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Abstract: Cereal crops are frequently contaminated by deoxynivalenol (DON), a harmful type of
mycotoxin produced by several Fusarium species fungi. The early detection of mycotoxin contam-
ination is crucial for ensuring safety and quality of food and feed products, for preventing health
risks and for avoiding economic losses because of product rejection or costly mycotoxin removal. A
LED-based pocket-size fluorometer is presented that allows a rapid and low-cost screening of DON-
contaminated durum wheat bran samples, without using chemicals or product handling. Forty-two
samples with DON contamination in the 40–1650 µg/kg range were considered. A chemometric
processing of spectroscopic data allowed distinguishing of samples based on their DON content
using a cut-off level set at 400 µg/kg DON. Although much lower than the EU limit of 750 µg/kg for
wheat bran, this cut-off limit was considered useful whether accepting the sample as safe or implying
further inspection by means of more accurate but also more expensive standard analytical techniques.
Chemometric data processing using Principal Component Analysis and Quadratic Discriminant
Analysis demonstrated a classification rate of 79% in cross-validation. To the best of our knowledge,
this is the first time that a pocket-size fluorometer was used for DON screening of wheat bran.

Keywords: deoxynivalenol; DON; wheat bran; fluorescence; chemometrics

1. Introduction

Cereals are a nutritious and convenient food option for a balanced diet given the
range of health benefits they offer. Indeed, most cereals are a low-fat and a low-calorie
source of carbohydrates, are rich in fibers, vitamins, and minerals, and help in lowering
the cholesterol level [1–4]. Durum wheat bran for direct human consumption is one of the
most added components in high-fiber breakfast cereals, bread and baked goods. It is also
assumed as a dietary supplement being rich in magnesium, phosphorus and zinc, helping
the immune system; moreover, it has a low glycemic index, thus improving the regulation
of blood sugar and preventing spikes in insulin [4,5].

However, cereal crops, such as wheat, maize, barley, oats, and rye, are frequently
contaminated by deoxynivalenol (DON), also known as vomitoxin (IUPAC name: 3α,7α,15-
Trihydroxy-12,13-epoxytrichothec-9-en-8-one). DON is a type-B trichothecene mycotoxin,
produced as a secondary metabolite of several species of Fusarium fungi. Furthermore, lev-
els of DON in wheat bran have been found to be up to three times the levels in unprocessed
wheat [6–8]. This contamination represents a significant threat to human health, as the
ingestion of DON-contaminated cereals can cause digestive problems, nausea, vomiting,
diarrhea, and other abdominal pains. In severe cases, it can also lead to more serious
health issues such as anemia, decreased white blood cell count, and impaired immune
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function [9–11]. To protect the health of consumers from exposure to DON through the
consumption of cereals and cereal-based products, the European Commission has set max-
imum permitted levels of DON in these food products. In particular, the EU maximum
limit for DON in wheat bran intended for direct human consumption has been set at
750 µg/kg [12].

Conventional analytical methods for determination of DON in cereals mainly imply
sample preparation and the use of gas chromatography (GC) with electron-capture or
mass spectrometric (MS) detection or liquid chromatography (LC) coupled with UV/DAD
or MS detection. Although these methods show high accuracy and precision, they are
destructive, expensive, time consuming and unsuitable for screening purposes [13–16].
Factors like promptness and low cost of analysis, minimal sample preparation and en-
vironmentally friendly methods are of paramount importance for rapidly responding to
the demands of the market. Consequently, in the last decade, other methods have gained
wide acceptance such as rapid analytical tools for the screening of DON in cereals. Among
them, heterogeneous assays like enzyme-linked immunosorbent assay (ELISA) and lateral
flow immunoassay (LFIA), and homogeneous assays like fluorescence polarization im-
munoassay (FPIA) have been applied to the rapid screening of DON in wheat and derived
products, including brans [17–20]. Although these approaches require only minimal sample
preparation in terms of homogenization and extraction steps, they are still relatively labor
intense, suffer from cross-reactivity of the antibody and require basic laboratory skills and
equipment [21]. On the other hand, other approaches based on the use of electronic nose
(e-nose) and optical techniques have been proposed as tools for the screening of cereal
samples for DON content in a fast and non-destructive way [22–24]. In the last decade,
e-nose methods have been proposed to indirectly assess the content of DON in wheat,
barley and wheat bran samples by detecting changes in the composition of volatile organic
compounds produced by mycotoxigenic fungi during their growth and biochemical pro-
cesses [25–27]. Moreover, a variety of optical methods has been proposed for the indirect
analysis of mycotoxins and fungal contamination in cereals by assessing their appearance
and biochemical composition [28–31]. These optical methods include the use of infrared
spectroscopy in the near (NIR) and middle (MIR) range and in the visible range with
DON as the most targeted mycotoxin in wheat, maize, barley, and oat [32–41]. In some
cases, the NIR range was complemented by reflectance measurements in the ultraviolet
and visible bands [42–44]. Furthermore, Fourier transform (FT) instrumentation, offering
several advantages compared to the traditional dispersive infrared instruments, has been
used for the discrimination of DON in wheat and wheat bran [45–49]. NIR spectroscopy
has been used more frequently compared to MIR for the prediction of mycotoxins, while
imaging techniques like hyperspectral or multispectral imaging have been mainly used for
the identification of fungal contamination in cereals. Table 1 summarizes the spectroscopic
techniques that have been used to detect the DON contamination in the various types
of cereals. The type of detection carried out, whether quantitative or qualitative (i.e., by
classes of contamination), is also mentioned.

Fluorescence spectroscopy is another popular method employed in food analyses
which has been used in the last decades, enabling the analysis of large-volume data for
the identification of sample types and geographical origin of food, as well as for the
detection of harmful substances such as mycotoxins and for the quantification of functional
components [50–52]. Fujita and co-workers pioneered the use of fluorescence spectroscopy
for detecting DON in water solutions using a wavelength range of excitation/emission of
200–340 nm and 500–600 nm, respectively [53,54]. Similarly, with the same scheme of the
excitation–emission matrix, Sugiyama et al. (2011) applied fluorescence spectroscopy to
wheat samples artificially contaminated with DON [55].
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Table 1. Summary of spectroscopic techniques used to detect DON contamination in various types
of cereals and the type of detection, whether quantitative or qualitative (i.e., classification based on
mycotoxin contamination with respect to a threshold limit).

Spectroscopic Platform Sample Detection Sensitivity Reference

Near-infrared Wheat flour Qualitative Threshold: 450 µg/kg [32]

Near-infrared barley Qualitative Threshold: 1250 µg/kg [33]

Near-infrared Maize Quantitative Limit of detection: 200 µg/kg [34]

Near-infrared Whole wheat grain Quantitative Limit of detection: 230 µg/kg [35]

Near-infrared Wheat kernel Quantitative Limit of detection: 400 µg/kg [37]

Near-infrared Barley Quantitative Limit of detection: 300 µg/kg [38]

Near-infrared Ground durum wheat Qualitative Threshold: 1400 µg/kg [45]

Near-infrared Ground durum wheat Qualitative
Threshold ≤ 1000 µg/kg

1000 µg/kg < Threshold ≤ 2500 µg/kg
Threshold > 2500 µg/kg

[46]

Mid-infrared Maize Qualitative Threshold: 1250 µg/kg [39]

Mid-infrared Maize Qualitative Threshold: 560 µg/kg [48]

Infrared Wheat flour Quantitative Limit of detection: 440 µg/kg [41]

Infrared Maize Qualitative Threshold: 1250 µg/kg [49]

Near/mid infrared Wheat bran Qualitative Threshold: 400 µg/kg [47]

Visible/near infrared Ground oats Quantitative Limit of detection: ~200 µg/kg [44]

UV/visible/near infrared Maize kernel Quantitative Limit of detection: 1500 µg/kg [42]

UV/visible/near infrared Ground wheat Quantitative Limit of detection: ~200 µg/kg [43]

Fluorescence Wheat flour Quantitative Limit of detection: ~2.4 mg/kg [55]

These spectroscopic methods show attractive features such as easy operation, no con-
sumables, affordable cost, rapidity, little or no sample preparation and have the capability
for a high sample throughput. Furthermore, as spectroscopy measures the sample as it is,
non-destructively, and without any chemicals, solvents, or other treatments, it is considered
a “green” analytics tool [56–58]. Indeed, it helps in reducing the environmental impact of
food production processes and makes a significant contribution to both sustainable food
production and environmental protection efforts [12].

The aim of the present work was to describe a low-cost, non-destructive, “green” and
rapid method combined with chemometrics, for the screening of durum wheat bran samples
by means of a low-cost pocket-size fluorometer. The cut-off level for DON screening was
set at 400 µg/kg DON and was lower than the EU legal limit of 750 µg/kg set for the
bran intended for direct human consumption [12]. This value was considered a safety
limit, useful to take a decision whether accepting the sample as safe or carrying out a
further inspection by means of more accurate but also more expensive standard analytical
techniques. So far, to the best of our knowledge, there has been no literature reporting
DON detection by means of a low-cost pocket-size fluorometer like the device shown in
this paper.

2. Results and Discussion

The DON level in durum wheat bran ranged from ≤40 µg/kg (limit of quantification
of the HPLC confirmatory method) to 1650 µg/kg, as shown in Figure 1. Most samples
(62%) were naturally contaminated with DON at levels lesser than the EU limit for wheat
bran (750 µg/kg). These samples were grouped into two classes: 18 samples had a DON
concentration equal to or lower than 400 µg/kg (Class A), while 24 samples had a DON
concentration higher than 400 µg/kg (Class B).
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Figure 1. Distribution of DON content in the forty-two durum wheat bran samples as determined 
by the confirmatory method. 

As an example, Figure 2 shows the average fluorescence spectra of wheat bran sam-
ples belonging to Classes A and B, excited at the three available wavelengths. An analysis 
of variance (ANOVA) was carried out at each wavelength to check the significance of dif-
ference between the two class means. The p-value, offering the probability that the differ-
ence between means is due to chance, was calculated. Figure 3 shows the p-value as a 
function of emission wavelength for each excitation wavelength. Significance threshold at 
a 5% level, which is commonly considered acceptable, as well as the 1% level threshold 
are also drawn in the plot. For each excitation wavelength, Table 2 summarizes the emis-
sion bands where the p-value is below a 1% or a 5% significance level threshold. 

 
Figure 2. Examples of fluorescence spectra of DON-contaminated wheat bran samples belonging to 
Class A (≤400 µg/kg, blue line) or to Class B (>400 µg/kg, red line), excited at 355 nm (left), 365 nm 
(center), and 375 nm (right). 
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Figure 1. Distribution of DON content in the forty-two durum wheat bran samples as determined by
the confirmatory method.

As an example, Figure 2 shows the average fluorescence spectra of wheat bran samples
belonging to Classes A and B, excited at the three available wavelengths. An analysis
of variance (ANOVA) was carried out at each wavelength to check the significance of
difference between the two class means. The p-value, offering the probability that the
difference between means is due to chance, was calculated. Figure 3 shows the p-value as a
function of emission wavelength for each excitation wavelength. Significance threshold at
a 5% level, which is commonly considered acceptable, as well as the 1% level threshold are
also drawn in the plot. For each excitation wavelength, Table 2 summarizes the emission
bands where the p-value is below a 1% or a 5% significance level threshold.
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Figure 2. Examples of fluorescence spectra of DON-contaminated wheat bran samples belonging to
Class A (≤400 µg/kg, blue line) or to Class B (>400 µg/kg, red line), excited at 355 nm (left), 365 nm
(center), and 375 nm (right).

Table 2. Emission bands where the p-value is below a 1% or a 5% significance level threshold.

Excitation Wavelength Significance at 5% Significance at 1%

355 nm above 517 nm above 538 nm

365 nm above 506 nm 532–619 nm

375 nm above 478 nm 504–634 nm
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Figure 3. p-value of ANOVA as a function of emission wavelength for each excitation wavelength.

Although DON is not fluorescent [59], the occurrence of Fusarium fungi in the contam-
inated wheat bran slightly modified the fluorescence spectra of wheat by inducing different
spectral shapes depending on the excitation wavelengths [60]. These effects were more than
enough to clearly identify the two classes of contamination sought by using chemometric
data processing. Figure 4 shows the Principal Component Analysis (PCA) score plots of
training samples for the three excitation wavelengths. It is evident that each wavelength,
taken alone, is only partially selective. Data fusion, however, combining information from
all three models, achieved a better classification rate. All retained principal components
were then merged into a predictor matrix that was fed into the classifier. For all wave-
lengths, two components were sufficient to explain 99% of total variance. This produced a
total of six predictors, which were auto scaled (divided by their standard deviation) for
assigning them equal a priori importance.
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Table 3 summarizes the classification statistics for training and cross-validation, re-
spectively, when considering a single excitation wavelength or combining the data of two
or three excitation wavelengths. As described in Section 3.6, models were rated in terms of
accuracy, sensitivity, and specificity. Accuracy is the overall classification rate, sensitivity is
the true positive rate, and specificity is the true negative rate. The best single-wavelength
models were those at 355 nm and 375 nm.
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Table 3. Performance parameters (accuracy, sensitivity, and specificity) of the quadratic discriminant
analysis for both training and cross-validation, for the different excitation wavelengths and their data
fusion. A cut-off of 400 µg/kg DON was used to distinguish the two classes of DON-contaminated
wheat bran samples.

Wavelength
(nm)

Training Cross-Validation

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

355 81% 83% 78% 74% 75% 72%

365 71% 71% 72% 69% 67% 72%

375 74% 75% 72% 74% 75% 72%

355 + 365 83% 83% 83% 76% 75% 78%

365 + 375 86% 88% 83% 79% 83% 72%

355 + 375 86% 88% 83% 79% 75% 83%

355 + 365 + 375 88% 88% 89% 74% 71% 78%

For each pair of excitation wavelengths, we calculated the correlations between the
corresponding principal components. The components of the 365 nm model showed very
strong correlation with those of both the 355 nm (PC1: 0.97, PC2: −0.97) and 375 nm (PC1:
0.97, PC2: −0.98) models. Instead, the components of 355 nm and 375 nm models showed
weaker correlation (PC1: 0.91, PC2: −0.92). In fact, the 355 nm and 375 nm models excited
with different efficiency the two fluorescent bands at 450 nm and 530 nm, as shown in
Figure 2.

The best two-wavelength model was achieved combining 355 nm and 375 nm, pro-
viding a 79% accuracy, a 75% sensitivity, and an 83% specificity in cross-validation. The
three-wavelength configuration provided better results in training, but lower statistics
in cross-validation, which are a 74% accuracy, a 71% sensitivity, and a 78% specificity in
cross-validation. Clearly, adding 365 nm data increased collinearity in the model and
introduced some overfitting. Figure 5 shows the plot of membership scores for the two best
models. The probability for the lower class is measured along the x-axis, while that of the
higher class is measured along the y-axis. The bisector of the first and second quadrant is
the decision border.
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Figure 5. Quadratic Discriminant Analysis score plots for both training (left) and cross-validation
(right) of the 355 nm + 375 nm model for classifying wheat bran samples contaminated with DON
using intermediate-level data fusion.

For comparison with previous studies that reported the use of fluorescence spec-
troscopy for DON detection, we note that in those cases, the DON concentration was
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much higher, and that bulky and expensive bench-type fluorometers were used, having a
wide excitation/emission matrix of 200–340 nm and 500–600 nm, respectively [53–55]. In
particular, DON in water solution was measured from the 4 × 103 µg/kg to 1 × 106 range
µg/kg [53], while DON in artificially spiked samples was measured from 2.4 × 102 µg/kg
to 26 × 103 µg/kg [54,55].

3. Materials and Methods
3.1. Reagents and Apparatus

Acetonitrile of an HPLC grade was bought from Mallinckrodt Baker (Milan, Italy);
ultrapure water was produced by a Millipore Milli-Q system (Millipore, Bedford, MA, USA).
Deoxynivalenol (DON) standard was purchased from Sigma-Aldrich (Milan, Italy), while
DON immunoaffinity columns (DONtest™ HPLC) were from Vicam, a Waters Business
(Milford, MA, USA). Glass microfiber (Whatman GF/A) and paper filters (Whatman No. 4)
were bought from Whatman (Maidstone, UK).

3.2. Durum Wheat Bran Samples

Forty-two samples (300 g each) of naturally contaminated durum wheat bran samples
were collected from a local Italian mill farming. Each sample was finely ground by Tecator
Cyclotec 1093 (International PBI, Hoganas, Sweden) laboratory mill equipped with a
500 µm sieve, leading to a homogeneous sample with a fine particle size. Then, samples
were manually homogenized and stored at +5 ◦C until HPLC analysis and fluorescence
measurements.

3.3. Wheat Bran Sample Analysis by Reference Method

Milled durum wheat bran samples were analyzed by HPLC for the quantitative
determination of DON to be used for the development of the fluorometric method. Each
sample was analyzed according to the procedure described by De Girolamo et al. 2019 [47].
Briefly, 12.5 g of the ground sample were extracted by blending for 2 min with 100 mL
of phosphate buffer solution (PBS, 10 mM sodium phosphate, 0.85% sodium chloride,
pH = 7.4). Then, the extract was filtered through filter paper (Whatman No. 4) and then
by glass microfiber filter (Whatman GF/A). Then, an aliquot of 2 mL of the filtered extract
was cleaned up through the DONtest™ immunoaffinity column, and after washing the
column by passing 5 mL of water through it, DON was recovered by elution with 1.5 mL
of methanol. The eluate was dried under air stream at 50◦ C, redissolved into 0.25 mL of
the mobile phase (acetonitrile/water, 8:92; v/v) and an aliquot of 0.05 mL was analyzed
by LC (Agilent 1100 Series, Agilent Technology, Palo Alto, CA, USA) with the diode array
detector set at 220 nm.

The DON levels in the 42 wheat bran samples ranged from ≥40 µg/kg (quantification
limit of the HPLC method) to 1650 µg/kg.

3.4. Fluorometer Assembly

The low-cost fluorometer built for this experiment was a pocket-size device that
utilized an LED array for illumination and a miniaturized spectrometer for detection. The
hardware module was operated by a laptop PC via a customized Labview® software
(Version 18.0.1f4) interface (National Instruments Corp., Austin, TX, USA). Figure 6 shows
a rendering of the fluorometer. The optical head providing the fluorescence excitation was
made of a housing for twelve circularly arranged LEDs. They were positioned at a 45◦ angle
with respect to the axis of detection, which was in the center of the circle. Three wavelengths
were considered for fluorescence excitation, i.e., 355 nm, 365 nm, and 375 nm. Four identical
sets of these three LEDs were sequentially placed in circular array housing. They were
powered by means of a commercially available electronic controller (PhidgetsLED1031,
Phidgets Inc., Calgary, AB, Canada), which was USB-connected to a laptop PC. The optical
head was butt-coupled to a cylinder housing the detector, which was an Ocean ST-visible
microspectrometer (Ocean Insight, Duiven, The Netherlands) operating in the 350–810 nm
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range, having a 1.5 nm spectroscopic resolution. Because the LED spectrum extends in the
visible range, a short-pass filter blocking illumination wavelengths longer than 400 nm was
inserted between the optical head and the measurement spot. This filter had a small hole in
correspondence of the spectrometer input slit to allow the detection of the backscattered
fluorescence light intensity at wavelengths longer than 400 nm.
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The three excitation wavelengths were operated in sequence (four LEDs at the same
wavelength at a time), and the emitted fluorescence spectra were recorded synchronously
with each excitation wavelength. Spectra acquisition was achieved using the USB port of
the spectrometer, connected to the laptop. In practice, this scheme allowed us obtention
of a low-cost, pocket-size, and versatile device providing a configuration similar to a
three-wavelength scanning fluorescence spectroscopy.

A custom Labview® (Version 18.0.1f4) interface was programmed for operating LEDs,
spectrometer, detector acquisition, and the sequence of measurements. The software
controlled the LED current, the acquisition from the spectrometer, and displayed the
measured spectra that could be saved as an Excel file. Depending on the wavelengths,
LEDs were powered with different currents for equalizing the light intensity used for
fluorescence excitation. The custom software operating the fluorometer was programmed
to acquire the “dark” background spectrum, according to the selected integration times,
and to subtract it from the sample fluorescence spectrum.

The casing that housed all optoelectronic components was lightweight and handy. It
was 3D printed (KLONER3D®240, KLONER3D®, Firenze, Italy) using a polylactic acid
wire. A vial holder was also 3D printed to suitably position the bran sample in front of the
illumination/detection optics. The practical implementation of the fluorometer including
the vial holder is shown in Figure 7.

3.5. Wheat Bran Sample Analysis by Fluorescence

For each sample, an aliquot of 1.6 g wheat bran was transferred in a 4 mL glass
vial sealed with a safety cap that was allocated in the vial holder and analyzed by the
fluorometer. The fluorescence spectra of all bran samples, excited by the three wavelengths,
were acquired by scanning 4 times each sample. The time analysis was approximately 13 s
for all wavelengths.
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3.6. Multivariate Statistical Analysis

Spectra processing and multivariate data analysis was carried out in MATLAB®

R2016b (MathWorks, Natick, MA, USA) using custom-made subroutines. For each sample,
the average spectrum of the 4 scans obtained at each of the three wavelengths was used
for data processing. Before development and validation of chemometric models, the fluo-
rometric spectral data were preprocessed to reduce the spectral baseline shift and noise.
A two-stage smoothing was applied to each spectrum. First, a 3 pts median filter was
used for removing narrow noise spikes; then, a boxcar average filter with a 21 pts window
(about 10 nm wide) was used for refined smoothing. Minimum subtraction was applied
for removing the effect of random background fluctuations. As previously reported by
De Girolamo et al. 2019 [47], a cut-off value of 400 µg/kg that was below the EC ML for
DON in wheat bran (i.e., 750 µg/kg) [12] was used to discriminate wheat bran samples into
two classes, A and B. Based on their DON content measured by HPLC analysis, samples
were considered as compliant when [DON] ≤ 400 µg/kg (class A) and not compliant when
[DON] > 400 µg/kg (class B). Using this screening approach, only samples classified as
not compliant should be re-analyzed by the confirmatory method, thus reducing the total
number of analyses.

The Leave-One-Out (LOO) cross-validation was used for evaluating the classification
performance given the limited number of available samples.

Intermediate-level data fusion was employed for combining information coming from
different excitation wavelengths. Spectral information was first compressed, for each
excitation wavelength, by means of Principal Component Analysis (PCA) [61]. Then,
significant principal components coming from all models were merged into a predictor
matrix. Data fusion at PCA level allows reduction in the level of noise introduced in the
model, because only structural information from each source is retained [62,63].

In each PCA model, two principal components explained 99% of total variance, of-
fering a total of six predictors. Quadratic Discriminant Analysis (QDA) classification was
applied to the joint predictor matrix for sample classification. Like Linear Discriminant
Analysis (LDA), QDA assumes that all classes are distributed according to multivariate
Gaussian distribution, but it does not assume all classes have the same within-class variance.
It is, therefore, more flexible [64]. QDA assigned two scores to each sample depending on
its position in the predictor space and proportional to the logarithm of class membership
probabilities. Consequently, each sample was assigned to its most probable class. Test
samples were projected onto each PCA model and then classified in the same way. Clas-
sification rates and confusion matrices were calculated for both training and test set for
evaluating classifier performance.

By assuming that Class A is that of non-compliant samples, samples were defined
as true positive (TP) if they were correctly classified as A or false negative (FN) if they
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are classified as belonging to Class B. Similarly, samples of Class B considered compliant
were defined as true negative (TN) if they were correctly found as belonging to Class B
or false positive (FP) if they were classified as Class A. QDA performances on each set
were assessed in terms of accuracy, sensitivity, and specificity according to the confusion
matrices for binary classification [65,66] by using the following formulas:

Sensitivity = [TP/(TP + FN)] × 100, (1)

Specificity = [TN/(TN + FP)] × 100, (2)

Accuracy = [(TP + TN)/(TP + TN + FP + FN)] × 100, (3)

where

- sensitivity is defined as the fraction of samples belonging to Class A, correctly classified
by the model and is a measure of the confidence level of the class space;

- specificity is defined as the fraction of samples not belonging to Class A that are
correctly rejected by the model;

- accuracy is defined as the fraction of correctly classified samples with respect to the
entire set.

4. Conclusions and Future Perspectives

An LED-based pocket-size fluorometer was developed in combination with chemo-
metrics for green and rapid screening of DON in durum wheat bran samples. A cut-off
limit of 400 µg/kg was set as a threshold useful to make a decision of whether to accept the
sample as compliant with respect to the EU ML for DON in wheat bran or to carry out a
further analysis by a more expensive standard analytical technique.

By considering all excitation wavelengths, we spotted the wavelength combinations
providing the best classification rates. The chemometric approach using intermediate-
level data fusion (PCA + QDA) achieved classification rates in the 74–79% range in cross-
validation, 355 nm + 375 nm being the best wavelength combination.

To the best of our knowledge, this is the first time that fluorescence spectroscopy
carried out by means of a pocket-size fluorometer was successfully used for screening
wheat bran naturally contaminated by DON with a contamination threshold of 400 µg/kg.
Further activities will focus on making the fluorometer fully standalone by replacing the
laptop PC currently used by means of a suitably programmed data processing unit and
display. In addition, a new design of the cone-shaped optical head ending in a glass
window is underway, so that the bran sample can be measured directly without using a
vial for high-throughput screening. The ultimate objective is to transform this device into a
high-throughput analytical platform that is cost effective for small mills. This pocket-size
device will facilitate a rapid and non-destructive assessment of DON contamination onset
during storage and pre-packaging stages without the need for chemicals or specialized by
personnel, consequently ensuring the safety of the product before it enters the food chain.
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