. 36]
g

1

we obtaln

Mo

[+
K 0——1rzrp:9(D()—-Dp)+ tl‘(D)(HQ—I{p).

1
3
On the other hand, we have [11, pag. 40]
o 1

Vo= 9(D0 — Dp)+ gtl‘(D)Vg,

with the initial condition

Vo(0) = 0.

So, comparing (3.13) and (3.14), we can conclude that

V():H()—HPIQ(EQ——EP).

(3.6)

(3.7

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Taking into account (3.4) and (3.16), we can write the yield condition
as a function of the deformation measures £ and EP. Indeed we have

[|Eo — C* || = o7,
where
C
« L Ep
C %0 + &7,
i P
p= 20

(3.17)

(3.18)

(3.19)



Relations (3.17-3.19) define a new yield locus in the strain space, whose unit
outward normal N is

E — #*
N=2=2 *C . (3.20)
p
To describe the hardening properties of the material we introduce the
Odgqvist function ((7) defined by

(r) = /0 D () . (3.21)

¢(r) is an overall measure of plastic deformation up to time 7, whereas
¢() = || DP(7)|| measures the current plastic flow.

Assuming the present hypotheses it can be proved [11] that the consti-
tutive behaviour is governed by the following ordinary differential system:

' 0 it |[EBo(r) —C* (Mt < p(7),
O H
e i 1P =Gl = o)
E(r) = D(),
\ EP(r) = DP(r)=((r)N(r), (3.22)

&) = ()M (n)+ |
—Lr(D(r)(A+ #(0(r)B(7)/(0(r)) J(C* (7) = EP(7)),

p(r) = A1) =) e )+
—3tr(D(7))(1 + 1/ (8(r))0(7)/1(8(7)) )P™(7)

K(r) = 20(1)p(0(r)) (D(r) = DP(r)) + 0(r)A(8(7) tx(D(r))(7) I+
y +0(r)¢ tr(D(r)) (Eo(7) — (7)),

where:

e p*(7), the radius of the yield locus, is a nondecreasing function of ¢(7)
and

dp*
70,

pr(¢) =
e M*(r) is an appropriate bounded tensor valued function of {(7), C(),
() and N(r), with the property M*- N > 0,

#(0(r)) (D)) (Eo(r) — B*(1)) - N(r)
26 00()) (3:28)

e 7(r) = D(r) - N(r)+



o £(r) = M*(r) - N(r)+ p" (L(7))- (3:24)

From (3.22) we deduce the constitutive tensor € which appears in the
incremental equilibrium equation (2.11), namely we have

K = 20uD — 20pal N + 0A[ & 1[D] + 84[(Eo — EP) ® 11D,

where a = 1 if(,; > 0 and zero otherwise.
Taking into account the expression of { in (3.22) we obtain

K = 20uD — Q—Bgﬁw & N][D] - gizﬁ(Eo _ E?. N)[N @ N)[D}+

+OMI ® 1)[D] + 0{(Eo — EP) ® 1)[D),

and finally

C=20pl— ?-%‘-E[N ® N] — 9%3(120 — EP) N[N @ I] + 0A[I ® I] + (3.25)

+0¢[(E0 - Ep) ® I]:

where 1 is the 4th order identity tensor.

The particular case of small elastic stretching, which is the most fre-
quently encountered in applications, implies that tr D is small, so we have
the following approximations:

* P
po(T) = ——

2/10;

!

! ! H
P (1)~ p (1= (0 — 1)1+ =2)),
Ho
dp
h I = (1
where g = —7(1),

C
C*(T) ~ -2—;'(; + Ep,

1
N(r)~ —=(Eo —C7),
Po

!

M*(r)zMg(l-—(H-—1)(1+£—%))+N,
'y(r)zD-N,
e(r)x1+<N‘Mg+pz;’><1—(9—1><1+’—,j'§)>.

The differential system (3.22) becomes [11, pagg. 68-69]



( 0 if ||Eo—-C*l < £
. ; ”EO_C*” = Pos
i =4 0" /e < 0,
. IE=C*ll = pos
{ v/e i v/ > 0(;)
! BE(r)y = D(n), (3.26)
EP(r) = DP(r)=(N,
Cx(r) = ((MG+N),
Py = Cnbs
| 7(r) = 2mo(D—DP)+X(tr D)I,

and we can give the constitutive tensor C the simple expression

C = 2po(1l — %N ON) 4+l (3.27)

4 Application of the finite element method

As usual, the initial configuration B is discretized mnto a number p of ele-
ments for a total number ¢ of nodes. Each element & is the image, by the
mapping jo, of a standard cube R. Let jr = x o jo be the isoparametric
mapping, we write

g’T = X(]O(R) T)y

for the image of & at time 7.
Moreover, we have

k
(6,1, ¢) = 3 si(6, m, Q) zi(r) = [S]{=°}, -1<& (<], (4.1)
=1
where k is the number of the nodes of the element, £, 7, ( are the local
coordinates on R, si(&, n, () are the shape functions of the element and
2§(7) is the position vector of the i-th node of the element at time 7.
Relation (4.1) can be put in matricial form where [S] is the (3x3k) matrix
of the shape functions and {z°} is the 3k array of the nodal positions.
The displacement u, the velocity u and the arbitrary velocity w, ex-
pressed as functions of the local coordinates (¢, n, ¢), are approximated, on
each element, by the same mapping j::

ue(€) U:():[S]{UBL —'1.<_E) 77,4.<_ 11 (42)



ae(£> T])C):[S]{ue}) —1S€a 77)(_<_1: (43)
we(€, n, ¢) = [S]{w), —1<En (<L (4.4)

In this way, the equation (2.11) can be numerically evaluated and we get
the following matricial equation for each element:

{w} (KK} - () =0, (4.5)

where the load array { fe} represents the terms in (2.11) which do not depend
on u, i.e. (assuming the hypothesis that the body forces f, do not depend
on u):

ey = [ 1) fodV+Z /8 NG LT (4.6)

By assembling (4.5), in view of the arbitrariness of w, we have the non-
linear algebraic system

[K){a} = {/}, (4.7)

where [K] is the 3¢ x 3q) tangent stiffness matrix..
The [K©] matrix is calculated from (2.11) and it is the sum of six different
terms [K5], namely:

(w} (K54i) = [ D €D}y, (4.)
(w} - [K5) {i¢) = / L* LTV, (4.9)
{w°) - [KS) (i) = —2 /g D*.TDaV, (4.10)
{w} - [Ki{e°} = /S {D*-T—w-f} tr(D)dV, (4.11)
{w} - [KE) {4} = Z 8€Tn5'(7—) n - LTn — tr(D)] oie; dA, (4.12)
(e} - K {if) = /a oo w-(r.LTn)dA. (4.13)

Moreover, other terms can appear in [K€] if the external forces depend
on the displacement (follower forces). In particular, if a pressure is applied

we have [8]:
fs=mn
and

fs:irn+1rr'z:7'rn+7r(n-LTn—LT)n,

9



so the following term must be added to [K*]:

{w} - [K5]{i¢) = - / w-(n-LTn— LT )ndaA, (4.14)
9€.081(7)

whereas, in this case, for the load term { fe} we get

) =[S fav+i [ [S17 ndA. (4.15)
& 9€,n8(7)
The following equilibrium equation, which follows directly from (2.10)
and from the divergence theorem, must be satisfied at each time 7:

3
D*-TdVI/ w- frdV + / ciw-e;dA. (4.16)
L,- B, ; S}(’T‘)

In the remainder of this section, an explicit form of the [K$] terms and
the equilibrium equation (4.16) is calculated, by generalizing and completing
what has been done in [8]. We shall limit the description to the three-
dimensional case, from which the particular cases of plane-stress, plane-
strain and axisymmetry can be deduced quite easily.

Denoting by zj,uj,7 = 1,2,3, respectively, the components of the po-
sition and the displacement with respect to the global cartesian reference
system, respectively, the spatial gradient L of the velocity, whose compo-
nents are
0y
1] — ‘5;7.',

can be expressed as a function of the nodal values {4°} of the velocity. We

L

get
Ly ]
Loy
L y
L12 Uy
{L}=| Ly | =[G1,...,Gi,...,Gk] : = [G] {¥°}, (4.17)
L3y i
L3
Lo
[ Lss |
where
i 5:1 0 0 i
Si,l 0
0 O 5:,1
81,2 O 0
[Gi]= 0 s2 O (4.18)
0 0 Siyg
siz 0 0
0 s3 O
0 0 si3

10



with
Os;

8i — ————a .
T
J

Because D = (L + LT)/ 2 and having put

{DYF = {D1, D23, D33,2D12,2D33,2D13 } (4.19)
we get, from (4.17),
{D}=[Bi1,...,B Bi]{u*} = [B]{u°}, (4.20)
where
s 000
0 81,2 0
O 0 8{,3
Bil = . 4.21
(B si2 sip 0 ( )
0 si3 si2
| siz 0 s
We indicate by
{TY' = {T11, Ta2, Ts3, T2, To3, T13 } (4.22)

the vector of the stress components and by [C'] the symmetric matrix so
that

[
(C[1

D ]
1)2
]

)

)

)3
1)
1)
]

=l

[C1{D}= (4.23)

1
2
M3

~

”é”é’é’é”é
SIS
w

[
[
[
[D

L (C

where {D } is the vector defined by (4.19) and (€[D] )i; are the components
of the tensor C[D]. Matrix [C] is called the matrix of the elasto-plastic
moduli.

We are now in the position to calculate the matrices [K¥].

From (4.8), (4.20) and (4.23), we get

('} [K?] {ue}—/ D*.C[D]dV =

= (v} ([ 1B

where J is the determinant of the Jacobi matrix of the isoparametric map-
ping j,; therefore

1(B] det J dg dndC ) {1},

[KP] = /R (B]F [C][B] det J d¢ dnd(. (4.24)

A direct calculation proves that

11



L* LT = t(TLTL*) = {L* Y [M2]{L}

where
Ty1 O 0 T, O 0 Tz O 0 ]
0 Tin O 0 T2 O 0 Tz O
0 0 T11 0 0 T12 0 0 T13
Tl‘Z 0 0 T22 0 0 T23 0 0
[Mz] = 0 Tis O 0 Ty O 0 Ths O
0 0 le 0 0 T22 0 0 T23
Tis O 0 Ths O 0 T35 O 0
0 Tis O 0 Ty O 0 T33 O
0 0 T3 O 0 T3 O 0 T3 |
from which, using (4.17), we get
(W) - [K5]{u€) :/ L*. LT dV =
= (w} ([ (617 [Ma)(C) det T dg dn dC) (i),
and therefore
(KS] = /R (G]T [M.][G] det J d¢ dn dC. (4.25)
Since, as we can easily verify,
90" .TD =2{D"} - [Ms]{D}
where
(M3] =
T, 0 0 Tya/2 0 Tia/2 ]
0 T 0 Tia/2 Tya/2 0
o 0 T 0 Tys/2 Tya/2
T | Te/2 Ti/2 0 (T +T22)/4 T13/4 Ty3/4
0 Taf2 T23/2 Ti3/4 (T2 + T33) /4 Ti2/4
L Tis/2 0 Ti3/2 Ty3/4 Ti2/4 (Ti1 + T33)/4 |

we obtain from (4.10) and (4.20)

() [KS] () = "2/5 D*.TDdV =

= {w} ([ 1B)

from which we obtain

B] det J dédnd¢) {u°},

] det J d¢ dn dC. (4.26)

12



To calculate [K ], observing that
(D)D" T = {D"} - [Md]{D}
and

t(D)=1-D={I}-{D},

where

[Ty Tin Tun 0 0 0]

_ Tas T3z T33 0 0 0

[Ms]=)\ 7, T, Tz 0 0 0]

Tos Toz Toz 0 0 O

| Tis Tz Tz 0 0 0]
moreover
{1}y* ={1,1,1,0,0,0}, (4.27)

and we get , from (4.11) and (4.20),

fwf} (K1} = [ (D" T—w-fu) u(D)dV =

= {w°}- (/R([B]T [M](B] - [STT [fs ® {I}][B]) det J d§ dnd() {i}.
Therefore
[Kil= 7,([B]T (M) [B]1=[ST [fs® {1}](B]) det J d§ dndC. (4.28)

To calculate [KE], we observe that the quantity n - LTn, which appears
in (4.12), can be written as follows

L'n={z=} {L}
where
(m)T = (n2, ning, nyns, ning, n3, nyna, ning, nanz, n3 ).
So, we can write
w-[n-LTn—tr(D)]oie; = w-oie; ({7} - {L}-{I}-{D}) =
=w- ([oie; @ {FI{L} — ol {1} {D}]),
from which, in view of (4.17) and (4.20),
{w} [Ks]{e"} =

w3 (¢ 1517 les @ (RG] — s © {1 J1B))

= RnJT! (s'( ))

13



VJITm.J-TmdetJdAg){u},

where m is the unit vector normal external to R and the quantity

det JVJTm -J-Tm = dA/dAg is the area on O&; per unit area on oR.
Therefore

3
e1 15T (e: @ {7 —Te:
5= 32 ooy @ 15171 (RG] = e LTUBD)

VJ-Tm.JTmdetJdAz. (4.29)
To calculate [K§], we observe that
w- (r.LTn)=w- [Me) {L},

where

nn ng ng 0 0 0 0 0 O
[Mg ] = 0 0 0 ny ng N3 0 0 0
0 O 0 0 0 0 ny N2 N3

and so
{w®}-[Kg]{u°} = wew - [Me]{L}dA =
9E,NSe(r)
= {w}- (e [S]T Ms][G]V J Tm.J-TmdetJdAr {4°},

AR NITHS(T))
from which

(KE] = / (m [T [Me][G)VITm - J-Tm det J dAr. (4.30)
RN I (Sc(7))

In the case that external loads like pressure are present, we have

w'(n-LTnmLT)n:w-[n®n—I]LTn:w-(n®n—~1)[M6]{L},

and so
Wy IS == [ wwemen—1)[Me]{L)dA=
8E,0S}(7)
= (v} (ST 11 - n© n] (M6][G)

aRNJ7H(S%(7))
VI Tm - J-Tmdet J dAg {i°},

from which

ey _ T 1j
LRy SN G & L RIRICY

VI Tm.J-TmdetJdAr. (4.31)

14



We observe that the terms [K§], [Kg], [K§] and [KF] are nonsymmetric,
so their use in a finite element code requires the use of solver routines that
are appropriate for nonsymmetric matrices.

Lastly, equation (4.16) can be approximated on every element and we

get
{wf} ([ [BY{TY det T dgdndc = (7)) =, (4.32)
where

o) = [ ST (51U} detJ d dndct

3
+ / ST IS {oiei} VI~ Tm - J-Tmdet J dAr.
; RN J7H(S}(7)) [

By assembling (4.32) over all elements, dropping {c° } for its arbitrarity,
and adding the reactions forces for the constraints (2.3) and (2.5) where
they belong, we obtain the equilibrium condition which must be satisfied,
within a given tolerance, in order for the iterative scheme, which is used to
solve problem (2.10), is to be considered as converged.

5 Numerical integration of the equation of mo-
tion

The equilibrium equation (2.10), with the constraints (2.3) and (2.5) and
the constitutive law (3.26), has to be integrated in time in order to obtain
the displacements {u}, the total deformation £ and the Cauchy stress T.

To do that we use an iterative incremental scheme similar to the classical
Newton-Raphson method but it has been designed in such a way as to over-
come the difficulties arising from the irreversibilty character of the plasticity
[13]. Moreover in every iteration the changes in the boundary conditions ,
due to the contact, and in the pressure loads, due to the motion, are taken
into account [14].

The algorithm uses the direct application of the current boundary con-
ditions set at the solver level: the remaining part of this section is devoted
to the description of this integration scheme.

i) Let us assume that the body is in the equilibrium configuration Br at
time 7 and we assign a load increment

{Af}y={f(r+Ar)} - {/()}, (5.1)
and a displacement increment at the points z. of the rigid surfaces

Aue = z(7+ AT) — z(7); (5.2)
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because we suppose t(7) to be constant in the time interval [r, T+ AT,
we have

Auc(r) = t(T)AT

Note that {Au.} is fixed for the whole increment, whereas, when
follower forces are present, {Af } changes during the iterations process
because it is a function of the displacement itself.

ii) To the nodes which are already in contact with a rigid surface (i.e. the
nodes which at the end of the preceding increment belong to Se(r) ) a
fixed displacement Au, = Auc-nis applied along the normal direction
in such a way that they are again brought into contact with the rigid
surface at time 7 + A7 (see fig. (1)), whereas they are free in the
tangential directions.

Figure 1: Displacement induced by the motion of a rigid surface

iii) The evolution system

[K{su}={Af}, (53)
with the constraints

{Au-e;} = (8; A7}, on Si(r),i=1,2,3, (5.4)
{Au-n}={Aun}, onS(r), (5.5)

is solved to obtain an estimate {Au}, {Af;}, {Af.-n} for the incre-
ment of the displacements, of the reaction forces and of the contact
forces, respectively.

Care must be taken during this phase because constraint (5.5) is speci-
fied in the local reference system on S¢(7 ), so the equations containing
these degrees of freedom need to be rotated in a suitable way, i.e. if
the j-th node is on S¢(7), system (5.3) has to be changed to
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Aul ) Af)
Q@ K](@4 av b =@ { aF ¢, (5.6)
A;*‘q J \ qu J

where [(7] is the rotation matrix which rotates the vector of the de-
grees of freedom of the j-th node from the local reference frame to
the global Cartesian one, leaving the displacement of other nodes un-
changed.

Moreover, once the system has been solved, the displacement {Au}
and the contact forces {Af.-n } must be premultiplied by [@] in order
to bring them into the global reference again.

iv) The differential system (3.26) is numerically integrated (8], using a 4th

order Runge-Kutta formula, to get the increments AE, AT, A(, AEP,
and AC.

The initial conditions used to integrate system (3.26) are those at
the beginning of the increment to avoid artificial unload. In order to
understand this phenomenon better, let us consider the stress-strain
diagram of a generic point (see fig. (2)).

E

Figure 2: Stress-strain diagram

Let us assume that the deformation AE; = QP computed during the
first iteration modifies the state from point A to point B. If the com-
puted deformation AE; = P'P is negative at the second iteration, as
is frequently the case due to the constrained repositioning of the con-
tact nodes, and if state B at the end of the previous iteration is used
as the initial condition to integrate the constitutive relations, the ma-
terial reaches the unloaded state C’. Conversely, the correct state C'is
reached if state A, for every iteration, is used as the initial condition.
Of course, in the latter case, a more sophisticated integration algo-
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rithm is needed and this explains the use of a Runge-Kutta formula
to integrate system (3.26).

v) The residual forces
{re}:/;z[B]T({T}—*-{AT})detJd{dnd(-{— (5.7)

({7} HAFYH Y H A LD H{ASED),

are calculated for every element. Relation (5.7) is assembled over the
whole structure to get the global vector of the residual forces {r}.
If the inequality

13
T+ A < 58)

where ¢ is a tolerance factor, is verified the equilibrium equation (2.10)
is considered to be satisfied.

vi) Each boundary node is checked against the contact conditions i.e. the
new contact zone Sc(7 + Art) is determined.
A node already in contact will be considered to be a free node and its
contact reaction will be zeroed in the next iteration if the contact force
{fo(r)} + {Af.} is directed outwards from the deformable body, or if
its current position {z(r) } +{Au} is found to be external to any rigid
surface. Conversely a node will be considered to be constrained in the
next iteration if it is already in contact and the contact conditions are
still met or if it is a free node but compenetration with a rigid surface
has occurred.

vii) If there are no changes in the contact conditions of the boundary nodes
and the convergence relation (5.8) is satisfied, the procedure jumps to
point (x ), otherwise it proceeds with a new iteration.

viii) The boundary conditions for the contact zone Se(r + AT) are calcu-
lated, i.e. a displacement Aul is applied to the nodes in the contact
area in the direction of the normal n(r + Ar) in such a way that they
are brought again onto the boundary of the rigid surface.

ix) The stiffness matrix [K] is calculated in the new configuration and the
system

[K1{au'} ={r}, (5.9)
with the constraints

{Au! e;} =0 onSi(r+Ar),i=12]3, (5.10)
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{Au! -n}={Au}}, onS(r+ArT), (5.11)

is solved as in (iii) to calculate {Au'}, {Afl} and {Af] -n}.

After that, the incremental quantities are updated

{Au} — {Au}+{Au'},

(Af,} — {ARY+H{ARD), (5.12)
{Af) — {AfY+{AfD

and the procedure jumps to point (iv) for the calculation of the de-
formation and stress increment by using the new estimate {Au }of the
displacement increment.

x) The state is updated, z.e. each incremental quantity is incorporated in
the corresponding total variable to get the value at time 7+ A7 of the
position, total displacement, forces, deformation, stresses etc.

After that, the procedure jumps to point (i) and a new increment can
be applied.

6 Numerical example

The contact algorithm has been implemented into an in house developed
FEM code called NOSA. To check the performances of the method we re-
quired a problem where the friction had not affect the results, so we tried to
simulate a bulge test case which has been performed at the C.S.M. (Centro
Sviluppo Materiali) and for which the experimental data are available [15].

The test concerns a disc of steel, clamped on the boundary and subjected
to pressure on a face. During its motion the disc leans onto a bearing which
has a quarter-circle section.

The geometrical and mechanical data are the following:

radius of the disc 96.0 mm,

radius of the pressurized part 86.0 mm,

radius of the bearing section 11.0 mm,

thickness of the disc 0.8 mm,

maximum pressure 7.4 MPa,
Young’s modulus 2.1 x 10° MPa,
Poisson’s ratio 0.3

Because in the material of the disc there is a slight anisotropy, due to
the lamination process, two simulations were performed using the hardening
curves along the lamination direction (upper curve in fig. 3) and at 90° from
this direction (lower curve in fig. 3), respectively, and we supposed there
was a purely isotropic hardening.
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Figure 3: Work-hardening curve

The disc was schematized with a mesh composed by 170 axialsymmetic
4-node elements (2 elements in the thickness): the mesh is finer near the
bearing to obtain a better modeling of the contact conditions.

The NOSA run required 78 load increments to reach the maximum pres-
sure and 40 increments to unload until zero pressure. For purposes of com-
parison, MARC and ABAQUS codes were used for the same example, get-
ting identical results to those obtained from the NOSA run, so, in the figures,
only NOSA results are shown.

In fig. 4 the final configuration of a section of the disc is shown as
compared with the initial one.

In fig. 5 the axial displacement of the points on the symmetry axis is
plotted as a function of the pressure.

In fig. 6 the final thickness of the sheet is shown as a function of the
undeformed radial distance.

In fig. 7 the final meridional strain is plotted versus the initial radial
distance.

Lastly, in fig. 8, the final circumferential strain versus the radial distance
is shown.

The uncertainty of the experimental data in the last two figures is twice
the measured standard deviation.
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Figure 4: Final configuration of the disc
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Figure 5: Axial displacement vs. pressure
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