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Abstract. Prostate cancer is the most frequent male neoplasm in Euro-
pean men. To date, the gold standard for determining the aggressiveness
of this tumor is the biopsy, an invasive and uncomfortable procedure.
Before the biopsy, physicians recommend an investigation by multipara-
metric Magnetic Resonance Imaging, which may serve the radiologist to
gather an initial assessment of the tumor. The study presented in this
work aims to investigate the role of Vision Transformers in predicting
prostate cancer aggressiveness based only on imaging data. We designed
a 3D Vision Transformer able to process volumetric scans, and we opti-
mized it on the ProstateX-2 challenge dataset by training it from scratch.
As a term of comparison, we also designed a 3D Convolutional Neural
Network and optimized it in a similar fashion. The results obtained by
our preliminary investigations show that Vision Transformers, even with-
out extensive optimization and customization, can ensure an improved
performance with respect to Convolutional Neural Networks and might
be comparable with other more fine-tuned solutions.
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1 Introduction

According to the World Health Organization, prostate cancer (PCa) is the most
common tumor among European men [25]. For PCa patients, a biopsy followed
by a microscopic examination of the collected specimen is, at the moment, the
gold standard for diagnosis. Usually, before resorting to biopsy, the patient un-
dergoes a multiparametric magnetic resonance imaging (mpMRI) examination.
mpMRI investigations typically involve the acquisition of axial T2-weighted
(T2w) images, used to investigate the anatomy, and diffusion-weighted images
(DWI), from which the Apparent Diffusion Coefficient (ADC) maps are derived.
By comparing T2w images and ADC maps, radiologists make an early qualita-
tive diagnosis according to the Prostate Imaging Reporting and Data System
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(PI-RADS) [21] guidelines. The PI-RADS score assigns a numerical value be-
tween 1 and 5 to the suspected lesion, which is an index of probability that
the lesion constitutes an aggressive prostate neoplasm. The higher the PI-RADS
score, the greater the likelihood that the suspected nodule is malignant. Typi-
cally if PI-RADS > 3, the patient undergoes a biopsy. At this point, the tumor’s
aggressiveness is assessed by examining the biopsy specimen, and a grade known
as the Gleason Score (GS) is associated with the lesion. If GS > 344, the tu-
mor is considered clinically significant [1]. In particular, for patients with lesions
having GS > 344, treatment is foreseen; in all other cases, the patient usually
undergoes active surveillance [16].

However, this early diagnosis is affected by inter-operator variability since
most depend on the radiologist’s experience and the acquisition protocol used.
For this reason, the patient may be over-diagnosed if the biopsy reveals a tumor
that is not clinically significant [23]. Because of all these reasons, there is now
an increasing need for an automated tool that can diagnose PCa in a non-
invasive, robust, and reliable manner. Several studies to date are focusing on
building machine learning models that exploit the potential of deep learning for
the automatic classification of PCa lesions from mpMRI images. Most of the
works attempt to classify clinically significant from non-significant PCa (i.e., GS
< 343 vs. GS = 3+44) [10,13,14,20]. Only a few studies have addressed the
issue of PCa aggressiveness, i.e., Low-Grade (LG) (GS < 3+44) vs. High-Grade
(HG) (GS = 443) lesions. In [27], the authors exploit a 2D Convolutional Neural
Network (CNN) trained on sagittal T2w images, axial T2w images, and ADC
maps according to a transfer-learning approach, getting an AUROC of 0.869. In
[2], CNNs with Attention Gates trained on T2w images yield 0.875 AUROC.

Assessment of PCa aggressiveness is a challenging task for several reasons.
First of all, the lesion occupies very few pixels within the image. In addition, it
may occur in different areas of the prostate; therefore, the network must be able
to identify it among other tissues before classifying it. For this reason, many
works are now focusing on building an end-to-end model, which first detects the
lesion and then classifies it [15, 24, 26].

Recently, Vision transformers (ViTs) have gained popularity in Computer
Vision, exceeding the performance of CNNs in almost all tasks: classification [7],
object detection [3] and segmentation [19]. They have seen an increase in their
application also in medical imaging [12]. Classic ViTs require large amounts
of data to be trained. Because of this, usually transfer learning approach is
exploited. In this work, we wanted to verify ViTs’ effectiveness in addressing a
challenging task as the prediction of PCa aggressiveness without any pre-training
steps but by training them from scratch on PCa 3D volumes.

In the following sections, we describe our experiments with 3D ViTs and basic
3D CNNs applied to a freely available dataset (i.e., ProstateX-2 [9]). Firstly, we
introduce the dataset used and how this was prepared for training the deep
learning models. Afterward, we give a description of the 3D ViT architecture
used and of the training pipeline. We do the same for the 3D CNN models that
we exploited to compare and evaluate the performance ensured by 3D ViTs.
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Therein, we report the results and compare our work to one belonging to the
state-of-the-art addressing the same task. Finally, according to the results, we
establish the potential effectiveness of 3D ViTs in determining PCa severity.

2 3D Vision Transformer and 3D CNN Development for
Prostate Cancer Classification

The work aims to develop a 3D ViT model for assessing PCa aggressiveness based
on axial volumetric T2w imaging data. Starting from the ViT model proposed
in [7], we modified the architecture by reducing the number of parameters to
train the model from scratch on the ProstateX-2 challenge dataset [9]. We also
designed a 3D CNN and trained it from scratch on the same dataset as a reference
model against which we compared our 3D ViT.

2.1 Dataset composition

The dataset for the ProstateX-2 challenge [9] was acquired at the Radboud
University Medical Centre (Radboudumc) in the Prostate MR Reference Center.
The dataset contains 112 lesions from 99 patients. GS is provided for each lesion
to be used as ground truth. Each study was performed through mpMRI, of which
we exploited only axial T2w acquisitions since according to [2], they provide
better results in the application of deep learning models for the assessment of
PCa severity. In terms of aggressiveness, the dataset is composed as follows:
77 LG (69%) and 35 HG (31%). As for the location of the lesion, the dataset is
organized as follows: 50 peripheral (PZ) (44%), 47 anterior fibromuscular stroma
(AS) (43%), and 15 transition (TZ) (13%).

2.2 Data preparation

To provide the model with only the most meaningful information, we selected
only a subset of slices for each MRI scan, thus reducing the size of the 3D
volume processed by the deep learning models. Based on the supplementary
information provided with the dataset, we first selected the slice that contains
the lesion. Hence, starting from that slice, we selected two slices above and below
for a total of five slices per lesion. This approach ensured us to consider the
slices that contain the lesion or that are strictly around it. Next, we harmonised
the pixels dynamic from 0-2'6 to 0-28, and we converted each image type from
uint16 to uint8. This operation did not affect the image quality since the uint16
range is barely exploited. Indeed, the maximum value assumed by the pixels in
all acquisitions was 800. This procedure ensures that each image had the same
range of pixel values.

Since not all the patients had equal image sizes, to make the procedure re-
producible to further processing, we rescaled all the images to the most common
and largest ones in the dataset (i.e., 384x384). This approach limited the num-
ber of patients that required resampling and avoided losing information due to
down-sampling.
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Assuming that the prostate is placed within the center of the image, we
center-cropped each slice to let the model focus only on the prostate gland. The
final size of each image was 128x128. Through a visual inspection, we verified
that this size was appropriate to include the prostate glands of all sizes in the
crop’s field of view and yet, at the same time, remove most of the tissue that
does not belong to the gland. Eventually, for each lesion, we obtained a volume
of size 128x128x5.

Since the dataset was unbalanced, we applied, to the training dataset only,
three data augmentation techniques: vertical flip, horizontal flip, and rotation.
Since the training set was composed of 54 LG and 27 HG volumes, we chose
9 HG images randomly with a fixed seed, and, for each one, we added three
augmented versions to the set. In the end, the training set was composed of 54
LG and 54 HG images.

Eventually, we applied a mean normalization by calculating the mean value
of the pixels across all the volumes within the training set only and subtracting
it from all the slices in the training, validation, and test sets.

2.3 3D VIiT Architectures

The ViT model used in this work stemmed from the one introduced in [7]. Since
this model was designed to be trained on 2D images, we modified its structure
so that it could work on 3D volumes, by processing 3D patches. All the three
architectures described in the original work [7] were designed to be pre-trained
on large datasets and then fine-tuned on smaller datasets. As we were working
on 3D data, we avoided transfer learning and train the 3D ViT from scratch.
Considering the limited size of the ProstateX-2 dataset, we then rescaled the
original architecture to significantly reduce the number of parameters to be set.
We determined the most suitable architecture with a grid search on 18 differ-
ent configurations (see Table 1), designed by varying the following parameters:
Multi Layer Perceptron (MLP) size (d), hidden size (D), number of layers (L),
and number of attention heads (k). In all configurations, we used a patch size
(p) of 16 in one dimension (i.e., the 3D size of the patch was 16x16x5). This
value seemed reasonable to allow the ViT processing enough information for
each patch. In addition, some preliminary tests using p = 8 showed significantly
worse results. We chose L and k values with the purpose of reducing the number
of parameters w.r.t the architecture proposed in [7]. After, we derived D value

by exploiting the relation (1):
D = p?c/k (1)

where ¢ is the number of channels in the image. Finally, we calculated d value
according to (2):
d = p*cn (2)

where n is the number of patches. We also tested the d value used in the ViT-Base
architecture described in [7], which is equal to 3072.
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Table 1. The values considered in the grid-search.

Patch size d L D N .
configuration
64 4 1
4 32 8 2
16 16 3
64 4 4
2048 6 32 8 5
16 16 6
64 4 7
8 32 8 8
16 16 9
16 64 4 10
4 32 8 11
16 16 12
64 4 13
3072 6 32 8 14
16 16 15
64 4 16
8 32 8 17
16 16 18

2.4 3D ViTs Training

Training, validation, and test of the models were coded in Python by employing
the following modules: pytorch (v. cuda-1.10.0) [17], keras (v. 2.7.0) [4], tensor-
flow (v. 2.7.0) [6], numpy (v.1 .20.3) [8], scikit-learn (v. 0.24.2) [18], pydicom (v.
2.1.2) [11] and pillow (v. 9.0.1) [5].

Since the goal of this work was a preliminary investigation of the effectiveness
of ViTs in PCa aggressiveness, we did not perform a comprehensive hyperpa-
rameter optimization; instead, we focused mainly on optimizing the architectural
features of ViTs via the grid search described above. The hyperparameters’ val-
ues used are: Learning rate = le-4, Weight decay = le-2, Number of steps =
1000, Batch size = 4, Warmup steps = 1000, Optimization algorithm = Adam,
Loss function = Binary Cross Entropy.

To make each training run reproducible, we exploited the reproducibility
flags provided by pytorch [17], numpy [8], and random [22] libraries, choosing a
seed equal to 42. The detailed code is reported in Listing 1.1

We split the entire dataset into two: 90 lesions (80%) were used for the grid
search and the final training of the best-performing architecture; 22 lesions (20%)
were kept for the final test of the best-performing architecture. We ensured a
strict patient separation by this split. This means that all the lesions of the same
patient were contained only in one of the two splits to avoid any data leakage.
In addition, we stratified w.r.t the aggressiveness label (2/3 LG and 1/3 HG)
and the lesion location (2/5 PZ, 2/5 AS, and 1/5 TZ).
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We used the 90-lesion sub-set to carry out the grid search. This sub-set was
further split into two sub-sets: 90% used for training and 10% used for validation.
As a result, the validation set comprised 9 lesions (4 PZ [3 LG 1 HG] + 4 AS [3
LG + 1 HG] + 1 TZ HG).

For each ViT configuration, we evaluated the following metrics: specificity,
sensitivity, accuracy, AUROC, and F2-score. The training was performed ac-
cording to an ad-hoc early-stopping criterion defined as follows.
Early-stopping criterion. On the validation set, we measure both the speci-
ficity and the sensitivity at each epoch. If both metrics are greater than 0.6,
we save the model at that epoch. In the subsequent epochs, if the specificity
and sensitivity condition still occurs, as well as an increase in AUROC, the best
model is updated. If this condition never occurs, we save the model that has
the higher AUROC. When possible, this criterion ensures that the model can
distinguish between both classes more accurately.

At the end of the grid search, we chose the best configuration based on
the performance on the validation set, and we re-trained it with a 5-fold cross-
validation (CV) to obtain more statistically reliable results. Namely, the training
set was divided into five equally distributed folds, of which, in turn, one was used
as a validation set. This way, we minimized possible splitting bias. Moreover,
also, in this case, we stratified w.r.t classes and lesion zones.

The five models were finally evaluated on the same test set (i.e., the 22 lesions
mentioned above). We reported performance as mean and standard deviation
across each training run.

Listing 1.1. Reproducibility code.

import numpy as np
import random
import torch

def set_reproducibility(seed=42):
random.seed (seed)
np.random.seed (seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all (seed)

2.5 CNNs Architectures

As a comparison, we designed 3D CNN and trained it by following the same
approach used to train the 3D ViTs.

The 3D CNN model consisted of three convolutional blocks (the composition
of each block is described in Table 2) and four fully connected layers. We per-
formed an architecture optimization of this model as done for ViT’s architecture.
A total of five configurations was considered. In each configuration, we varied the
size of the max-pooling kernel within the three convolutional blocks. As detailed
in the Pytorch library [17] documentation, a kernel consists of (kD,kH, kW),
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so we investigated five different combinations of the placement and number of
kernels acting only on the plane ((1,2,2)), and kernels acting also on the third
dimension ((2,2,2)). We provide a complete description of the different configu-
rations in the Table 3.

Table 2. The composition of 3D-CNN convolutional blocks. In the first block, k=7,
whilst k=3 in the other two blocks.

Convolutional block
3D Convolutional layer (kernel kxk)
3D Max Pooling layer
Batch Normalization layer
3D Convolutional layer (kernel 1x1)

Table 3. The composition of the five alternative configurations of the 3D-CNN. MP
= Max-Pooling.

N configuration =~ MP kernel size

1 (1,2,2) (1,2,2) (2,2,2)
2 (1,2,2) (2,2,2) (2,2,2)
3 (2,2,2) (1,2,2) (1,2,2)
4 (1,2,2) (2,2,2) (1,2,2)
5 (2,2,2) (2,2,2) (1,2,2)

To train each 3D-CNN’s configuration, we exploited the same dataset parti-
tioning used for 3D ViTs. To make the results comparable, we again evaluated
the performance of each configuration by training the model with the fixed split-
ting of the dataset. Regarding the early-stopping criterion, we established that
if validation loss did not decrease for more than five consecutive epochs, training
was stopped.

We then re-trained the best configuration by applying the 5-fold CV, and
we evaluated all five models on the test set, reporting the mean and standard
deviation results. The training hyperparameters were set as follows: Learning
rate = le-4, Epochs = 20, Batch size = 4, Optimization algorithm = Adam,
Loss Function = Cross Entropy.

3 Results

3.1 3D ViT Results

The following parameters led to the best-performing 3D ViT: p = 16, d = 2048,
L =6, D = 32 and k = 8. This corresponds to the configuration number five
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in Table 1. An overview of the model is depicted in Figure 1. On the 5-fold CV
training this model provided 0,775 AUROC and 0,523 F2-score. In particular,
the best split w.r.t the AUROC metric yielded 0,927 AUROC and 0,735 F2-score.
We reported complete results for all the five CV models in Table 4.

MLP Head —> Class LG or HG
Transformer Encoder x6 e

mMe |
(size 2048)

Normalization

128x128x5 Normalization

Linear projection of
flattened embeddings

——

Patch + Position embedding
(size 32)

Fig. 1. Our best-performing ViT architecture.

3.2 CNN Results

The best 3D-CNN configuration resulted as the number four of those shown
in Table 3. By applying the 5-fold CV on the test set, this model yielded 0.585
mean AUROC and 0.215 mean F2-score. The best split w.r.t the AUROC metric
provided 0.635 AUROC and 0.3125 F2-score. We reported all the results for the
five CNN models in Table 5.

4 Discussion and Conclusions

This study aimed to evaluate the effectiveness of 3D ViTs in assessing the ag-
gressiveness of PCa, as this deep learning model is emerging as a fresh gold
standard in several computer vision tasks. As a starting point, we exploited the
architecture proposed in [7], and we modified it to preocess 3D patches and to sig-
nificantly reduce the number of parameters so that we could train it from scratch
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Table 4. Best 3D ViT configuration results in the 5-fold CV on the test set.

Cross-validation Fold Specificity = Sensitivity = Accuracy AUC F2-score
1 0,688 0,667 0,682 0,74 0,606
2 0,875 0,167 0,682 0,698 0,185
3 0,75 0,333 0,636 0,708 0,333
4 0,75 0,833 0,773 0,802 0,758
5 0,688 0,833 0,727 0,927 0,735

Mean (SD) 0,750 (0,076) 0,567 (0,303) 0,700 (0,052) 0,775 (0,094) 0,523 (0,254)

Table 5. Best CNN configuration results in the 5-fold CV on the test set.

Cross-validation Fold Specificity = Sensitivity —Accuracy AUC F2-score
1 1.0 0.167 0.773 0.583 0.2
2 0.813 0.167 0.636 0.604 0.179
3 0.938 0.167 0.727 0.552 0.192
4 0.625 0.333 0.545 0.635 0.313
5 0.9375 0.167 0.727 0.552 0.192

Mean (SD) 0,8625 (0,145) 0,2 (0,068) 0,682 (0,215) 0.585 (0,089) 0.215 (0,05)

using a small amount of data, such as the freely available ProstateX-2 challenge
dataset [9]. With a grid search on the architectural features of the newly defined
3D ViT model, we selected the best-performing architecture and evaluated it
via a CV approach. A 3D CNN model was designed and trained from scratch to
have a basic reference model against which to compare our 3D ViT. It is worth
noting that, to the best of our knowledge, this is the first work that trains a
3D CNN on volumetric scans to predict PCa aggressiveness. Three-dimensional
CNN models have been previously exploited only to distinguish clinically signif-
icant from non-significant lesions [10, 13]. The results of our comparison showed
that, when trained with the same training pipeline, 3D ViT outperforms the 3D
CNN. Although both models exploited volumetric information, the 3D CNNs
likely suffered more from the lack of data. Whilst, despite the small amount of
data and without any specific structural optimization, the best-performing 3D
ViT provided quite good results, reaching an AUROC of 0.927 on the test set in
the best dataset partitioning.

As a further means of comparison with state-of-the-art methods, we com-
pared our results with those obtained in [27], which is the only work, to the best
of our knowledge, that addressed our same clinical task on the ProstateX-2 chal-
lenge dataset. For the sake of clarity, we hereby highlight the differences between
our work and [27]. In [27], the CNNs were trained on 2D images cropped around
the center of the lesion rather than the prostate, and the training was performed
using more data. In fact, in addition to the ProstateX-2 challenge dataset, ad-
ditional 132 lesions from a private dataset were used, and a transfer-learning
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approach was performed. Furthermore, in [27], the dataset was split randomly,
while we ensured a stratified and complete separation among patients. Results
of the comparison are reported in Table 6. Overall, although the performance
achieved by our model is lower, we must stress that it was obtained with less
training data. Furthermore, unlike [27], we ensured a complete separation of pa-
tients between training and test sets, as well as a double stratification, w.r.t.
class and the lesion’s zone. This approach suppressed any bias in favor of the
model’s classification capabilities.

Table 6. Comparison between 3D ViT and the CNN from [27].

Model Specificity  Sensitivity Accuracy AUC F2-score
Our ViT 0,750 (0,076) 0,567 (0,303) 0,700 (0,052) 0,775 (0,094) 0,523 (0,254)
CNN from [27] - 0.794 (0.0124) 0.738 (0.0136)  0.809 (-) -

Our study has been conceived as a preliminary investigation and, as such,
it has some limitations. Indeed, we did not apply any image enhancement steps
nor any architectural optimization of the original ViT model by, for instance,
including anatomical priors or employing diverse loss functions. ProstateX-2 is a
challenging dataset as it contains lesions in different areas of the prostate gland.
We applied the 3D ViT only to T2w scans, as these appeared more informative
according to our previous research in the field [2]. Nonetheless, the contribution
of ADC maps in cancer lesions located in diverse gland zones might be infor-
mative and they could enable a multimodal 3D ViT to better predict the lesion
aggressiveness. Overall, as a first exploratory step, our results are encouraging
and suggest that 3D ViTs, trained from scratch, might be a viable strategy for
assessing PCa aggressiveness. To confirm this statement, additional studies are
needed, especially on larger datasets and on datasets acquired with different
protocols and from different institutions. This would be necessary to validate
the robustness and generalization capabilities of the 3D ViT model. All these
additional experiments will be the subject of our future works.
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