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Parameter estimation from noisy complex-valued measurements is a significant topic in various areas of science
and engineering. In this aspect, an important goal is finding an unbiased estimator with minimum variance.
Therefore, variance analysis of an estimator is desirable and of practical interest. In this paper, we concentrate
on analyzing the complex-valued £,-norm minimizer with p > 1. Variance formulas for the resultant nonlinear
estimators in the presence of three representative bivariate noise distributions, namely, a-stable, Student's ¢t and
mixture of generalized Gaussian models, are derived. To guarantee attaining the minimum variance for each

noise process, optimum selection of p is studied, in the case of known noise statistics, such as probability density
function and corresponding density parameters. All our results are confirmed by simulations and are compared
with the Cramér-Rao lower bound.

1. Introduction

In many areas of science and engineering, such as wireless
communications, sensor array signal processing and biomedical
sciences [1-3], observations are more conveniently modeled as com-
plex-valued data, which have a simpler analytical form and are easier to
deal with than the real-valued model. Parameter estimation for the
complex-valued observations [4,5] is an important research topic and
has attracted a great deal of attention. For numerous estimators
developed in the literature, the goal is to find one which on the average
yields the true value and the mean square error (MSE) between the
estimate and true value is the smallest. MSE analysis of unbiased
estimators is significant to help searching for one with minimum
variance. Since the definition of variance relates to expectation,
calculating by excessive simulations may be nonconclusive and un-
realistic. To obtain the variance elegantly and correctly, approaches
such as Taylor series expansion (TSE) on the estimates [6] and on the
error function [7] are proposed, which are verified in [8]. However,
they only consider estimators in the presence of complex Gaussian
noise, which cannot describe other types of disturbances, especially
those with impulsive nature, appeared in many fields [9-11]. For
example, symmetric a-stable (SaS), Student's t and mixture of general-
ized Gaussian (MGG) processes are commonly employed to model the
complex-valued impulsive noise.

Due to the high computational complexity and difficult implemen-
tation in case of lacking analytical probability density function (PDF),
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the maximum likelihood (ML) estimator may not be the proper choice
in the presence of non-Gaussian noise models. Alternatively, a robust
estimation methodology, namely, M-estimator is proposed by Huber
[12], which generalizes the ML estimator by replacing the logarithm of
the likelihood function by an arbitrary p-function. Defining the p-
function as the £,-norm of residual [13], the least f,-norm estimator
with p > 1 is widely utilized in the environment with non-Gaussian
noise.

In this paper, we investigate the performance of the {f,-norm
minimizer using the complex-valued observations. The SaS, Student's
t and MGG noise models are considered. To guarantee the unbiased-
ness of the least f,-norm estimator, we assume that all discussed
models are symmetric with zero location parameter [14]. For the {,-
norm minimizer, since the variance formulas should be a function of p,
the selection of optimum p is required to ensure achieving the
minimum variance. In [15], the relationship between kurtosis and
optimum p is investigated, however, the results cannot be used when
the kurtosis does not exist such as in the presence of SaS noise. The
optimal selection of p for SaS distribution is discussed in [16], but
optimum estimation performance for other noise models is not
addressed. Furthermore, although [14] shows that the optimum p
can be obtained by a polynomial equation with a very large degree of
nonlinearity, it suffers a high computational cost in solving such a high-
order polynomial function. To overcome the complexity problem, in
this work we simplify the optimal choice of $p$ into finding root of a
low-order function using the property of gamma function. It is worth
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Fig. 1. Optimum p* calculated by cubic and 100-th degree polynomials versus density parameters.

mentioning that our investigation on optimality assumes the avail-
ability of a priori knowledge of the density parameters for each noise
model. In the scenario of the unknown distribution parameters, they
should be estimated first based on a sufficiently large number of noise-
only samples [17-19] and then our method can be applied. Although
we focus on the complex-valued estimation problem in this paper, our
result can be extended to the real-valued case.

The rest of this paper is organized as follows. In Section 2, we
briefly review the bivariate SaS, Student's t and MGG models. The
variance formulas of the least {,-norm estimator are devised in Section
3. The selection of p for different noise processes with the minimum
variance is also examined. In Section 4, simulations are provided to
validate the derived variance formulas with comparison to the Cramér-
Rao lower bound (CRLB). Finally, conclusions are drawn in Section 5.

2. Review of well-known distributions

According to the analysis in [14], the variance formula needs the
fractional lower-order moment (FLOM) of the noise. Since a complex
random variable corresponds to a bivariate distribution, in this section,
we review the bivariate SaS, Student's t and MGG distributions.

2.1. SaS distribution

Let g =R{q} +jI{q} follow a bivariate SaS distribution. Its
characteristic function has the form of [20]:

9 (1) = exp(j 3R {1} + 63(1}) — y R{Y + I{1P)2), ey

18

where a € (1, 2] is the characteristic exponent, controlling the impul-
siveness of the distribution, (5,, §;) € (—o0, o) X (-0, co0) denote the
location parameters, and y > 0 is the dispersion parameter which
determines the spread of the distribution. Note that we set
6, =6;=0 here because the location parameter of noise term is
assumed zero.

The FLOMs of real and imaginary parts of g, denoted by
E {Ig1~%%{¢})?} and E {IgI'-23 {¢}?}, are [21]:

E{lg=%R{g)*) = D, (l. a)ya, @
E(lgi=3{gP} = D, (L s, -2<l<a, 3)
where E {-} denotes the expectation operator and
(-4

2 a
D, a) = —121-1,

(-3)

2 C)]

with I'(-) being the gamma function.

2.2. Student's t distribution

For a zero-mean complex-valued variable ¢ = R{q} + jJ{q}, which
follows the bivariate Student's t distribution, the PDF is [10]:

42
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Fig. 2. MSE of sinusoidal amplitude

where v > 0 is the number of degrees of freedom, and # > 0 denotes the
scaling parameter determining the spread of the PDF.
The FLOMs of R{q} and J{q} are:

E{lg'*%{q)*} = D,{, v)1, (6)
E{lgl=%3{q}*} = D,(l, v)y!, -2<l<uv, @)
where

0 v>2 &l isodd,

[+2 v—1
D =I'l——|I"
(L, v) ( 5 ) ( ) ] N .
—————— "1 otherwise.
2I (v/2) 8)

2.3. MGG distribution

MGG process [22] can have different combinations, but we only
consider the two-component case with the same shape parameter.

Suppose g = R{q} + jI{q} following the zero-mean symmetric
MGG process, its PDF is:

f@) =1 - ef (g b, 0) + ¢f(g; p, 70), (C)]

B
2 2
where f,(g; §, 6) = exp| — S 1) )2], ee€(0,1) is the

B
2762 (21 ) o

weight parameter, § > 0 denotes the shape parameter tuning the decay
rate of the density function, o and 7o with 7 > 0 are the scaling
parameters of the two components. Note that when g =2 or/and
e = 0, 1, the MGG processes are reduced to Gaussian mixture (GM) and

19
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generalized Gaussian (GG) models, respectively.

The FLOMs of real and imaginary parts are:
E(lg'*R{q)*} = Dmcc (L, B, €, 7)0, (10)
E (1923 {q}*} = Dmaa (. B, €, 7)d, 1n
where

0 p>2 &1 isodd,
[+ 2
Duvgg(, e, 1) =31 e (1 — e+ eth
s .
otherwise.
2I°(2/p) (12)

3. Variance analysis of least {,-norm estimator

Without loss of generality, the complex-valued observed sequence
y = [y, -+ yyI' is modeled as

yn = gn (X) + qn’ (13)

where 7 is the transpose operator, 8, (x) =NR{g,x)} +jI{g,(x)} de-
notes a differentiable function of x with x = [x --- x)]” being the
deterministic parameter vector of interest, and g,, is the identically
independent distributed (IID) noise component with zero location
parameter. Our task is to find x from y in the presence of one of the
non-Gaussian noise models, namely, SaS, Student's t and MGG.

To solve the problem, we concentrate on the complex-valued £,-
norm with p > 1:
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Fig. 3. MSE of sinusoidal phase in complex-valued observations.
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3.1. Variance formula derivation

For the symmetric noise model, the £,-norm minimizer is always
unbiased and the covariance matrix for X, denoted by C(x), is [8]:

C® = (EHJ®)DME{VU @) V*(J 0) HE HJT ) )™, (15)

where H(J (x)) and V(J (x)) are the Hessian matrix and gradient vector
at the true value of x, ~! and * denote the matrix inverse and conjugate
transpose operator, respectively. The variances of the estimates in X are
the diagonal elements of C(X).

Utilizing (14), the expected values of the required derivatives in
(15) are:

E{(VU)VII @)} =p* (V] R{g®DE{R{V}}PR{g®})
+ VO {g®E{T{V} %O {g® D}, (16)
E{HU®)} =p*{VER{g® DE{R{W} %R {g®)})
+ VIO {g®E{3{W}} %(T{g® D} a7

where R{V}, 7{V}, R{W} and T{w} are N x N diagonal matrices with
n-th elements R{V,} = E {lg,”~*R{q,}*}, T{V,} = E{lg,”~*T{q,}*},
R{W,} = E{lg, "R {q,)?} and I{W,} = E{lg,"~*3{q,}?}, respectively.
Here we consider two scenarios, which are real-valued x and complex-

20

valued x. For the real-valued case, V,(-) denotes the gradient vector at
x. While for the complex-valued x, employing the Wirtinger derivatives
0 E)

[23] yields % () = E Mmx) d?f{x} :

Using (15)—(17) as well as FLOM expressions in Section 2, the
covariance matrix expression of the £,-norm minimizer in the presence
of three distributions, namely, SaS, Student's t and MGG processes,
can be derived as:

2r2(2 - g)r(p)r(l _- 2)7%
C(l(i) = 3 Gﬁl, 1< p<a
(2 1)r2— rQ(l—”_ )
(2 + 2-p) - (18)
2 2
(g fror =32
C® = _1, p=>1,
e g5
19)
( ] ( ]((1 —€) + et )02
Cymge(X) = G, p>1.
212 1 1- p-2
3 ( +/)(( €) + er ) 20)
where
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Fig. 4. MSE of scalar in complex-valued observations.
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with R{gr} = [R{g @} - Ry} and I{g®)} = [3{g ()} - gy (0}
Notice that when v and f are larger than 2, (19) and (20) are invalid
for odd p.

In the following, two illustrations including the linear and nonlinear
models are provided to elaborate the covariance expression.

Scalar estimation

The simplest complex constant estimation is investigated, whose
model is

y=1yc+q, (22)

where 1y denotes the N x 1 vector with all elements being 1 and
¢ = R{c} + jI{c} is the complex constant to be estimated.
Since the unknown parameter x = ¢ is complex-valued, we utilize

the complex scenario in (21). Taking R{g(x)} = IyR{c} and
J{g(x)} = 1yT{c} on (21) yields,

N
=5 23)

Then the variance of ¢ can be derived by (18)—(20) for different noise
models.
Linear estimation

21

Here we consider the linear estimation problem with the observed
signal:

w=Aexp(jlon+0)+gq, n=1..N, 24

where A >0, w € (—x, ) and 0 € [0, 2z] denote the amplitude,
frequency and phase, respectively. Assuming that w is known, our task
is to estimate A and 6.

Let x = Aexp(j#). We easily get:

G=N. (25)
According to [24], the variances of A and 0 are:

varA) = C(®), (26)
var(9) ~ A2C (%), @27

where C (%) is calculated using (18)—(20) according to the respective
noise model.

Nonlinear estimation

We now consider the nonlinear estimation problem. The data
model is identical to (24). However, here the unknown parameters
are w and O while A is known. In this case, x = [@ 6]". Then we obtain
[25]

NWN+DEN+1) NWN+1)
— A2 6 2
G=4 NWN+1) NWN+D@EN+ D) |
2 6 (28)

The corresponding covariance expressions for SaS, Student's t and
MGG noise models are computed by (18)—(20), respectively.
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Fig. 5. MSE of sinusoidal frequency in complex-valued observations.

3.2. Minimum variance analysis

We investigate the minimum achievable variance for each studied
noise model using the f,-norm minimizer, via selection of optimum p.
This is achieved by minimizing the scalar terms in (18)—(20) because
the matrix components are independent of p.

3.2.1. SaS
We first investigate the f,-norm minimizer under SaS noise. For
(18), the scalar term related to p, denoted by H, (p), is:

FZ(Z _ E)F(p)r(l — M)
2 a

1“2(£ + 1)1“(2 - p)r2(1 - ”—_2)
2 a

H,(p) =
(29)

To find the optimal value of p, denoted by p*, we set the derivative of
log(H,(p)), denoted by A, (p), to zero. Then h,(p) has the form of

hgm=w@—m—w&—§]+wm—wfj
bl
a [04

where y () denotes the digamma function [26].
Let wu=p-1€[0,1). Employing the
yx+ 1) =yk) + %, (30) is reduced to

(30

property  that
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)+w(1+u)—w(u;1)

2( (1 - u) ( 2u]) 2

+ —|w -yl -—1]|- .
a a a u+1
Utilizing 2y (2x) = 21og(2) + w (x) + w (x + %), we further simplify (31)
as

hAm=wU—m—w(

(31)

he(u) = hy(u) + hy(u) + hs(u) + 4log(2), (32)
where
h(w) = -y —M)—W(M+1)+ll/(1 —g)+v/(l +%) (33)
hy(u) = g(v,(];”) _ l,,(] _ ﬂ))
a a a (34)
2
P == (35)
Taking the rational zeta series [25] on & (u) yields
oo 1V 1V
h) = Y Ck+DY(=DF+ 1~ (—f) - (f) }uk,
] E { 2 2 (36)

where {(-) is the Riemann zeta function. Furthermore, based on the

where a is the Euler-
k+x

fact that w(x)=-a+ X7, ﬁ —

Mascheroni constant, as well as TSE at u=0, h, («) is rewritten as
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2uk
pos)

hz(u)=£(w(l)—y/(l))+ Z {Zké’(k+ 1, 1)—C(k+ 1, l)},
a a ot a

37)

where ¢ (-,-) denotes the Hurwitz zeta function. Utilizing the TSE at
u=0, h3(u) is

hy(u) = =2 =2 ) (k.
k=1

(38)
Combining (32)—(38), h,(u) has the form of
he(uw) = b(0) + ), b(k)uk,
; (39)
where b(0) = 4log(2) — 2 + 2y (1) - (1)) and
1) 1Y
b(k) = [(—l)k +1 - (—) - (——) ]((k + 1) — 2(=1)
2 2
AIs [rr12)
+=|12k¢k+1, ) =¢lk+1, =]
a a (40)

According to extensive simulations, we find that the third-order
polynomial in (39) can describe A, (1) well. Therefore, we can obtain u*
by finding the real-valued root of the cubic function (k=3) [27], which
is

(41)

23

-5 0 5 10 15
SNR (dB)
d. GM
b2 ¥ b()b(2 b(0) b2 . b(1)
: — 9| @ | _ M2 , 5O — _11® 0]
with y = 3b<3)) ser oe andz 3(b(3>) e

Utilizing the definition of u, p* is computed by u* + 1. Note that for
a € [1, 2), the term (%)2 + (%)3 is larger than O and u* is the only real
root of (39). Since A, (p) is monotonic, p* is in the global optimum.

3.2.2. Student's t
From (19), the scalar term corresponding to Student's t noise,

denoted by Hy(p), is
v—2p+ 2)

r(p)F( .
o1 4 2\e(r=r*2)
2 2

In a similar manner, the derivative of log(H,(p)) can be expressed as

e 2) (B2 ) e[ 550 )

Here we consider two cases: v < 2 and v > 2. In the scenario of

v < 2, we have
)4 ) I/—Zp
2]+ w0 = 41
2) v [ 2

H(p) =

(42)

v—2p

hi(p) = w(p) —w( “3)

1
h'(p) =y (p) ~ 5!//“)(1 +

_ lu,m(ﬂ + 1)’
2 2 (44)

where w((-) is the trigamma function. Based on the multiplication
theorem of trigamma function, (44) is rewritten as
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which is greater than 0. Therefore, we can deduce that

h,(p) > h;(1) > 0. In this case, the optimum p is 1.
In the case of v > 2, assigningu =p — 1 € [0, 1), (43) is

u+1 _ v—2u " vV—u-—
2 v 2 v 2

Similarly to the SaS distribution, (46) can be written as the same
expression as in (39) except that

hew) =y + 1) —v/(l + Ly 1).

(46)

2
b(O) =2log@) -2~ =, )

k
b(k) = {(k+ 1)[(—1)k - (—%) ] = 2(=DF

k
v 1 2
It can also be easily shown that the series in Student's t process

converges when k > 3. The optimum value is p* = u* + 1 with u* being
calculated by (41).

(48)

3.2.3. MGG
For MGG noise, the corresponding scalar term, which is extracted
from (20), has the form of

F(%)((l —€) + er?2)

1"2(1 n %)((1 —€) + exp2)?

Hyigg (p) =
49

Letu = % - % € (—1/2, 1/2), the derivative of log (Hygg (p)) is factorized
as:

1 3
hwvge () = E{l//(Zu +1) - W(E + u)}

1 1
+ In(z) < -
1+ FPutpr2=2

1+ L2Putp=2

1-¢€ 1-¢€ (50)

To solve g (1) = 0, we express (50) as (39), where b(0) and b(k) are
now

by = 210 =2
p (51)
bik) = %{(:(k + D=2 = (=D} + (=241
- ln(r){[(k)[ﬂ’ Tﬂ) _ 1(k>(ﬂ, 1213]}’
i-o 1-9 52

1
14 cext

where I®(c, x) denotes kth-order derivative of
when u=0.

According to extensive simulations, the series here approximates
hmog () well when k > 3. Therefore, we derive the optimum p* as
p* = f* + 1/2) with u* having the same form in (41).

with respect to u

24
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4. Simulation results

To verify the derived variance formulas in the case of three
symmetric impulsive noise distributions, computer simulations have
been conducted. The signal is generated according to (24) and the
corresponding parameters are A=1, » = 1.25 and 6 = 0.5. For SasS,
Student's t and MGG models, the density parameters are chosen as
a=161[28],v=5[29], f=5,e=0.01 and r = /5 [11]. The special
case of MGG distribution, referred to as GM process, is also shown here
with # = 2, ¢ = 0.01 and 7 = /5. The GG model is not considered here
because the optimal f,-norm minimizer is the ML estimator [14].
According to (41), the optimal value p* for these four settings, are 1.16,
1.31, 2.75 and 1.86, respectively. To provide a comparison, the
empirical optimum results in [14], referring to as p = (1 + @)/2,
p=@w+4)/5and p=1+ ﬁ, are investigated here. Furthermore,
comparisons with the least f;-norm estimator and the CRLB for
complex-valued estimation [30] are also included. Since the second-
order power diverges for the SaS model, we utilize the geometric
signal-to-noise ratio (GSNR) to produce different noise conditions [31].
All results are based on 5000 Monte Carlo simulation trials with a data
length of N=50.

First of all, to investigate the sufficiency of using the cubic
polynomial, we study the value of optimum p obtained by (39) and
(41). According to [14], we choose degree 100 replacing the infinity
order in (39). Fig. 1 shows the comparison of p* calculation between
the cubic function and polynomial (39) with degree 100 versus a, v, f3,
respectively. Other density parameters align with the previous set. It is
experimentally observed in SaS, Student's t and MGG models that
results by cubic function attain the true values well, which corroborates
our claim in Section 3.

Secondly, we address linear estimation, namely, studying the
amplitude and phase estimation performance using the complex-
valued observations in (24). Figs. 2 and 3 show MSE performance of
amplitude and phase versus SNR/GSNR, respectively. In these figures,
we see the near optimality of the least f,-norm estimator in the
Student's t and GM noise models and its suboptimal performance in
the SaS and MGG disturbances. Most importantly, in Figs. 2 and 3, the
gap between the optimal value and result in [14] indicates that our
method is more accurate. Note that the gap between our proposal and
[14] becomes bigger as f increases, verifying the importance of our
method. Then in Fig. 4, the MSE of the complex-valued scalar
estimation is investigated. The observations are generated according
to (22) where ¢ = 1 + jv/2. The findings are similar to those of Figs. 2
and 3.

Thirdly, nonlinear estimation of exponential signal frequency and
phase is studied. The MSE results are plotted in Figs. 5 and 6. We again
see that the variance formulas are validated and the other findings are
similar to those of Figs. 2 and 3. Furthermore, when SNR/GSNR >5 dB,
our proposals perform better than the {;-norm minimizer and results in
[14].

In summary, in the presence of SaS, Student's t and MGG noises,
our proposed method is superior to that in [14]. It has also been
discussed in [14] that in the real applications that the density
parameters of noise are unknown, the least {;-norm estimator is a
good choice. However, according to the simulations on the MGG
distribution, the gap between the p=1 and p* is not less than 3 dB,
indicating the inferiority of the {;-norm minimizer. In this case, the
shape parameter should be estimated firstly.

5. Conclusion

In this work, we focus on the variance expression deviation of the
least f,-norm technique with p > 1, where three representative bivari-
ate symmetric disturbances have been studied. The optimal choice of p,
corresponding to the minimum variance, is discussed, which can be
obtained by solving a cubic equation. It is worth pointing out that for
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the bivariate Student's t process with v < 2, the optimum p should be
chosen as 1. Simulation results validate the accuracy of the derived
variance formulas using linear and nonlinear estimation examples with
complex-valued observations. It is also demonstrated that variances of
the least f,-norm estimator for SaS and Student's t noise models are
very close to the CRLB. This result indicates that the estimator can
provide optimum or nearly-optimum performance for these three noise
models if an appropriate value of p is chosen. Note that all results in
this paper can be applied to the real-valued scenario.
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