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Abstract

Android currently represents the most widespread operating system focused on
mobile devices. It is not surprising that the majority of malware is created to
perpetrate attacks targeting mobile devices equipped with this operating systems.
In the mobile malware landscape, there exists a plethora of malware families ex-
hibiting different malicious behaviors. One of the recent threat in this landscape is
represented by the HummingBad malware, able to perpetrate multiple attacks for
obtain root credentials and to silently install applications on the infected device.
From these considerations, in this paper we discuss two different methodologies
aimed to detect malicious samples targeting Android environment. In detail the
first approach is based on machine learning technique, while the second one is a
model checking based approach. Moreover, the model checking approach is able
to localize the malicious behaviour of the application under analysis code, in terms
of package, class and method. We evaluate the effectiveness of both the designed
methods on real-world samples belonging to the HummingBad malware family,
one of the most recent and aggressive behaviour embed into malicious Android
applications.
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1. Introduction and Background1

Malware targeting mobile devices (i.e., smartphones and tables) are really2

widespread. As a matter of fact, our devices are really of interest for malicious3

writers, considering the plethora of sensible and private information that are stored4

in these devices [1].5

As a matter of fact, McAfee security analysts highlight a dramatic increase6

in not only the number of new malware, but the sophistication and complexity of7

Android malware1: during the second half of 2016, the increase in smartphone8

infections was 83% following on the heels of a 96% increase during the first half9

of the same year2.10

In this landscape, a new malware family called HummingBad has infected a11

plethora of devices [2].12

HummingBad family was discovered by Check Point analysts in February13

20163. This malware is characterised for the ability to silently install a rootkit14

on Android devices[3, 4]. Moreover, its malicious payload is able to obtain ad-15

vertisement revenue by silently installing external fraudulent applications [5]. Se-16

curity analysts estimated to be generating $300,000 per month in fraudulent ad-17

vertisement revenue. Moreover they state that considering the great number of18

HummingBad infected devices, it is possible to generate a botnet and carry out19

targeted attacks on businesses or government agencies.20

In a nutshell, the malicious aim of this family is to gather root privileges to21

execute drive-by-download attacks [6].22

HummingBad samples basically exploit two different attack vectors: the first23

one aimed to exploit root access, the second one is initialised whether the first24

attack fails and its malicious goal is the same of the previous one. This double25

attack is repeated until it is able to obtain root privileges. Once the root access26

is finally obtained, the HummingBad payload is able to communicate with the27

attacker (C&C) server (i.e., Command and Control) with the intent to obtain a28

list of malware applications. Once obtained this list, the HummingBad malicious29

payload will start to silently install several malicious applications obtained from30

the downloaded list in the infected device.31

In current literature, researchers developed several methods for detecting An-32

droid malware exploiting static [7, 8] or dynamic analysis [9]. We focus on the33

1https://www.mcafee.com/us/resources/reports/rp-m
2https://pages.nokia.com/8859.Threat.Intelligence.Report.html
3https://blog.checkpoint.com/2016/02/04/HummingBad-a-persistent-mobile-chain-attack/
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first strategy (i.e., the static one), that is the one involved in the proposed method.34

The analysis of the bytecode targeting the Android Dalvik Virtual Machine35

[8]) is considered in [7]. This paper focuses on the op-code analysis: the occur-36

rences of op-code n-grams are used, by means of supervised machine learning, to37

classify apps as benign or malicious.38

Differently, researchers in [10] analyse sets of required permissions for the39

classification of malicious application. In [11], behaviors symptomatic of mal-40

ware as, for instance, sending SMS messages without confirmation or accessing41

unique phone identifiers like the IMEI are identified for malware detection. The42

main issues of these methods are related to the adoption of the permissions as43

feature [12]: this is reflecting in the high false positive rates obtained from these44

methods [13, 14].45

The cited methods basically relies in the generation of models by exploiting46

machine learning supervised classification. Recently, the possibility to identify the47

malicious payload in Android malware using a model checking based approach48

has been explored in [15, 16, 17, 18]. Starting from the payload behavior defi-49

nition, the authors formulate logic rules and then test them by using a real-world50

dataset. The main difference between these works and the one we propose is51

represented by the focus on the HummingBad malicious payload.52

In this paper we discuss two different approaches for malware detection in53

mobile environment based on static analysis: the first approach exploits machine54

learning techniques [19], while the second one considers the model checking tech-55

nique [2] for the detection and the localization the malicious payload.56

This paper represents an extension of a preliminary work entitled: “Model57

Checking to Detect the HummingBad Malware” [2] appeared in the “Interna-58

tional Symposium on Intelligent and Distributed Computing” (IDC 2019). The59

differences with respect to the work in [2] are the following:60

• we evaluate an extended dataset of real-world applications (i.e., 1000), while61

in reference [2] the proposed method based on model checking was prelim-62

inary evaluated (on 250 applications);63

• we discuss and we experiment a second method, based on several machine64

learning classifiers, with the aim to compare the performances obtained by65

the model checking based approach;66

• we evaluate mobile applications obfuscated with three different morphing67

engines (while in reference [2] only one morphing engine was considered);68

3



• we provide an example of malicious payload localization and we propose a69

way to sanitise malicious applications.70

The paper continues with Section 2, introducing the machine learning based71

approach, in Section 3 the methodology based on formal methods is described,72

experimental analysis is presented in Section 4. Finally, conclusions and future73

works are drawn in Section 5.74

2. The Machine Learning Approach75

The idea behind the machine learning based approach we discuss is to classify76

malware by considering a set of features counting the occurrences of a specific77

group of op-codes extracted from the smali code of the application under analysis78

(AUA in the remaining of the paper). Smali is a language that represents disas-79

sembled code for the Dalvik Virtual Machine 4, a virtual machine optimized for80

the hardware of mobile devices.81

The designed machine learning based method consists in producing histograms82

from of a set of op-codes belonging to the AUA: each histogram dimension rep-83

resents the number in which the op-code corresponding to that dimension appears84

in the code.85

We resort to op-codes as feature considering that they represent static features86

(i.e., that do not require the AUA execution) largely exploited in the current state-87

of-art-literature regarding malware analysis. [20, 21, 22] . As a matter of fact,88

the rationale behind the choice of these op-codes is guided from the assumption89

that legitimate mobile application exhibit a greater complexity if compared to90

malicious malware, as demonstrated in [23, 24] .91

Following op-codes are take into account in this study:92

• move: aimed to move the content of one a first register in a second register;93

• jump: aimed to deviate the control flow to a new instruction;94

• packed− switch: representing a switch statement by using an index table;95

• sparse− switch: representing a switch statement with sparse case table;96

• invoke: considered for method invocation;97

4http://pallergabor.uw.hu/androidblog/dalvik\_opcodes.html
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• i f : basically a Jump instruction considered for the verification of a truth98

predicate.99

For the feature computing following steps are considered. The first one is100

aimed to preprocess the AUA for histograms generation [19, 13].101

The output of this step is represented by a set of histograms. In detail one his-102

togram for each class is obtained; each histogram is composed by six dimensions,103

where a dimension is related to one of the six op-codes we previously described.104

The second step is aimed to compute two additional features, represented by two105

different Minkowski distances.106

To obtain op-code representation of the AUA we exploit APKTool5, a software107

for Android application reverse engineering able to generate Dalvik source code108

files.109

Figure 1 shows the process we consider for histogram generation.110

Figure 1: Histograms generation.

In Fig. 2 we show an example related to a class histogram.111

5https://code.google.com/p/android-apktool/
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Figure 2: Histogram generated from the n-th class of the j-th AUA.

The first six features are computed as follows; let X be one of the following112

values:113

• Mi: ‘move’ occurrences in the i-th class;114

• Ji: ‘jump’ occurrences in the i-th class;115

• Pi: ‘packed-switch’ occurrences in the i-th class;116

• Si: ‘sparse-switch’ occurrences in the i-th class;117

• Ki: ‘invoke’ occurrences in the i-th class;118

• Ii: ‘if’ occurrences in the i-th class.119

Then:120

#X =
∑

N
k=1 Xi

∑
N
k=1(Mi+Ji+Pi+Si+Ki+Ii)

121

122

where X is the occurrence of one of the six op-codes extracted and N is the123

total number of the classes forming the AUA.124

The next step is related to the computation of the Minkowski distances be-125

tween the various histograms obtained with the step 1. In the follow we explain126

these two features but for clarity it is useful to briefly recall the Minkowski dis-127

tance.128

Let’s consider two vectors of size n, X = (xi,x2, ...,xn) and Y = (yi,y2, ...,yn),129

then the Minkowski distance between two vectors X and Y is:130

131

6



dr
X ,Y = ∑

N
k=1 |xi− yi|r132

133

One of the most popular histogram distance measurements is the Euclidean134

distance. It is a Minkowski distance with r = 2:135

136

dE
X ,Y =

√
∑

N
k=1(xi− yi)2

137

138

Another popular distance is represented by the Manhattan distance. It is a139

form of the Minkowski distance, but in this case r = 1:140

141

dM
X ,Y = ∑

N
k=1 |xi− yi|142

143

The last two features are the Manhattan and Euclidean distance, computed144

with a process of three steps. Given an AUA containing N classes, the AUA will145

have N histograms, one for each class, where each histograms Hi will be a vector146

of six values, each one corresponding to an op-code of the model (‘move’, ‘jump’,147

‘packed-switch’, ‘sparse-switch’, ‘invoke’, ‘if’).148

As an example, we will show an application of the model to a simplified case149

in which the model has only three classes and two op-codes. Let’s assume that the150

AUA’s histograms are H1= {4,2}, H2={2,1}, H3={5,9}.151

• Step1: the Minkowski distance is computed among each pair Hi, H j with i6=j152

and 1≤i,j≤N. In the example we will have d1,2=3; d1,3=2; d2,3=11.We do153

not compute d2,1, d3,1 and d3,2 because Minkowski distance is symmetric,154

i.e. di, j = d j,i for 1≤i,j≤N. For simplicity we consider only the Manhattan155

distance in the example;156

• Step 2: the vector with all the distances is computed for each AUA, D= {di, j157

— i6=j and 1≤i≤ N, 2≤j≤ N}. Each dimension of the vector corresponds158

to a class of the AUA. In the example D ={3, 2, 11}.159

• Step 3: the max element in the vector is extracted, which is MAUA = MAX160

(D[i]). In the example MAUA is 11.161

Finally the last two features are the values MAUA computed, respectively, with162

Manhattan and Euclidean distance. Thus, MAUA is a measure of dissimilarity163

among the classes of the AUA.164

These features represents the input for building several models by exploiting165

following supervised classification algorithms: J48, Random Forest, Hoeffding166
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Tree and Neural Network, really widespread for classification problems [4, 25].167

In detail we set the supervised classification algorithms with following parame-168

ters:169

• with regard to the J48 algorithm we consider the minimum number of in-170

stance for leaf equal to 2 and 100 for the preferred number of instances to171

process for batch prediction;172

• with regard to the Random Forest algorithm we set the number of iteration173

to perform equal to 100 and 100 for the preferred number of instances to174

process for batch prediction (similarly to the J48 algorithm);175

• with regard to the Hoeffding Tree algorithm we also exploit the batch pre-176

diction instances equal to 100 and 200 as number of instances a leaf should177

observe between split attempts;178

• with regard to the Neural Network algorithm we set the number of epoch179

equal to 10 and one hidden layer formed by 100 units.180

3. The Formal Methods Approach181

In this section the second method i.e., the model checking based approach for182

Android malware families detection is described. In according with the model183

checking technique [26, 27, 28], we need: a formal model of the system, a set of184

behavioural properties and a model checker tool able to verify the property on the185

model. Since the model and the properties require a precise notation to be defined,186

we use the Calculus of Communicating Systems of Milner (CCS) [29] and the187

mu-calculus logic [30], respectively to define them. The CAAL (Concurrency188

Workbench, Aalborg Edition) [31] is exploited in this work as formal verification189

environment. CAAL supports several different specification languages, among190

which CCS. In the CAAL environment the verification of temporal logic formulae191

is based on model checking.192

Below we describe the step for the modeling an AUA in terms of labelled193

transition system. To achieve this goal we use the code of the AUA to build the194

formal model. We retrieve the application code, i.e., Java Bytecode, through a195

reverse engineering process and we perform the following steps:196
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• we use dex2jar6 tool to convert the the Dalvik Executable file (dex) into197

Java Archive file (jar);198

• we extract the Java classes using the command: jar -xvf provided by the199

Java Development Kit;200

• we parse the classes file using the Bytecode Engineering Library (Apache201

Commons BCEL)7.202

Finally, every Java Bytecode instruction is translated in a CCS process through203

a Java Bytecode-to-CCS transformation function defined by the authors. We204

translate every Java Bytecode instruction in a CCS process through an our Java205

Bytecode-to-CCS transformation function. Since in the CCS process algebra the206

systems are represented through processes and actions, which correspond to states207

and transitions, respectively, our model of the system is represented as an automa-208

ton. This representation allows to simulate the normal flow of the instructions.209

The automaton of an application has a set of labelled edges and a set of nodes.210

The nodes are the system states while an edge represents a transition from a state211

to another state (precisely the next state). An edge means that the system can212

evolve from a state s to a state s′ performing an instruction a (the label of the213

edge). For example, the if statement is translated as a non-deterministic choice:214

the system can evolve from a state s to two different states s′ and s′′, corresponding215

to the two alternative paths (true/false) of the classical if statement.216

In detail a CCS model for each method of the AUA is generated. This is ob-217

tained by translating each java byte-code instruction in a CCS process. The defi-218

nition of the translation can be found in [32, 33, 34]. In the follow we recall the219

main concepts to better understand the proposed method for generating automata220

from Android applications.221

With regard to the sequential Java byte-code instructions, the translation is the
following:

proc xcurrent = op− code.xnext

where, xcurrent is the current instruction under analysis, while xnext represent the222

process related to the next instruction and finally, op− code represents the name223

of the Java byte-code instruction. An example of CCS translation from translation224

of sequential op-code instructions is shown in Listings 1 and 2.225

6https://sourceforge.net/projects/dex2jar/
7https://commons.apache.org/proper/commons-bcel/
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Listing 1: CCS process for Listing 1

p roc M1 = a l o a d .M2
proc M2 = g e t f i e l d .M3
proc M3 = re turn . n i l

Listing 2: CCS process for Listing 2

p roc M1 = goto .M2
proc M2 = goto .M3
proc M3 = goto .M4
proc M4 = a l o a d .M5
proc M5 = g e t f i e l d .M6
proc M6 = goto .M7
proc M7 = re turn . n i l

226

Branch instructions are used to change the sequence of the instruction execu-227

tion. We consider the + operator to manage the choice [29].228

A CSS process is built for each method of the application under analysis. Let229

be aua an application under analysis. Supposing that the aua has n methods, i.e.,230

F1, . . . ,Fn, the aua CCS representation has n M1, . . . ,Mn CCS processes.231

In order to identify the malicious behaviour, we specify temporal logic formu-232

lae written in mu-calculus logic. The specified formulae encode a specific ma-233

licious behaviour, which is a typical behaviour characterizing the family. These234

are temporal logic rules and are obtained through a manual inspection process of235

few malware samples and examining malware technical reports. Finally, we use236

CAAL tool which takes as input the formal CCS model (built as described above)237

and the temporal logic rules written in mu-calculus logic. The output of the model238

checker is binary: true, whether the property is verified on the model and false239

otherwise. We assume that a sample belongs to a particular family whether the240

properties related to that particular family are verified on the model.241

Figure 3 outlines the above described work-flow of our approach underlying242

the second approach based on formal methods.243

4. Experimental Analysis244

In this section we present the results we obtained from the evaluation of the245

machine learning and model checking approaches in the detection of the HummingBad246

malware samples.247

4.1. Machine Learning Approach Evaluation248

The evaluation of the machine learning approach consists of building several249

classifiers and evaluating the reached accuracy for each classifier.250
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Figure 3: The work-flow of the model checking approach

For model training , we defined T as a set of labelled mobile applications251

(AUA, l), where each AUA is associated to a label l ∈ {not HummingBad, Hum-252

mingBad}. For each AUA we built a feature vector F ∈ Ry , where y represents the253

feature number (1≤y≤8).254

For the learning a k-fold cross-validation is considered with the aim to better255

generalise the proposed model.256

Following procedure is adopted to evaluate the proposed supervised machine257

learning model:258

1. build a training set T⊂D;259

2. build a testing set T’ = D÷T;260

3. run the training phase on T;261

4. apply the learned classifier to each element of T’.262

A 5-fold cross validation is considered i.e, the procedure is repeated for five263

times varying the composition of T (and, as consequence, of T’).264
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Figure 4: Code snippet for the Humming malware identified by the
0a4c8b5d54d860b3f97b476fd8668207a78d6179b0680d04fac87c59f5559e6c hash.

4.2. Formal Methods Approach Evaluation265

In the follow we describe the temporal logic formula for the HummingBad266

malicious payload detection.267

In Figure 4 we show a real-world Java code snippet of a typical malicious268

behaviour exhibited by the HummingBad malware.269

We highlight in the code snippet the behaviour shown by the com.android.vending.INSTALL REFERRER270

intent: it is sent in broadcast when an app is installed from the official Android271

market 8. In this way the HummingBad malware is able to listen for that Intent,272

passing the install referrer data for Mobile Apps and Google Analytics.273

Humming malware is able to send referrer requests to generate a Google Play274

advertisement revenue. For this reason, the HummingBad malware obtains a list275

of packages and referrer ids from the C&C server and subsequently scans the ap-276

plications running on the infected device. Once the HummingBad malicious pay-277

load collected these information, it sends the com.android.vending.INSTALL REFERRER278

intents with the corresponding referrer ID, with the to obtain revenue.279

The temporal logic property able to catch this behaviour is the following: the280

AUA is labelled as malware belonging to the HummingBad family if in the AUA281

there is at least one invocation of the com.android.vending.INSTALL REFERRER282

8https://developers.google.com/android/reference/com/google/android/gms/
tagmanager/InstallReferrerReceiver
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ϕ = µX .〈pushcomandroidvendingINSTALLREFERRER〉 tt∨
〈pushcomandroidvendingINSTALLREFERRER〉X

Table 1: Temporal logic formula for the HummingBad malicious behaviour detection.

intent, as shown in Table 1.283

4.3. The Overall Evaluation284

In the evaluation of both the designed approaches we consider the following285

dataset: 550 samples belonging to the HummingBad family9, 300 samples ran-286

domly selected from the 10 most populous families of the Drebin dataset [35]287

and 150 legitimate samples downloaded from Google Play10, the Android official288

market. The full dataset is composed by 1000 Android samples.289

It worth to note that our dataset is composed of only real word samples. Drebin290

dataset is a well known collection of malware used in many scientific works,291

which includes the most diffused Android families. We consider in the 10 most292

populous families, shown in Table 2. The family label is related to the malicious293

payload that a particular family exposes. Thus, every sample is labelled and cate-294

gorized starting from its malicious behaviour.295

Table 2 shows in descending order the top 10 Drebin families, from the most296

populous to the minus one. In our evaluation we randomly selected 25 samples297

from each one of them. We want to demonstrate if our tool is able to correctly cat-298

egorize and distinguish the samples belonging to the HummingBad family from299

the other ones (i.e., legitimate applications and malware belonging to other fami-300

lies).301

In order to evaluate the completeness and correctness of our methodology we
have computed the following metrics: Precision (PR), Recall (RC), F-measure
and Accuracy.

Precision =
T P

T P+FP
; Recall =

T P
T P+FN

;

9http://contagiominidump.blogspot.com/2016/07/hummingbad-android-fraudulent-ad.
html

10https://play.google.com
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Table 2: Top 10 most populous families belonging to Drebin dataset
Number of samples

Family Total number of samples randomly selected
for our evaluation

FakeInstaller 925 30
DroidKungFu 667 30

Plankton 625 30
Opfake 613 30

GinMaster 339 30
BaseBridge 330 30

Kmin 147 30
Geinimi 92 30

Adrd 91 30
DroidDream 81 30

TOTAL - 300

F−measure =
2PR RC
PR+RC

; Accuracy =
T P+T N

T P+FN +FP+T N
In the above formulae are involved also the values of True Positives (TP), False302

Positives (FP), False Negatives (FN) and True Negatives (TN). In our evaluation303

these values assume the following meaning: a sample results as a TP if our tool304

correctly identifies it in the HummingBad family; a sample results as a TN if our305

tool correctly identifies it as not belonging to the HummingBad family; when our306

tool classifies a samples in the wrong family, it is considered as an FP; when our307

tool not classifies a sample in the HummingBad family, it is considered as an FN.308

Table 3 shows the results achieved from the two methodologies.309

Table 3: Performance Evaluation

Method Precision Recall F-measure Accuracy
J48 0.918 0.915 0.919 0.921
Random Forest 0.945 0.943 0.945 0.943
Hoeffding Tree 0.926 0.928 0.932 0.937
Neural Network 0.972 0.978 9.974 0.981
Formal Methods 1 1 1 1

Both the designed approaches obtain interesting results. In fact with regard310

to the machine learning classifiers (i.e., J48, Random Forest, Hoeffding Tree and311

Neural Network), they obtain an accuracy ranging from 0.921 to 0.981, symp-312
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tomatic that the models are able to discriminate between generic malware, legiti-313

mate samples and HummingBad mobile applications. In detail the model obtain-314

ing the best performances is the one built by exploiting the Neural Network algo-315

rithm with a precision of 0.972 and a recall equal to 0.978. Also formal methods316

obtain interesting performances, by overcoming the machine learning approach:317

in fact this second approach is able to correctly recognize the HummingBad sam-318

ples without any negative result.319

With the aim to demonstrate that the proposed approaches are able to over-320

come the performances of the current anti-malware technologies, we report the321

results obtained by analysing the HummingBad malicious samples with several322

diffused anti-malware software by submitting the HummingBad samples: the re-323

sults of this analysis are shown in Table 4.324

Table 4: Comparison between our methodology and anti-malware (in terms of samples detected)

AVG Ad Aware Avast Arcabit Alibaba ESET NOD32 McAfee
0 0 0 0 11 0 0

Only the Alibaba anti-malware is able to detect 11 (on 500) HummingBad325

samples as belonging to the HummingBad family.326

Furthermore, to show the effectiveness of the approach obtaining the best per-327

formances i.e., the approach based on model checking, we consider a set of well-328

known code transformations techniques [36, 37, 38] applied to the HummingBad329

applications. These techniques are used by malware writers to evade the signature-330

based detection approaches adopted by current anti-malware [39].331

In particular, we applied following transformation techniques:332

1. Disassembling & Reassembling. The compiled Dalvik Bytecode in classes.dex333

of the application package may be disassembled and reassembled through334

apktool. This allows various items in a .dex file to be represented in another335

manner. In this way, signatures relying on the order of different items in the336

.dex file are likely to be ineffective with this transformation.337

2. Repacking. Every Android application has a developer signature key that338

will be lost after disassembling and reassembling the application. Using the339

signapk11 tool, it is possible to embed a new default signature key in the340

11https://code.google.com/p/signapk/
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reassembled application in order to avoid detection signatures that match341

the developer keys.342

3. Changing package name. Each application is identified by a unique pack-343

age name. This transformation renames the application package name in344

both the Android Manifest file and all the application classes.345

4. Identifier renaming. This transformation renames each package name and346

class name by using a random string generator, in both the Android Manifest347

file and smali classes, handling renamed classes invocations.348

5. Data Encoding. Strings could be used to create detection signatures to349

identify malware. To elude such signatures, this transformation encodes350

strings with a Caesar cipher. The original string is restored during applica-351

tion execution with a call to a smali method that knows the Caesar key.352

6. Call indirections. This transformation mutates the original call graph of353

the application by modifying every method invocation in the code with a354

call to a new method which simply invokes the original method.355

7. Code Reordering. This transformation is aimed at modifying the instruc-356

tions order in the application methods. A random reordering of instructions357

has been accomplished by inserting goto instructions with the aim of pre-358

serving the original run-time execution trace.359

8. Defunct Methods. This transformation adds new methods that perform360

defunct functions, clearly the logic of the original source code remains un-361

changed.362

9. Junk Code Insertion. These transformations introduce code sequences that363

have no effect on the function of the code. Detection algorithms relying on364

instructions sequences may be defeated by this transformation. This trans-365

formations provides insertion of nop instructions into each method, uncon-366

ditional jumps into each method, and allocation of three additional registers367

performing garbage operations.368

10. Encrypting Payloads and Native Exploits. In Android, native code is369

usually made available as libraries accessed via Java Native Interface (JNI).370

However, some malware, such as DroidDream, also pack native code ex-371

ploits meant to run from a command line in non-standard locations in the372
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application package. All such files may be stored encrypted in the applica-373

tion package and be decrypted at run-time. Certain malware such as Droid-374

Dream also carry payload applications that are installed once the system has375

been compromised. These payloads may also be stored encrypted. These376

are easily implemented and have been observed in the wild (e.g., Droid-377

KungFu malicious family uses encrypted exploit [6]).378

11. Function Outlining and Inlining. In function outlining, a function is bro-379

ken down into several smaller functions. Function inlining involves replac-380

ing a function call with the entire function body. These are typical compiler381

optimization techniques. However, outlining and inlining can also be used382

for call graph obfuscation.383

12. Reflection. This transformation converts any method call into a call to that384

method via reflection. This makes it difficult to statically analyze which385

method is being called. A subsequent encryption of the method name can386

make it impossible for any static analysis to recover the call.387

We apply the full transformation set to the HummingBad samples with the388

Droidchameleon [37], the ADAM [38] and the Carnival12 tools. Table 5 shows389

the obfuscation techniques implemented by the three tools.390

We combined together all the transformations provided by the three morphing391

engines: the transformations are applied in sequence to generate from a malicious392

sample its obfuscated version. Moreover, the transformations are applied to each393

class of the application, in this way all the classes of the application (including394

the ones implementing the malicious payload) are afflicted by the morphing tech-395

niques.396

Table 6 reports the achieved results with the obfuscated samples showing that397

the performances keep pretty unchanged.398

A previous work [37] demonstrated that current anti-malware solutions fail399

to recognize the malware after these transformations. We applied our method400

to the morphed dataset in order to verify if the proposed model checking based401

method is able to detect HummingBad malicious payload even the malware has402

been obfuscated.403

The analysis confirms that the proposed method is resilient to the common404

code obfuscation techniques.405

12https://github.com/faber03/AndroidMalwareEvaluatingTools
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Table 5: The transformation techniques provided by considered obfuscators.

Transformation Carinival DroidChamelon ADAM
Dissassembling X X X
Repacking X X X
Changing package name X X
Identifier renaming X X
Data Encoding X X
Call indirections X X
Code Reordering X X
Defunct Methods X
Junk Code Insertion X X
Encrypting Payloads X
Function Outlining X
Reflection X

Table 6: Resilience to the Obfuscation Techniques
dataset Original Morphed

# Samples TP # Samples TP
HummingBad 500 500 500 500

Considering the ability of the model checking based approach to detect but406

also to localise the package, the class and the method of malicious payload, it is407

possible to sanitise the malicious application. Considering the snippet in Figure 4408

(which relative CCS model is labeled as TRUE when the temporal logic property409

in Table 1 is evaluated), to perform a sanitisation process it is necessary to re-410

move the method labelled and their invocation and rebuild the AUA. Once rebuilt411

the AUA, to verify whether the HummingBad malicious behaviour is effectively412

removed, the formula in Figure 7 can be evaluated.413

We formulate the property aimed to detect this behaviour whether there is no414

invocation of the com.android.vending.INSTALL REFERRER intent, as shown in415

Table 1 by the ψ formula.416

Whether the formula shown in Table 7 is resulting TRUE the AUA is not417

affected by the HummingBad malicious payload and the sanitisation process was418

effectively performed.419
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ψ = νX .[pushcomandroidvendingINSTALLREFERRER] ff∧
[pushcomandroidvendingINSTALLREFERRER]X

Table 7: Temporal logic formula for the HummingBad sanitisation verification.

5. Conclusion and Future Work420

In last years mobile malware has widely spread, thankful to the great diffusion421

of mobile devices currently employed in a plethora of contexts of our everyday life422

for instance, from banking account management to social network activities. For423

this reason in our devices are stored an increasing number of private and sensitive424

information and they are so appealing from the malicious writers point of view.425

We proposed in this paper the design and the implementation of two different426

approaches for the malicious behaviour detection related to Android environment:427

the first approach is based on supervised machine learning while the second one428

considers the model checking technique. Both the approaches are evaluated by429

analyzing the real-world HummingBad malicious family, one of most aggressive430

threat recently discovered in the Android malware landscape. Both the machine431

learning and the model checking based approaches obtained interesting perfor-432

mances, but our outcomes demonstrate that model checking obtains better perfor-433

mances from the malicious payload detection point of view. As a matter of fact,434

an accuracy equal to 1 is obtained by the model checking based method by evalu-435

ating 1000 (malicious and legitimate) real-world Android applications. Moreover436

we evaluate also the model checking technique resilience to widespread obfusca-437

tion techniques currently employed by malicious writers: the experiment confirms438

that the model checking method is able to detect HummingBad malware even it is439

obfuscated.440

The proposed method can be easily applied for the detection and the sanitisa-441

tion of other widespread families. In fact, once the malware analysts formulated442

the logic temporal property (starting, from instance, from the manual inspection443

of a couple of malicious samples), the proposed model is immediately applica-444

ble for the detection of all kind of malicious payloads (once the analysts formu-445

lated the logic temporal property). As shown from the experiment focused on the446

HummingBad malware, once found the property for the detection of the malicious447

behaviour, the sanitisation property is immediately found.448
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For these reasons, as future works, we plan to extend the experiments to other449

widespread malware threats with the aim to enforce the methodology proposed in450

this work. Moreover authors plan to evaluate the proposed method for the detec-451

tion and the sanitisation of malicious payloads in iOS samples.452
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